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Abstract: Large-area graphitic films, produced by an advantageous technique based on spraying a
graphite lacquer on glass and low-density polyethylene (LDPE) substrates were studied for their
thermoresistive applications. The spray technique uniformly covered the surface of the substrate
by graphite platelet (GP) unities, which have a tendency to align parallel to the interfacial plane.
Transmission electron microscopy analysis showed that the deposited films were composed of
overlapped graphite platelets of different thickness, ranging from a few tens to hundreds of graphene
layers, and Raman measurements provided evidence for a good graphitic quality of the material.
The GP films deposited on glass and LDPE substrates exhibited different thermoresistive properties
during cooling–heating cycles in the −40 to +40 ◦C range. Indeed, negative values of the temperature
coefficient of resistance, ranging from −4 × 10−4 to −7 × 10−4 ◦C−1 have been observed on glass
substrates, while positive values varying between 4 × 10−3 and 8 × 10−3 ◦C−1 were measured when
the films were supported by LDPE. These behaviors were attributed to the different thermal expansion
coefficients of the substrates. The appreciable thermoresistive properties of the graphite platelet films
on LDPE could be useful for plastic electronic applications.

Keywords: graphite platelet coatings; LDPE; thermal expansion coefficient; thermoresistive properties

1. Introduction

Plastic electronics is an emerging technological field with a remarkable potential in the areas of
robotics, solar energy, sensors, health care, industrial automation, etc. [1–5]. Plastic electronic devices
offer the unique characteristics of stretchability, flexibility, transparency, lightweightness, etc., which
can be exploited for future industrial applications. Additionally, the processing technologies applied
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for the fabrication of plastic electronic devices (e.g., contact printing, roll-to-roll, ink-jet, spraying, etc.)
are inexpensive and powerful, compared to the traditional approaches available for silicon-based
electronics. However, all these technologies require further optimization to allow the production of
these materials on a large scale.

In this field, plastics are useful both for fabricating printed circuit boards and for making the
active and passive electronic components of a circuit. These components can be easily achieved
by incorporating functional organic materials (e.g., chromophores, fluorophores, conductive or
magnetic fillers, etc.) into an adequate polymer matrix [6–8]. In particular, graphite platelets, carbon
nanotubes, fullerene, graphene, and other carbonaceous materials have been extensively studied and
utilized to obtain conductive, thermoresistive, and semiconductive polymeric nanocomposites [9–17].
Furthermore, the surfaces of polymers such as poly (methyl methacrylate), polyethylene terephthalate
and low-density polyethylene (LDPE) have been made conductive by depositing graphite or graphene
layers onto them for the fabrication of printed radio frequency devices [18], electrically conductive
paths [19], piezoresistive sensors [20], and strain gauges [9]. These layers can be deposited by chemical
vapor deposition [21], casting and drying inks [18], micromechanical techniques based on spreading
an alcoholic suspension of graphite nanoplatelets [22,23] and spraying conductive composites [9].
In particular, this last technique is easy, inexpensive, and industrially scalable for the fabrication of
large area films.

In this study, the properties of graphite platelet (GP) films, obtained by spraying a commercial
lacquer on different substrates (LDPE and glass), were investigated. The deposited coatings were
morphologically and structurally characterized by scanning electron microscopy (SEM), transmission
electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), and Raman spectroscopy.
The thermal properties of the commercial lacquer, pure LDPE and graphite platelets deposited on
LDPE were also explored by thermogravimetric analysis (TGA). The thermal expansion coefficients of
the LDPE substrates coated by GP films were determined by dynamic–mechanical thermal analysis
(DMTA). Thermoresistive measurements of graphite platelets films on glass and LDPE substrates, i.e.,
the measurements of the electrical resistance as a function of the temperature, were carried out during
the cooling–heating cycles between −40 ◦C and +40 ◦C. Owing to the thermal expansion coefficient
mismatch, the substrate could dramatically affect the temperature coefficient of resistance (TCR) of the
GP film, which exhibited a negative TCR on glass and a positive TCR on the LDPE substrate.

2. Materials and Methods

Large area thin films of graphite-based material were deposited on glass and LDPE substrates
by spray technology, using a commercial lacquer, Graphit 33 (from Kontakt Chemie, Zele, Belgium),
which is commonly used in optical and electrical fields [24]. In order to produce a full cone jet spot,
the spray nozzle was horizontally directed, taking it at a distance of 20 cm from the substrate surface.
After spraying, the coated substrates were dried in air at room temperature, for 4 h.

Scanning electron microscopy analysis of the sample surface was performed using a FEI Quanta
200 FEG (FEI, Hillsboro, Oregon, USA) microscope. Due to the conductive nature of the graphite-based
material, samples were observed without any preparation except for the electrical grounding of the
surface. The inner structure of the deposited material was investigated through transmission electron
microscopy measurements carried out by a Philips CM200 (Philips, Amsterdam, The Netherlands)
microscope, operating at 200 kV and equipped with a LaB6 filament. For TEM observations, two
kinds of samples were prepared. In one case, the Graphit 33 was sprayed in acetone, the solid phase
was isolated by centrifugation and deposited on a TEM copper grid covered with a thin carbon film.
In another case, in order to see the inner structure of the deposited layer the Graphit 33 was sprayed
on a substrate and prepared in a cross-section by the conventional thinning procedure, consisting of
mechanical polishing by grinding papers, diamond pastes, and a dimple grinder; final thinning was
carried out by an ion beam system (Gatan PIPS), using Ar ions at 5 kV.
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Fourier-transform infrared spectra of dry Graphit 33 were made by a MIR/FIR Spectrometer
(Frontier, PerkinElmer, Milan, Italy). The samples preparation was performed by mixing powered
Graphit 33 with a crystalline KBr powder in an adequate ratio (1% by weight) and this mixture was
cold pressed under vacuum at 8 tons, for 10 min, to obtain a transparent pellet.

The thermal gravimetric analysis, in the 40–600 ◦C range was used to establish the thermal stability
of the coating, the pure LDPE, and the LDPE coated by the GP film. Such analyses were performed by
a TA-Instrument (Q500, Milan, Italy), operating in flowing nitrogen, with a constant heating rate of
10 ◦C/min.

Raman spectra of GP films on glass and LDPE substrates were performed by a Raman spectrometer
InviaH-Renishaw (InviaH, Renishaw, plc, New Mils, Wotton-under Edge, Glowcester Shire, GL128JR,
UK). A green argon laser with a 514.5 nm wavelength and a beam size approximately 2 µm in diameter
was selected for the analysis. A microscope with a 50X magnification power was used with an exposure
time of 10 s. Extended scans from 100 cm−1 to 3500 cm−1 was performed using a laser power of ca.
5 mW (5% of available laser power). An in-house MATLAB software (Matlab 9.7.0.1190202 R2019b,
Mathworks Inc., Natick, MA, USA) was used to correct the quantum efficiency of the detector, conduct
the baseline subtraction, and carry out the data processing.

Thermal expansion and contraction tests of an LDPE sample coated by GP (18.7 × 8.9 mm and ca.
90 µm thick) was carried out by means of cooling–heating cycles in the −40 to +40 ◦C range, at a rate of
5 ◦C/min, using a thermal mechanical analyzer (TMA2940, TA-Instruments, New Castle, USA).

Electrical measurements were executed under vacuum (∼2 mbar) in a coplanar configuration by
silver paint contacts (1-cm long and 1-mm spaced) spread on their surfaces. Vacuum was adopted as a
precaution to avoid ice formation during the low temperature cycle, as well as to prevent possible
effects of moisture or other adsorbates. Current–voltage (I–V) characteristics were taken in a Janis
Research ST-500 probe station equipped (Janis Research, Woburn, MA, USA) with 4 micromanipulators
connected to a Source-Measurement Unit (SMU) Keithley 4200-SCS (Tektronix, Inc., Beaverton, OR,
USA). From each I–V and from monitoring the resistance during a period of 60 s it was estimated that
the mean resistance of the samples at different temperatures T during cooling–heating cycles from
−40 ◦C to +40 ◦C performed at a rate of about 5 ◦C/min.

3. Results and Discussion

3.1. Characterization of Graphit 33 Lacquer

Large-area thin films of graphite-based material were deposited onto the glass and LDPE substrates
through spray technology, using a commercial lacquer such as Graphit 33 (see Figure 1).
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Thermo-gravimetric analysis and infrared spectroscopy were carried out to identify the
composition and concentration of the lacquer. The TGA–thermogram of a dry Graphit 33 sample
is shown in Figure 2. The sample is characterized by a weight loss in the 250–400 ◦C range, with a
maximum degradation rate at ca. 330 ◦C, as can be seen from the derivative curve (red line in Figure 2).
This weight loss could be attributed to the thermal degradation of the polymeric binder contained in
the product, and it was estimated as ca. 18% by weight. As evidenced by the thermogram, the absence
of weight loss at low temperature confirmed the absence of a volatile solvent after drying.
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Figure 2. TGA–thermogram and derivative thermogravimetric plot profile of a typical dried Graphit
33 sample.

The FT–IR spectrum of the dry Graphit 33 in KBr is shown in Figure 3. The main absorption bands
were centered at 3440 cm−1 (–OH group stretching), 2927 cm−1 (C–H group stretching), 1631 cm−1

(C=C group stretching), and 1092 cm−1 (C–O group stretching).
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Figure 3. FT–IR spectrum of a typical dried Graphit 33 sample in KBr.

TEM measurements were carried out to investigate the inner structure of the graphite phase.
In particular, Figure 4A,B show the solid phase extracted by the Graphit 33 by using acetone to remove
the polymeric binder. It was evident that the filler was made of platelets that in the images appear
to be largely superimposed. The platelets were hundreds of nanometers large, and their thicknesses
were quite small, considering the low contrast visible in the images. Selected area electron diffraction
(SAED) measurements were used to investigate the phase of the filler. Figure 4C shows a typical SAED
pattern. All the diffraction rings could be associated with the pure graphite phase (International Centre
for Diffraction Data, ICDD, card no. 41–1487) confirming that the only crystalline phase inside the
Graphit 33 was graphite.
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All experimental observations shown so far reveal that the Graphit 33 lacquer is composed mainly
of graphite platelets. The presence of the binder allows us to deposit a continuous graphite coating on
several types of substrates (glass, silicon, LDPE, etc.) using spray technology.

3.2. Morphological and Structural Characterizations of the GP Coatings

Coating morphology and structure, after spraying Graphit 33 on different substrates, were
investigated by SEM and TEM techniques. In particular, Figure 5A,B show the SEM images of the
deposited coatings on LDPE and glass substrates, respectively. The coatings on both substrates were
quite rough, porous, and were made of small graphite platelets, which covered all substrates without
discontinuities. TEM micrographs of a cross-sectioned GP coating are displayed in Figure 5C,D.
The coating is rather wrinkled, as shown in Figure 5C, with a thickness ranging from 2.3 to 3.6 µm
and a mean value of about 2.5 µm was measured on the large areas. TEM and SEM analyses suggest
a surface roughness of 500–1000 nm. The current application of this study deals with macroscopic
thermoresistors, therefore, the surface roughness of the platelet films did not present any issue. Indeed,
the metal contacts could have an arbitrary size and could be formed by a silver paste coating or by metal
sputtering (Au), using a shadow mask. Clearly, in the case of a microscopic device, the roughness of the
film could hamper the fabrication of micro-nano patterns, through an advanced lithographic process.

By increasing the magnification (Figure 5D), it is possible to observe that coating is made of
overlapping graphite platelets of different thickness, ranging from tens to hundreds of graphene layers.
Among the platelets, the polymeric binder visibly generates a lighter contrast typical of amorphous
material (see arrows). Although, the platelets assume all orientations locally in the selected area
electron diffraction (SAED) pattern of a large part of the coating (shown in the inset of Figure 5C)
it could be observed that the ring corresponding to the (0001) atomic planes had a non-uniform intensity
that could be correlated to the platelet’s tendency to align, in average, parallel to the interfacial plain.

Further structural characterizations were performed by Raman spectroscopy. The following
spectra are related to GP films deposited on glass (Figure 6A) and LDPE (Figure 6B).

Spectra analysis of GP films deposited both on glass and LDPE substrates indicated that the
coatings present similar characteristics, with a narrow D peak and a sharp and narrow G peak, right
shouldered (D*) due to the presence of defects [25–27]. The mean value of the ratio between the
intensities of the two peaks, Id/Ig, over the sampled points, was about 0.55 in the case of GP on glass
and about 0.80 for GP on LDPE, revealing that the films were made of a good quality graphitic material
with a lower presence of defects in the film deposited on glass. Three other peaks could be detected in
both spectra at higher wavenumbers (2300 to 3400 cm−1)–an intense left shouldered 2D peak (indicating
a multilayered structure), a D + G peak, and a 2G peak normal in width and intensity for a graphitic
material. No substrate signal was detected because the thickness of the GP film was larger than the
penetration length of laser radiation used in the Raman apparatus.
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Figure 5. SEM-micrographs of surface topography of GP films deposited on different substrates:
low-density polyethylene (LDPE) (A) and glass (B). Bright field TEM images of cross-sectioned GP
films at different magnifications, (C,D). The inset in (C) is the selected area electron diffraction (SAED)
pattern of the coating shown in (C). Dark arrows in (D) evidence the presence of amorphous materials
among graphite platelets.
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Figure 6. Raman spectra of graphite platelet (GP) films deposited on glass (A) and LDPE (B).

3.3. Thermal Properties of Pure LDPE and LDPE Coated by GP Films

The thermal stability of the pure LDPE and LDPE coated by GP was evaluated by TGA
measurements. According to the TGA–thermograms, up to a temperature of ca. 130 ◦C, both
samples were stable since they did not show any weight loss. Furthermore, by comparing the residual
mass at 600 ◦C, which had TGA curves in the 40–600 ◦C range, it could be seen that the average amount
of coating was ca. 1% by weight of the full LDPE/GP system. The graphite coating had the effect of
increasing the pure LDPE substrate thermal stability by ca. 22 ◦C (see Figure 7).
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Figure 7. TGA–thermograms of pure LDPE and LDPE coated by GP.

In order to correlate the effects of the thermal expansion of the LDPE substrate with the electrical
properties of graphite platelet films, tests of thermal expansion and contraction were carried out on
a sample of LDPE coated by GP. In particular, this characterization was carried out between −40 ◦C
and 40 ◦C, because in this temperature range, LDPE did not show any phase transition such as
crystallisation, melting, or glass transition, and the stress–strain response induced by temperature
variations was quite reversible [28].

The length of the sample, L, was recorded applying a constant force of 0.01 N and varying
the temperature in the above range at the rate of 5 ◦C/min. The strain of the sample, defined as
ε = (L − L0)/L0, where L0 is the initial sample length at 20 ◦C, is plotted in Figure 8, for two consecutive
cooling–heating cycles. A small hysteresis was evident between the heating and cooling curves.
It could be due to both a thermal relaxation of the LDPE molecules and a small temperature gradient
normally present in the furnace during cooling. The coefficient of linear thermal expansion, CTE, of the
LDPE coated by the GP sample was calculated as ε/∆T, where ∆T is the temperature change during the
test. CTE value results to be about 1.7 × 10−4 ◦C−1 on the investigated temperature range. This value
was in good agreement with those reported in the literature for LDPE films (1–2 × 10−4 ◦C−1) [29].
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Figure 8. Strain, ε, vs. temperature of the LDPE coated by GP for two consecutive cooling–heating cycles.

3.4. Thermoresistive Characterizations of Graphite Platelet Films on Glass and LDPE

All electrical measurements were carried out under vacuum in two probe configuration. The I–V
characteristics of the GP films deposited on glass and LDPE were linear, indicating ohmic contacts,
as shown in Figure 9.

The resistance values, R0, of the samples at the temperature of 20 ◦C were determined by the fit of
the plotted experimental data.
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Figure 9. I–V characteristics of the GP films deposited on glass (A) and LDPE (B) substrates.

The thermoresistive properties of the GP films were investigated by recording the resistance
values, R, of the samples starting from 20 ◦C and performing the cooling–heating cycles in the −40 to
40 ◦C range. The high resistance value of GP on LDPE could be due to the larger surface roughness of
the polymer substrate and its different chemical nature, compared to the glass ones that determined a
greater degree of inhomogeneity, as evidenced by the increased Id/Ig ratio obtained by Raman analysis.

In Figure 10, the R/R0 ratios are plotted against temperature for representative samples of GP
films deposited on glass and LDPE, respectively. Clearly, different thermoresistive behaviors could
be observed in the examined range. Indeed, the resistance of GP film on glass slowly decreases with
increasing T, similar to that of graphite [30], while GP on LDPE shows an increase in resistance in the
whole range. Thus, thermoresistive properties of GP films strongly depend on the substrates. In fact,
TCR defined as:

TCR =
1
R

dR
dT

(1)

is negative for GP on glass and positive for GP on LDPE.
Taking into account the cooling–heating cycles of Figure 10A,B, TCR varies in the −4 × 10−4

to −7 × 10−4 ◦C−1 and 4 × 10−3 to 8 × 10−3 ◦C−1 ranges for GP on glass and LDPE, respectively.
Furthermore, a greater reproducibility of the resistance–temperature characteristics in the case of
GP film deposited on the glass was observed. On the other hand, the appreciable thermoresistive
sensitivity of GP on LDPE made these materials useful for flexible electronic applications, although
more work has to be done to reduce the hysteresis during the thermal cycles and obtain a GP material
with a more reversible thermoresistive response.
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Figure 10. R/R0 vs. temperature during the cooling–heating cycles for GP films deposited on glass (A)
and LDPE (B) substrates.

The observed behaviors could be attributed to the different CTE of the substrates. Glass has a
CTE (6–9 × 10−6 ◦C−1) close to that of graphite (4–8 × 10−6 ◦C−1), and therefore, the resistance of the
GP film as compared to T, decreases, as in the case of graphite [29]. On the other hand, as reported in
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Section 3.3, the CTE of the coated LDPE (1.7 × 10−4 ◦C−1) is more than one order of magnitude greater
than that of graphite, thus, the thermal expansion (contraction) of the polymer substrate could induce
strains in the GP film, which tend to increase (decrease) its resistance. For example, in the case of the
investigated sample, by comparing the data in Figures 8 and 10B, the fractional change of the electrical
resistance, (R − R0)/R0, of the GP film could be correlated to the strain, ε, of the coated LDPE substrate,
as shown in Figure 11.

Materials 2019, 12, x FOR PEER REVIEW 9 of 11 

 

  
Figure 10. R/R0 vs. temperature during the cooling–heating cycles for GP films deposited on glass (A) 
and LDPE (B) substrates. 

The observed behaviors could be attributed to the different CTE of the substrates. Glass has a 
CTE (6–9 × 10−6 °C−1) close to that of graphite (4–8 × 10−6 °C−1), and therefore, the resistance of the GP 
film as compared to T, decreases, as in the case of graphite [29]. On the other hand, as reported in 
Section 3.3, the CTE of the coated LDPE (1.7 × 10−4 °C−1) is more than one order of magnitude greater 
than that of graphite, thus, the thermal expansion (contraction) of the polymer substrate could induce 
strains in the GP film, which tend to increase (decrease) its resistance. For example, in the case of the 
investigated sample, by comparing the data in Figure 8 and 10B, the fractional change of the electrical 
resistance, (R−R0)/R0, of the GP film could be correlated to the strain, , of the coated LDPE substrate, 
as shown in Figure 11. 

 
Figure 11. The fractional change of the electrical resistance, (R−R0)/R0, vs.the strain, , of the GP film 
on the LDPE substrate. 

As can be seen, the slopes of the curves in the −40 to 20 °C range were lower than those in the 20 
to 40 °C range. Indeed, below the sample deposition temperature (20 °C), a greater compaction of the 
platelets enhanced the decrease (increase) in the resistance during heating (cooling), as in the case of 
graphite. This effect tends to counterbalance the increase (decrease) in resistance due to the expansion 
(contraction) of the substrate and, therefore, the resulting resistance increases (decreases) more 
slowly in this temperature range. 

Additionally, the larger resistance hysteresis occurring in the GP film on LDPE during the 
cooling–heating cycles (Figure 10B) could be attributed to the greater CTE of the LDPE, compared to 
that of glass. Indeed, the platelets deposited on LDPE were subjected to a greater mobility due to the 
strains of this polymer substrate and the occurrence of possible nano/micro fractures in the films that 
could cause a different assembly of the platelets when the sample passed again for the same 
temperature during a thermal cycle, leading to a different value of its initial resistance. 

4. Conclusions 

 

-40 -20 0 20 40
0.8

0.9

1.0

1.1

1.2

 

 

R
/R

0

Temperature (°C)

 1st cooling
 1st heating
 2nd cooling

GP/glass(A)

 

-40 -20 0 20 40
0.8

0.9

1.0

1.1

1.2

 

 

R
/R

0

Temperature (°C)

 1st Cooling
 1st Heating
 2nd Cooling

GP/LDPE(B)

 

-0.012 -0.008 -0.004 0.000 0.004
-0.2

-0.1

0.0

0.1

0.2

 

 

(R
-R

0)/R
0



 1st Cooling
 1st Heating
 2nd Cooling

20°C

40°C

-40°C
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on the LDPE substrate.

As can be seen, the slopes of the curves in the −40 to 20 ◦C range were lower than those in the 20
to 40 ◦C range. Indeed, below the sample deposition temperature (20 ◦C), a greater compaction of the
platelets enhanced the decrease (increase) in the resistance during heating (cooling), as in the case of
graphite. This effect tends to counterbalance the increase (decrease) in resistance due to the expansion
(contraction) of the substrate and, therefore, the resulting resistance increases (decreases) more slowly
in this temperature range.

Additionally, the larger resistance hysteresis occurring in the GP film on LDPE during the
cooling–heating cycles (Figure 10B) could be attributed to the greater CTE of the LDPE, compared to
that of glass. Indeed, the platelets deposited on LDPE were subjected to a greater mobility due to
the strains of this polymer substrate and the occurrence of possible nano/micro fractures in the films
that could cause a different assembly of the platelets when the sample passed again for the same
temperature during a thermal cycle, leading to a different value of its initial resistance.

4. Conclusions

It was observed that large-area conductive thin films could be produced by spraying Graphit 33
lacquer on glass and LDPE substrates. Raman spectra analysis revealed that the graphitic material
deposited on both substrates was of good quality. According to the morphological and structural
investigations by SEM and TEM, the films consist of overlapped graphite platelets that cover the
surfaces of the substrates, mostly in a coplanar manner. It was found that the resistance of the film as a
function of temperature in the −40 to 40 ◦C range decreased if the substrate was glass and increased
in the case of the LDPE substrate. Therefore, the temperature coefficient of resistance changed from
negative to positive values, respectively. It was demonstrated that the different thermoresistive
properties of the GP films depend on the thermal expansion characteristics of the substrates on which
they have been deposited. The appreciable thermoresistive sensitivity of GP films on LDPE makes
these structures promising for applications in plastic electronics, however, more work has to be carried
out to reduce the hysteresis observed during the thermal cycles to obtain a GP material with more
reproducible thermoresistive properties.



Materials 2019, 12, 3638 10 of 11

Author Contributions: Conceptualization, U.C., G.C. and A.D.B; methodology, F.G.; software, F.G. and M.R.;
validation, M.P., A.L., G.C., L.I., F.U. and G.A.; formal analysis, L.I., F.U., F.G., A.L. and M.P.; investigation, L.I.,
F.U., G.B., M.R, A.T., A.L., A.S. and M.P.; resources, A.D.B; G.C., U.C., A.T., A.S. and G.B; data curation, F.U., L.I.,
G.B., M.R, A.T., A.L., A.S. and M.P.; writing—original draft preparation, G.C., M.P., A.L., A.D.B., G.B., A.T., M.R.,
A.S. and U.C.; writing—review and editing A.D.B., G.B., A.T., G.A. and U.C.; supervision U.C., G.A.,G.C., G.B.
and A.D.B.

Funding: This research received no external funding.

Acknowledgments: The authors are grateful to Maria Cristina Del Barone of LAMEST laboratory (IPCB-CNR)
for TEM cross-section preparation and to Maria Rosaria Marcedula of Thermo-analysis Laboratory (IPCB-CNR)
for FT-IR and TGA tests. The authors are also grateful to A. Vanzanella and the electronic workshop of INFN
Napoli for the fruitful discussions and their support during the assembling of the experimental setup. The authors
acknowledge the funding support by the project Pico & Pro, MIUR Project ARS01_01061, 2018–2021.

Conflicts of Interest: The authors declare no competing financial interest.

References

1. Singh, T.B.; Sariciftci, N.S. Progress in plastic electronics devices. Annu. Rev. Mater. Res. 2006, 36, 199–230.
[CrossRef]

2. Stoppa, M.; Chiolerio, A. Wearable Electronics and Smart Textiles: A Critical Review. Sensors 2014, 14,
11957–11992. [CrossRef] [PubMed]

3. Wang, X.; Dong, L.; Zhang, H.; Yu, R.; Pan, C.; Wang, Z.L. Recent Progress in Electronic Skin. Adv. Sci. 2015,
2, 1500169. [CrossRef] [PubMed]

4. Lu, N.; Kim, D.-H. Flexible and Stretchable Electronics Paving the Way for Soft Robotics. Soft Robot. 2014, 1,
53–62. [CrossRef]

5. Rogers, J.A.; Someya, T.; Huang, Y. Materials and Mechanics for Stretchable Electronics. Science 2010, 327,
1603–1607. [CrossRef]

6. Kukhta, A.V.; Kolesnik, E.E.; Lesnikovich, A.I.; Nichik, M.N.; Kudlash, A.N.; Vorobyova, S.A.
Organic-Inorganic Nanocomposites: Optical and Electrophysical Properties. Lumin. Nanocompos. 2007, 37,
333–339. [CrossRef]

7. Khan, S.; Lorenzelli, L. Recent advances of conductive nanocomposites in printed and flexible electronics.
Smart Mater. Struct. 2017, 26, 083001. [CrossRef]

8. Raj, P.M.; Muthana, P.; Xiao, T.D.; Wan, L.; Balaraman, D.; Abothu, I.R.; Bhattacharya, S.; Swaminathan, M.;
Tummala, R. Magnetic nanocomposites for organic compatible miniaturized antennas and inductors. Conf.
Pap. IEEE 2005, 272–275. [CrossRef]

9. Kondratov, A.P.; Zueva, A.M.; Varakin, R.S.; Taranec, I.P.; Savenkova, I.A. Polymer film strain gauges for
measuring large elongations. IOP Conf. Ser. Mater. Sci. Eng. 2018, 312, 012013. [CrossRef]

10. Tripathi, S.N.; Rao, G.S.S.; Mathur, A.B.; Jasra, R. Polyolefin/graphene nanocomposites: A review. RSC Adv.
2017, 7, 23615–23632. [CrossRef]

11. Khare, R.; Bose, S. Carbon Nanotube Based Composites—A Review. J. Miner. Mater. Charact. Eng. 2005, 4,
31–46. [CrossRef]

12. Turkani, V.S.; Maddipatla, D.; Narakathu, B.B.; Bazuin, B.J.; Atashbar, M.Z. A carbon nanotube based NTC
thermistor using additive print manufacturing processes. Sens. Actuators Phys. 2018, 279, 1–9. [CrossRef]

13. Wang, S.; Kowalik, D.P.; Chung, D.D.L. Self-sensing attained in carbon-fiber–polymer-matrix structural
composites by using the interlaminar interface as a sensor. Smart Mater. Struct. 2004, 13, 570–592. [CrossRef]

14. Hirotani, J.; Amano, J.; Ikuta, T.; Nishiyama, T.; Takahashi, K. Carbon nanotube thermal probe for quantitative
temperature sensing. Sens. Actuators Phys. 2013, 199, 1–8. [CrossRef]

15. Dong, Q.; Guo, Y.; Sun, X.; Jia, Y. Coupled electrical-thermal-pyrolytic analysis of carbon fiber/epoxy
composites subjected to lightning strike. Polymer 2015, 56, 385–394. [CrossRef]

16. Sibinski, M.; Jakubowska, M.; Sloma, M. Flexible Temperature Sensors on Fibers. Sensors 2010, 10, 7934–7946.
[CrossRef]

17. Dinh, T.; Phan, H.-P.; Qamar, A.; Woodfield, P.; Nguyen, N.-T.; Dao, D.V. Thermoresistive Effect for Advanced
Thermal Sensors: Fundamentals, Design Considerations, and Applications. J. Microelectromech. Syst. 2017,
26, 966–986. [CrossRef]

http://dx.doi.org/10.1146/annurev.matsci.36.022805.094757
http://dx.doi.org/10.3390/s140711957
http://www.ncbi.nlm.nih.gov/pubmed/25004153
http://dx.doi.org/10.1002/advs.201500169
http://www.ncbi.nlm.nih.gov/pubmed/27980911
http://dx.doi.org/10.1089/soro.2013.0005
http://dx.doi.org/10.1126/science.1182383
http://dx.doi.org/10.1080/15533170701392396
http://dx.doi.org/10.1088/1361-665X/aa7373
http://dx.doi.org/10.1109/ISAPM.2005.1432088
http://dx.doi.org/10.1088/1757-899X/312/1/012013
http://dx.doi.org/10.1039/C6RA28392F
http://dx.doi.org/10.4236/jmmce.2005.41004
http://dx.doi.org/10.1016/j.sna.2018.05.042
http://dx.doi.org/10.1088/0964-1726/13/3/017
http://dx.doi.org/10.1016/j.sna.2013.04.038
http://dx.doi.org/10.1016/j.polymer.2014.11.029
http://dx.doi.org/10.3390/s100907934
http://dx.doi.org/10.1109/JMEMS.2017.2710354


Materials 2019, 12, 3638 11 of 11

18. Huang, X.; Leng, T.; Zhang, X.; Chen, J.C.; Chang, K.H.; Geim, A.K.; Novoselov, K.S.; Hu, Z. Binder-free
highly conductive graphene laminate for low cost printed radio frequency applications. Appl. Phys. Lett.
2015, 106, 203105. [CrossRef]

19. Longo, A.; Verucchi, R.; Aversa, L.; Tatti, R.; Ambrosio, A.; Orabona, E.; Coscia, U.; Carotenuto, G.;
Maddalena, P. Graphene oxide prepared by graphene nanoplatelets and reduced by laser treatment.
Nanotechnology 2017, 28, 224002. [CrossRef]

20. Bonavolontà, C.; Camerlingo, C.; Carotenuto, G.; De Nicola, S.; Longo, A.; Meola, C.; Boccardi, S.; Palomba, M.;
Pepe, G.P.; Valentino, M. Characterization of piezoresistive properties of graphene-supported polymer
coating for strain sensor applications. Sens. Actuators Phys. 2016, 252, 26–34. [CrossRef]

21. De Castro, R.K.; Araujo, J.R.; Valaski, R.; Costa, L.O.O.; Archanjo, B.S.; Fragneaud, B.; Cremona, M.;
Achete, C.A. New transfer method of CVD-grown graphene using a flexible, transparent and conductive
polyaniline-rubber thin film for organic electronic applications. Chem. Eng. J. 2015, 273, 509–518. [CrossRef]

22. Palomba, M.; Longo, A.; Carotenuto, G.; Coscia, U.; Ambrosone, G.; Rusciano, G.; Nenna, G.; Barucca, G.;
Longobardo, L. Optical and electrical characterizations of graphene nanoplatelet coatings on low density
polyethylene. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2018, 36,
01A104. [CrossRef]

23. Coscia, U.; Palomba, M.; Ambrosone, G.; Barucca, G.; Cabibbo, M.; Mengucci, P.; de Asmundis, R.;
Carotenuto, G. A new micromechanical approach for the preparation of graphene nanoplatelets deposited
on polyethylene. Nanotechnology 2017, 28, 194001. [CrossRef] [PubMed]

24. Lim, K.-H.; Kim, S.-K.; Chung, M.-K. Improvement of the thermal diffusivity measurement of thin samples
by the flash method. Thermochim. Acta 2009, 494, 71–79. [CrossRef]

25. Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev.
B 2000, 61, 14095. [CrossRef]

26. Abdelkader, A.M.; Patten, H.V.; Li, Z.; Chen, Y.; Kinloch, I.A. Electrochemical exfoliation of graphite in
quaternary ammonium-based deep eutectic solvents: a route for the mass production of graphane. Nanoscale
2015, 7, 11386–11392. [CrossRef]

27. Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Canc, L.G.; Jorioa, A.; Saitoe, R. Studying disorder in
graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1291. [CrossRef]

28. Peacock, A. Handbook of Polyethylene. Structures: Properties, and Applications; Marcel Dekker, INC.: New York,
NY, USA, 2000.

29. Mark, D.H. Thermal characterization of polymeric materials, Edith A. Turi, Ed., Academic, New York, 1981,
972 pp. Price: $98.00. J. Polym. Sci. Polym. Lett. Ed. 1982, 20, 281–282, Book review. [CrossRef]

30. Iwashita, H.; Imagawa, H.; Nishiumi, W. Variation of temperature dependence of electrical resistivity with
crystal structure of artificial products. Carbon 2013, 61, 602–608. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1063/1.4919935
http://dx.doi.org/10.1088/1361-6528/aa6c3c
http://dx.doi.org/10.1016/j.sna.2016.11.002
http://dx.doi.org/10.1016/j.cej.2015.03.092
http://dx.doi.org/10.1116/1.4998570
http://dx.doi.org/10.1088/1361-6528/aa673d
http://www.ncbi.nlm.nih.gov/pubmed/28301333
http://dx.doi.org/10.1016/j.tca.2009.04.019
http://dx.doi.org/10.1103/PhysRevB.61.14095
http://dx.doi.org/10.1039/C5NR02840J
http://dx.doi.org/10.1039/B613962K
http://dx.doi.org/10.1002/pol.1982.130200508
http://dx.doi.org/10.1016/j.carbon.2013.05.042
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Results and Discussion 
	Characterization of Graphit 33 Lacquer 
	Morphological and Structural Characterizations of the GP Coatings 
	Thermal Properties of Pure LDPE and LDPE Coated by GP Films 
	Thermoresistive Characterizations of Graphite Platelet Films on Glass and LDPE 

	Conclusions 
	References

