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Summary

Osteoporosis, the silent disease, is a metabolic disorder mainly affecting
post-menopausal women which induces progressive loss and deterioration
of the bone tissue. The bone gradually becomes more porous and frag-
ile often without symptoms, until a fracture occurs. 200 million people
are currently affected by this disorder globally, and due to the increased
longevity of the population, especially in western countries, its incidence is
expected to grow dramatically over the next 30 years. Osteoporosis clinical
relevance lies in the fractures it causes: according to the World Health Or-
ganization, in 2010 3.5 million fractures were estimated to have occurred
in Kuropean countries. Not only impressively high levels of morbidity and
mortality are associated to these fractures, but there are also strong eco-
nomic implications for the healthcare systems. Among osteoporotic frac-
tures, hip fractures are considered to be particularly devastating because
of the severe aftermaths they entail as well as the related costs. At present,
the presence of osteoporosis is assessed based on the Bone Mineral Den-
sity (BMD) measurement using DXA, the standard imaging technology
for diagnosis purposes. Comparing the patient-specific BMD value with
that related to a standard young population, the T-score is computed,
which represents the gold-standard for patients classification. Based on
the T-score value, patients are indeed classified as healthy (T-score > —1),
osteopenic (—2.5 < T-score < —1) or osteoporotic (T-score < —2.5). How-
ever, T-score predictive weaknesses have increasingly been highlighted in

literature. In particular, its poor sensitivity has been pointed out, given
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that almost half of the people suffering from an osteoporosis-related frac-

ture would not be currently classified as at risk by the T-score.

Against this background, the main purpose of the work presented

within this thesis was to investigate if the current gold-standard predic-
tive performances in estimating the proximal femur fracture risk could be
enhanced. Particular attention was paid to the proximal femur geometry,
since geometry does represent a determinant of the resistance to loading
of a structure. In this respect, Hip Structural Analysis (HSA) is a tool
allowing the extraction of a number of geometric variables directly from
the mineral mass information contained in DXA images. HSA variables
are provided to clinicians together with the DXA related data, but do not
actually find any practical application.
To achieve the main objective of the study, a cohort of 28 post-menopausal
was used, for whom DXA and CT images were available simultaneously.
Unfortunately, no follow-up information was available for them, but two
additional patients, fractured at the proximal femur because of a fall at
home within 1 year after the DXA exam, were included in the study al-
though lacking the CT images.

In the first chapter, three-dimensional Finite Element (FE) analyses
were built taking advantage of the available CT images. Indeed, they al-
lowed the construction of realistic models combining the three-dimensional
patient-specific anatomical features and heterogeneous material properties
distribution. To investigate the patient-specific risk of proximal femur
fracture, a sideways fall condition was simulated and two different frac-
ture risk indices, the Risk Factor Index (RFI) and the Femoral Strength
(FS) were extracted adopting principal strains-based failure criteria. Sub-
sequently, a multivariate regression analysis was carried out in order to
identify the optimal regression model for predicting the RFI and F'S from
the available HSA parameters. CT is not indeed routinely employed for
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osteoporotic patients and the 3D models development is therefore pre-
vented. That is the main reason why HSA variables, clinically available,
were included in the regression analysis, aiming to identify those most rel-
evant with respect to estimated fracture predictors. The most meaningful
HSA parameters turned out to be the buckling ratio at the neck and shaft
together with the neck shaft angle. This outcome was consistent with the
prevailing bending stress occurring, especially at the neck, during side-
ways falls and with the reduction in cortical stability which takes place
with ageing, and is worsened by osteoporosis. Moreover, compared to the
T-score, the two risk indices allowed to disclose distinct risk levels among
patients belonging to the same T-score range, with particular attention to
the osteopenic one. From this perspective, the two additional fractured
patients, osteopenic, were correctly predicted by the optimal regression
models in the higher risk regions.

In the second chapter, two-dimensional FE analyses built on DXA
images were performed in analogy with the CT-based ones of the previ-
ous chapter. Patient-specific proximal femur geometry and heterogeneous
material properties based on the available pixel-by-pixel BMD maps were
included in the analyses, although characterized by the projective nature
of the DXA image. The purpose was to assess if DXA-based FE analy-
ses, which would be clinically attainable because based on the standard
imaging technique, could be considered comparable to the CT-based ones.
Therefore, patient-specific 2D FE analyses reproducing a sideways fall
were carried out for the 28 patients analogously to those performed in the
previous chapter on the same patients. Equivalent fracture risk indices,
RFI and FS, were computed (RFIsp and FSsp). Although a significant
correlation was found between the 2D and 3D risk predictors, the correla-
tion was modest, thus supporting the conclusion that CT- and DXA-based
outcomes would not appear to be equivalent. However, the HSA variables
identified as the most relevant to the two-dimensional fracture risk were
the buckling ratio at the neck and shaft, cross-sectional moment of inertia
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and neck-shaft angle, not discordant to those relevant to the CT-based
risk. Furthermore, compared to the T-score, RFIop and FSop highlighted
as at higher risk the same patients the CT-based RFI and FS drew at-
tention to. The fractured patients were correctly located in the high risk
area by the FSop, only one by the RFIop.

In the third chapter, statistical shape and intensity models were built
aiming to further investigate the role of geometry, BMD distribution and
their interaction within the fracture risk determination. Principal Com-
ponent Analysis (PCA) and Partial Least Square (PLS) algorithms were
employed, aiming to identify not only the most meaningful modes of vari-
ations of the shape and BMD distribution, but also those most relevant
with respect to the 3D-based Femoral Strength (FS). DXA-based shape
and BMD data were used, with the purpose of accomplishing usable out-
comes, able to be integrated in the current diagnostic framework. On the
other hand, the FS extracted from the CT-based FE analyses was used
as the reference response variable, judged more realistic and comprehen-
sive. Statistical shape modelling allowed to capture global morphological
features not limited to the HSA variables, which are discrete and often
interrelated. In addition, the main intensity features could be gathered as
a whole through statistical intensity modelling. Interestingly, significant
correlations were identified between the main intensity and shape modes.
The most meaningful BMD distribution features turned out to be able to
explain most of the variance contained in the F'S. However, when combined
with shape features, the percentage of variance explained increased from
57.18% to 66.9%. Eventually, Canonical Correlation Analysis allowed to
predict the changes in shape and BMD distribution occurring for decreas-
ing F'S values. In this respect, the main anatomical alterations interested
an increase in the neck-shaft angle and a narrowing of the intertrochanter
width.

In conclusion, this works represents an attempt to clarify the role of
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geometry within the osteoporotic fracture risk of the proximal femur. The
HSA variables most relevant to the fracture risk were, except for the neck-
shaft angle, all intrinsically tightly related to the density distribution. This
might appear an evidence of the fact that the use of HSA variables as risk
predictors might be misleading in interpreting the role of geometry, since
they are actually determined based on the mineral mass distribution en-
closed in DXA images. From this perspective, statistical shape-intensity
modelling highlighted this aspect, since most of the femoral strength vari-
ance was explained by the main BMD distribution features rather than
by the anatomical ones. However, the inclusion of shape features did
lead to an improvement, which might seem to witness a role of geometry.
DXA-based FE analyses, combining the heterogeneous material properties
extracted from the local BMD map with the patient-specific 2D femoral
shape, did manage to better stratify osteopenic patients, although they
may not be considered equivalent to CT-based FE analyses.

In the end, larger cohorts with available follow-up information will un-
questionably help in gaining further insights in the synergistic role shape
and BMD distribution play as proximal femur fracture risk determinants,
but the results, with regard to the statistical shape-intensity modelling
approaches especially, appear promising tools for accomplishing that am-
bition.
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Chapter 1

Introduction



Introduction

1.1 Phisiopatology

Osteoporosis is a silent metabolic disorder which entails significant re-
ductions in the density and quality of the bone, therefore affecting its
mechanical strength. As bone loss and deterioration occur and bone gets
more porous and fragile, the risk of fracture is highly increased (Figure
1.1). Bone degradation occurs silently and progressively, often without

Figure 1.1: The comparison between normal bone (left) and osteoporotic bone (right).
From http://www.iofbonehealth.org/.

symptoms until the first fracture occurs. One fracture every 3 seconds has
been estimated to to take place.

Two different kinds of bone can be distinguised in the adult human
skeleton: cortical and trabecular bone. Cortical bone is dense and com-
pact, it encases all parts of the skeleton, but it is prominent in the dia-
physes of long bones, such as the femur. Trabecular or cancelleous bone,
on the contrary, abundant in the spine, is formed by a porous and in-
terlocking structure of vertical and horizontal trabeculae. Although being
architecturally different, these two types of bones are very similar at the
molecular and biochemical levels. Indeed, the main structural constituents
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1.1 — Phisiopatology

of bone tissue as a whole are the Extra-Cellular Matrix (ECM) and the
cells. While cells are responsible for the control of bone formation and
resorption, the ECM, together with the geometric and micro-architectural
features related to the tissue distribution in space, governs its mechan-
ical properties. The ECM is made up of a non-mineralized component,
known as osteoid, which is mainly composed of collagen and in which cells
are embedded, plus a minerlized component, hydroxyapatite, deposited on
the osteoid in a highly organized way [1]. The physiological homeostasis
of this metabolically active tissue is maintained thanks to the activities of
osteoclasts, cells responsible for bone resorption, and osteoblasts, respon-
sible for bone formation. Bone is indeed continuously formed, reabsorbed,
and replaced within this so called bone remodelling process. Therefore,
changes in bone mass depend on the coordinated actions of these bone re-
absorbing and forming cells. Increased bone resorption or decreased bone
formation might indeed result in osteoporosis.

The awareness of a particular condition in which bone resulted weak-
ened, thus fostering the occurrence of fractures, lies back to the XIX cen-
tury. In the early 1820s indeed, Sir Astley Cooper registered that London
hospitals were “seldom without an example of fracture of the neck of the
thighbone”, highlighting how “women are much more likely to this species
of fracture than men”, and that this kind of fractures “seldom happens
but at an advanced period of life”. Osteoporosis, literally meaning ‘porous
bone’, was subsequently defined during the first half of the XX century as
“atrophy” of the fully developed bone producing a “rarefied skeleton” by
Albright et al., in a study involving 40 post-menopausal women [2], which
thus formulated the basis for the ensuing research. Eventually, in 1994,
the World Health Organization (WHO) issued a report where osteoporosis
was comprehensively defined as “a disease characterised by low bone mass
and micro-architectural deterioration of bone tissue, leading to enhanced
bone fragility and a consequent increase in fracture risk” [3].
Osteoporosis, which has since then kept the 1994 WHO definition, is to
date categorized into primary and secondary causes. Primary osteoporosis

3



Introduction

is further classified into Type I, associated to menopause and oestrogen
deficiency, and Type II osteoporosis, which affects both men and women
older than 70 years. Secondary causes, on the contrary, might ensue a
number of disorders, such as endocrine, hematopoietic or renal diseases,
and medications [4]. Due to the cohort included in this thesis, made up
of post-menopausal women, primary osteoporosis will be the main focus
of the work.

Actually, during lifetime, the bone remodelling process acts indeed in
favour of the deposition phase until the achievement of the peak bone
mass, at the age of 25-30 years. Afterwards, following a temporary pe-
riod of stability, bone loss begins at about the age of 35 years [5]. This
process is accelerated in the immediate post-menopausal years in women.
In fact, the production of oestrogen, an hormone playing a central role
in regulating the remodelling process, undergoes a steep decrease after
the menopause, leading to further bone loss and deterioration. Low bone
mass and microarchitecturally deteriorated bone tissue, which character-
ize osteoporosis, therefore lead to enhanced bone fragility and increased
fracture risk with ageing (Figure 1.2). Beyond tissue mineralization den-
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Figure 1.2: Age- and sex-specific incidence of vertebral, hip and wrist fracture. The
fracture incidence rises with age for both men and women, although the increase in
much steeper for women. Adapted from Cooper et al., 1993 [6].

sity, the strength of a bone comprises a number of components including
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1.2 — Epidemiology

bone architecture, geometry, porosity, and is therefore strictly related to
bone quality, microarchitecture and bone mass distribution. Although
bone loss interests the bone mass as a whole, cancelleous bone horizontal
trabeculae are particularly predisposed to resorption. Without the sup-
port of these crossing horizontal components, vertical trabeculae are much
more susceptible to compressive instability, and this often leads to crush
of the cancelleous bone, frequently observed within the spine [1].
Primary osteoporosis develops slowly and silently, until it suddenly mani-
fests with fractures, its main aftermath, which are where its clinical signif-
icance lies [7]. Beyond age and menopause-related bone loss, also muscle
strength, poor balance, visual acuity might interact with a poor bone mass
playing a pivotal role in determining the fracture risk. As a matter of fact,
osteoporotic fractures represent multi-factorial complex events, resulting
primarily from a combination of reduced bone strength and increased rate
of falls (Figure 1.3).

1.2 Epidemiology

Osteoporosis is the most common metabolic disorder, affecting 200
million people all over the world [4]. In 2010, 22 million women and 5.5
million men in the European Union (EU) had osteoporosis according to
the WHO diagnostic criteria [9]. Its incidence raises with ageing, and
due to the increased longevity of the population, it is expected to grow
dramatically. In Europe, the proportion of elderly people over the whole
population will rise by 33% over the next 25 years [7] and in Italy, where
3.5 million women and 1 million men have been estimated to suffer from
osteoporosis, the proportion of individuals over 65 years is expected to
increase by 25% in the next 20 years, reasonably leading to a proportional
increase in osteoporosis incidence [10].

Although both men and women are affected by this disorder, women,
as already mentioned, are those worst hit: worldwide, one in three women

over 50 years will indeed undergo a fracture in her lifetime, compared to
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Figure 1.3: The interplay among the main pathogenetic factors contributing to the
occurrence of osteoporotic fractures. Adapted from Heaney, 1974 [8].

the one in five men doing so [11]. Furthermore, age has a strong impact on
osteoporosis incidence: based on the WHO diagnostic criteria, osteoporo-
sis affects 20% of all post-menopausal Caucasian women and 50% of those
aged 80 years. Looking at the Italian hip fracture incidence for men and
women (Figure 1.4), an exponential increase in incidence can be observed,
with much higher rates in women compared to men.

Osteoporosis manifests clinically with fractures, with one fracture es-
timated to occur every 3 seconds [7], more than 8.9 million annually. The
definition of osteoporotic fracture is actually not straightforward. In fact,
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Figure 1.4: Hip fracture incidence (per 100°000) by age in Italian men and women.
Adapted from [7].

the increasing rate of fractures with age does not provide sufficient evi-
dence for osteoporosis, as it could be related to an higher incidence of falls
[7]. Usually, however, fracture sites are considered to be osteoporotic when
associated to low bone mass and their incidence rises with age after the
age of 50 years [7]. The most common fracture sites are the hip, spine, dis-
tal forearm, and proximal humerus [12]. Fractures rates are much higher
in the western countries: in spite of its more modest population, approx-
imately one third of the osteoporotic fractures occur in Europe. In 2010,
the WHO estimated, in European countries, 3.5 million fractures [13]. Be-
yond this health burden, the occurrence of osteoporotic fractures has sig-
nificant social and economic implications, with great impact on health care
systems, morbidity and mortality [12]. Osteoporotic fractures represent
indeed one of the main causes of death among the elderly, with incidence
comparable to stroke and breast cancer [10]. In 2010, the number of deaths
causally related to this kind of fractures were estimated at 43000 in the EU
[13]. Osteoporotic fractures also lead to a considerable reduction in the
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level of independence due to disability and, therefore, to an higher need
for long-term care (Figure 1.5). From this perspective, osteoporosis costs,
including pharmacological interventions, were registered to amount to €37
billion in 2010 [13]. Costs of treating incident fractures represented 66%

4000 -
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O L

Disability-adjusted life-years (DALYSs)

Figure 1.5: Disability-adjusted life-years (DALYSs) lost due to a number of diseases.
COPD: Chronic Obstructive Pulmonary Disease, OA: Osteoarthritis. Adapted from
[14].

of these costs, pharmacological interventions 5%, long-term fracture care
29%. Not accounting for the pharmacological prevention-related costs,
hip fractures alone represented 54% of the total costs [9]. Among osteo-
porotic fractures, hip fractures are indeed the most serious, with a 10-20%
increased mortality in the first year following the fracture [15]. Approx-
imately 50% of fracture-related deaths are estimated to be due to hip
fractures [9]. Besides, fractures of the proximal femur are considered to
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1.3 — Assessment of fracture risk

be particularly devastating due to the significant aftermaths they cause
in terms of persistent pain and limited physical mobility [16]. Due to the
growing global life expectancy, worldwide, the incidence of hip fractures
is estimated to increase by 3.5 times by 2050, ascending to a total of 6.26
million fractures in the same year [17]. Mainly caused by falls 7], they re-
sult, inter alia, from the age-related decrease in bone mass at the proximal
femur together with an age-related increased rate of falls. The lifetime risk
of hip fracture for a woman is 14%; because risk increases with age, women
who are older than 85 years are approximately eight times more likely than
women 65-74 years old to be admitted to the hospital for a hip fracture [4].
In 2017, in Italy, a total of 560000 fractures were recorded, with a related
health-care system cost of €9.4 billion. 20% of them being represented
by hip fractures, they were responsible for an expense of approximately
€6 billion (2018 country-specific report on the clinical, societal, and cost
burden associated with fragility fractures: http://www.panoramasanita.
it/wp-content/uploads/2018/10/report-firmo-iof.pdf).

1.3 Assessment of fracture risk

As suggested by the osteoporosis definition presented previously, bone
mass represents an important component of the risk of fracture, although
other factors, such as bone microarchitecture or geometry, affect bone
strength and, consequently, its resistance to trauma [10, 18]. At present,
nevertheless, bone mass is the main variable employed clinically, on which
diagnosis, monitoring and the management of the disease in general are
based. Bone Mineral Density (BMD) is the clinical parameter used, which
is derived from the Bone Mineral Content (BMC, expressed in grams)
and can be measured in vivo exploiting a variety of techniques such as
Quantitative Computed Tomography (QCT), Dual X-ray Absorptiome-
try (DXA), quantitative ultrasound and quantitative magnet-resonance
tomography, though DXA is the current gold-standard technique (Table
1.1). DXA fundamental principle is the variable absorption of X-rays by
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different body components. By measuring the attenuation of X-rays with
high- and low-energy photons, the bone can be distinguished from soft
tissues and the mineralized bone mass eventually assessed neglecting sur-
rounding soft tissues attenuation effect. DXA is highly accurate and fast,
subjecting the patients to a low radiation dose (Table 1.1) [19].

The image DXA yields is the two-dimensional projection of the mineral

Table 1.1: General overview of the most common techniques to assess the bone mass.
Adapted from [19].

Technique Site Scan Precision Radiation
Time error exposure
(min) (%) (mrem)
DXA Radius, Calcaneus 5-15 1-3 1-5
Spine, Hip
Whole body
QCT Spine 10-30 24 50
QUS Calcaneus, Tibia 5-10 3-4 0

mass: in particular, its pixels are the sum of the mineral mass along the
ray path (along a line) extending from the X-ray source, through the body
of the patient, to the detector [20]. From this perspective, DXA main
drawback is that it can only provide a two-dimensional image, therefore
only allowing to obtain an actually areal BMD, the BMC per unit area
(g/cm?). However, it is very versatile, allowing the assessment of bone
mineral content of the whole skeleton as well as at specific sites, such as
those most susceptible to fracture. The most commonly measured sites for
DXA-based BMD measurements are the proximal femur and the lumbar
spine, but alternative sites might be the calcaneus, proximal and distal
radius. Since vertebral and hip fractures are the most clinically relevant
fractures, lumbar spine and proximal femur do represent the most fre-
quently assessed sites (Figure 1.6). BMD is more often expressed in units
of Standard Deviation (SD) as the T-score. T-score represents the number
of SDs the patient-specific BMD differs from the mean value of a young
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1.3 — Assessment of fracture risk

i Femoral

Figure 1.6: One typical DXA image at the hip (left) and at the lumbar spine (rigth).
Adapted from [21].

standard population. Because a reduced BMD has been shown to be one
of the strongest risk factor for fractures [10, 19, 22], osteoporosis diagnos-
tic definition is based on the T-score. In 1994 indeed, the WHO published
diagnostic criteria for post-menopausal women grounded on the T-score,
which, since then, have been widely accepted and used [3]. According to
the WHO, the thresholds presented in Table 1.2, referred to T-score values
computed at the hip, lumbar spine or forearm, should be considered while
classifying patients not younger than 50 years. Nevertheless, those clas-
sification criteria were slightly modified later [23], specifying the femoral
neck as the reference site and accommodating them to men and non-white
women as well.

Although osteoporotic clinical diagnosis relies on BMD quantitative
assessment, it must not be forgotten that the real clinical significance of
the pathology lies in the fractures it causes. The aim of the treatment is
then the decrease of the risk of fracture, which, therefore, requires to be
assessed reliably so that the intervention is worthwhile. Although bone
tissue material properties, affected by the composition of both the min-
eral and organic matrices, do impact on the amount of stress required to
cause fracture, [20], there is still a limited awareness of the best ways to
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Table 1.2: Osteoporosis diagnostic criteria based on T-score.

Category T-score-based
definition
Normal Tscore>-1
Osteopenia -2.5<T-score<-1
Osteoporosis T-score<-2.5
Severe T-score<-2.5 in presence of
Osteporosis fragility fracture

effectively predict fractures and of the best time to start therapeutic inter-
vention for preventive purposes. BMD measurement can provide clinicians
with a relative estimate of the risk of fracture, but there is consistent ev-
idence that, in spite of the increased low-trauma fractures and decreased
bone density with older age, the majority of the patients suffering from
low-trauma fractures are not classified as osteoporotic according to T-
score [24, 25]. On top of that, changes in BMD following pharmacological
intervention have been demonstrated to explain only a small proportion
of the variance found in the reduction of the fracture risk [26, 27]. Low
bone mass is recognized to be an important component of the risk of
fracture, although other skeletal and non-skeletal factors do contribute to
skeletal fragility as well [12]. Currently, although T-score does represent
a threshold for diagnosis, it is not accepted as the unique threshold for
pharmacological intervention. Italian guidelines nevertheless, recommend
intervention in subjects with rather high fracture risk, specifying treat-
ment might not be usually justified in patients with T-score higher than
—2.5 [7]. Actually, besides BMD, a number of purely clinical risk factors
operating independently of BMD have been identified. Age, low BMI,
the presence of prior fractures, smoking, use of glucocorticoids, alcohol
intake, increased probability of falling due to age, addressed as clinical
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1.3 — Assessment of fracture risk

risk factors, have been contemplated in clinics as able to support the risk
of fracture prediction, integrating T-score-derived information. From this
perspective, with the purpose of overcoming BMD and related T-score
limitations, a fracture risk assessment tool (FRAX) was developed [23],
which computes the 10-year probability of a major osteoporotic fracture
combining together the BMD measurement at the femoral neck with the
afore-mentioned clinical risk factors in order to identify the patients at
greater risk and assist treatment decisions. Yet, a considerable part of the
patients facing a hip fracture are not considered at high risk even when
BMD information is combined with epidemiological models such as FRAX
[28], which would suggest the need to find more accurate practices to es-
timate fracture risk.

Besides purely clinical risk factors, geometry as well as quality and
distribution of bone mass do play a pivotal role in determining the overall
bone strength; hence, with the aim to overcome T-score limitations taking
them into account, DXA softwares have recently been integrated with tools
which work on the conventional DXA scans, such as the Hip Structural
Analysis (HSA) and Trabecular Bone Score (TBS). HSA method, widely
used due to the possibility to easily estimate geometrical and structural
variables from hip DXA, expresses the mineral data at particular bone
regions in geometric terms, thus providing a number of proximal femur
geometrical descriptors. TBS, on the other hand, provides additional in-
formation about the trabecular microarchitecture quality through one pa-
rameter obtainable from a vertebral DXA image, processed analysing the
pixel intensity variations throughout it. Although many studies have fo-
cused on investigating their role in supporting T-score within the absolute
risk of fracture defnition [29-34], they currently do not find any clear
clinical role yet, despite being already in hands of clinicians. HSA, in par-
ticular, is inherently limited by the single plane nature of DXA, therefore
not being fully able to reflect bone strength. Moreover, HSA geometrical
variables are discrete representation of the proximal femur morphology,
and many of them result to be cross-correlated [35]. In 2019, nonetheless,
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the TBS and Hip Axis Length (HAL) as an HSA geometric parameter were
claimed to be associated with the risk of fracture by The International So-
ciety of Clinical Densitometry (International Society of Clinical Densito-
metry official positions: https://www.iscd.org/official-positions/
2019-iscd-official-positions-adult/), which would seem to more
strongly legitimize their employment in clinics.

In the last decades then, Finite Element (FE) models have been thor-
oughly investigated as potential fracture risk and strength predictors,
due to the possibility to accurately integrate patient-specific geometry,
a variety of loading conditions and heterogeneous patient-specific mate-
rial properties extracted from clinical images for accurate and compre-
hensive structural analyses [36-41]. Since the first model described in
literature, in 1985 [42], efforts have been spent especially in developing
models from Quantitative Computed Tomography (QCT) images, aiming
to non-invasively assess bone strength [28]. Today, bone FE models can be
considered able to predict bone strenght with excellent accuracy compared
to DXA-BMD [42], and the combination of the two within the diagnostic
procedure appears definitely promising. Although they cannot be regarded
as cost-effective as hip fracture risk predictors [28] yet, the use of patient-
specific FE-based investigations has gained such relevance in the field,
that they were contemplated already in 2015 within The International So-
ciety for Clinical Densitometry official positions (https://www.iscd.org/
official-positions/2015-iscd-official-positions-adult/). Therein,
it was stated that femoral or vertebral strength as estimated from QCT-
based FE analyses could be used to initiate pharmacological treatment in
conjunction with validated thresholds and other clinical risk factors, as
well as to monitor age- and treatment-related changes.

Since the use of FE analyses for fracture risk estimation purposes will be
the main focus of the two following chapters, a more in-depth literature
analysis and description of their applications will be provided therein.
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1.4 — Hip fractures

1.4 Hip fractures

In the overall context of osteoporotic fractures, hip fractures are com-

monly given particular attention due to the considerable impact and se-
rious aftermaths they entail. Among all osteoporotic fractures, they turn
out to be the most detrimental in terms of mortality rate, decreased mobil-
ity, quality of life, loss of independence [43, 44] and, therefore, the global
costs for the healthcare systems. In 2017, in Italy, the costs associated to
fragility fractures amounted to €9.4 billion and between €5.5 and €6 billion
were hip fractures-related costs (2018 country-specific report on the clini-
cal, societal, and cost burden associated with fragility fractures: http://
WWW.panoramasanita.it/wp-content/uploads/2018/10/report-firmo-iof.
pdf).
Hip fractures are generally classified based on the location where they
take place: in the first instance, intracapsular and extracapsular fractures
are distinguished. Intracapsular fractures basically occur at the femoral
neck, although a further classification within them can be made (Figure
1.7). Extracapsular fractures, on the other hand, can occur either at the
intertrochanteric, trochanteric, or subtrochanteric region, as shown in Fig-
ure 1.7.

Due to the age-related increased probability of falling, the majority of
hip fractures result from falls, more often from standing, and sideways falls
would seem responsible for a huge percentage of hip fractures, contributing
to about 95% of all hip fracture cases [45]. Considering the combination of
bending and axial compression involved, fall-related impact on the proxi-
mal femur represents a particularly critical condition [46, 47]. In addition,
during a fall, the bone experiences impact loads which result completely
different from those usually experienced during walking or climbing stairs
(Figure 1.8) [48].

Clinically, as already mentioned, the primary screening to determine
the potential hip fracture risk in the elderly is the assessment of the osteo-
porosis status based on the BMD measurement. When performing DXA
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b)

d) e)

Figure 1.7: Intracapsular (top) and extracapsular (bottom) femur fractures. Intra-
capsular fractures can be further divided in subcapital (a), cervical (b) and basicervical
(c), while extracapsular fractures can be intertrochnateric (d), trochanteric (e) or sub-
trochanteric (f).

a) b) .
D Compression
OTension

I

Figure 1.8: Different tensional states at the femoral neck resulting from walking (a)
or falling on the side (b). From [48].

at the proximal femur, the BMD is provided at different specific regions of
interest, i.e. the femoral neck, the trochanter, the intertrochanter, Ward’s
triangle and total femur, which includes all the previous ones. It is mainly
on the neck and total femur BMD measurements that the WHO has de-
fined the presence of osteoporosis, although currently the BMD is known

to explain only partially the occurrence of fractures [49, 50]. From this
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perspective, the role of HSA parameters has been explored to better clar-
ify their role as supportive hip fracture risk predictors [20, 30, 51, 52].
HSA tries indeed to exploit DXA data in order to express mineral mass
in mechanically meaningful terms rather than in density only [20]. As a
matter of fact, long bones are mainly loaded in bending and axial com-
pression, and HSA provides estimates of the bone cross-sectional area, on
which the axial component of stress depends, as well as the cross-sectional
moment of inertia, indicator of the bone mass distribution with respect to
the center of mass, which controls the bending stress.

There are three different Regions Of Interest (ROIs) where the various

j\/\rjarrow Neck
b

Intertrochanter

Bone
Mass
(g/cm?)

Figure 1.9: The three ROIs where HSA parameters are extracted: Narrow Neck,
Intertrochanter, Shaft. From [53].

HSA parameters are extracted [53], which are all 5 mm wide: the Narrow
Neck (NN), located at the narrowest portion of the femoral neck, the In-
tertrochanter (IT), at the intersection between neck and shaft axes, the
Shaft (S), placed distally with respect to the afore-mentioned intersection
by 1.5 times the femoral neck width (Figure 1.9). Whereas the NN and
IT regions are considered both cortical and trabecular ROIs, the Shaft re-
gion is considered to be cortical only. A brief summary of the main HSA
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variables is provided in Table 1.3.

Table 1.3: The main HSA variables cited in the literature and mainly used in this
study. From [53].

CSA: Cross Sectional Area; CSMI: Cross-Sectional Moment of Inertia; W: Width; ED:
Endocortical Diameter; CT: Cortical Thickness; Z: Section Modulus; BR: Buckling
Ratio.

HSA Vari- Variable Description

able

NSA (°) Angle between neck and shaft axes

HAL (em) Distance from pelvic brim to outer margin of greater trochanter along
neck axis

Variables calculated either at NN, IT or S
BMD (g/cm?2)  The Bone Mineral Density, calculated as ($34) x 1.05 [54]

w
CSA (ecm?) The total mineralized bone area in the cross section
CSMI (cm?) Index of structural rigidity, computed as the integral of the bone density
within a pixel times the square of its distance from the area center of mass
W (em) The outer diameter computed as the width of the mass profile
ED (cm) Estimate of the inside diameter of the cortex
CT (em) The mean cortical thickness
Z (ecm3) Indicator of bending strength, calculated as the ratio between CSMI and

maximum distance from center of mass to outer cortex

BR The relative thickness of the cortex as an estimate of cortical stability
in buckling, computed as the ratio between the maximum distance from
center of mass to outer cortex and the average cortical thickness.

1.5 Aim of the Thesis project

In the previous sections the urgent need to enhance the fracture risk
prediction in osteoporotic cohorts has been underlined. Especially in west-
ern countries, where the population is increasingly greying, osteoporotic
fractures in general, with hip fractures playing an important role among
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them, have become a social and economic burden. The limitations of the
BMD-based T-score have been largely proven, and aiming to overcome
them, great efforts have been spent by researchers in the field.
QCT-based FE analyses, able to combine patient-specific geometry and
material properties, were proved to achieve optimal accuracy levels in
terms of patient-specific geometry and material properties. However, CT
is not, at present, included within the standard clinical process which is
adopted for osteoporosis diagnosis purposes. It would indeed subject the
patients to an increased radiation dose compared to the gold-standard
DXA and, above all, would entail increased costs for the healthcare sys-
tems.

Therefore, attention has been paid to the femur geometric features, know-
ing the shape, together with the material properties, represents a deter-
minant of the strength of a structure. From this perspective, HSA allows
the extraction of a number of discrete geometric variables from DXA im-
ages. Hence, due to their easy extraction and already feasible application,
they have been extensively investigated, mostly in retrospective cohorts,
as fracture risk predictors. Nevertheless, results are often contrasting and
a clear consensus has not yet been achieved.

With this in mind, this thesis represents an attempt to get deeper

insights in the role geometry might play in determining the risk of frac-
ture, simultaneously exploring possible ways to enhance the current gold-
standard.
This could not be done retrospectively, but rather involved, taking ad-
vantage of the simultaneous availability of CT and DXA images for the
same set of patients, the performance of CT- and DXA-based Finite Ele-
ment analyses. The ambition was to relatively estimate the fracture risk
level for the available cohort, aiming, on one hand, to identify attainable
fracture risk predictors to be integrated in the clinical diagnostic process
supporting the T-score; on the other hand, to propose tools which, tak-
ing advantage of larger cohorts with follow-up information, might help in
more consistently interpreting the role of geometry.
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Chapter

3D Finite Element modelling for

hip fracture prediction: a
HSA-Based Model

This chapter is partially based on the publication:

Aldieri, A., Terzini, M., Osella, G., Priola, A.M., Angeli, A., Veltri, A.,
Audenino, A.L. and Bignardi, C.

‘Osteoporotic hip fracture prediction: is T-score-based criterion enough?

A hip structural analysis-based model’

in Journal of Biomechanical Engineering, 140(1), 111004, 2018.
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Abstract

The current gold-standard for osteoporosis diagnosis is based on Bone
Mineral Density (BMD) measurement, which, however, has been demon-
strated to poorly predict fracture. Further parameters in the hands of the
clinicians are represented by the Hip Structural Analysis (HSA) variables,
geometric descriptors of the proximal femur cross-section. The purpose
of this study was to investigate the suitability of HSA parameters as ad-
ditional hip fracture risk predictors. With this aim, twenty-eight three-
dimensional patient-specific models of the proximal femur were built from
Computed Tomography (CT) images and a sideways fall condition was
reproduced by Finite Element analyses. A Risk Factor Index (RFI) and
Femoral Strength (F'S) were calculated based on principal strains fracture
criteria. The power of HSA variables combinations to predict the RFI
and FS values was assessed by multivariate linear regression analyses.
The optimal regression models, identified through the Akaike information
criterion, comprises the buckling ratio at the narrow neck and femoral
shaft, the cross-sectional moment of inertia at the narrow neck and the
neck-shaft angle. The models were tested on two additional patients who
suffered a hip fracture after a fall. The results highlighted them as at an
higher risk level, supporting the prediction power of the adopted approach.

22



2.1 — Introduction

2.1 Introduction

In view of the DXA-BMD and T-score limitations in accurately es-
timating the proximal femur fracture risk, three-dimensional Finite Ele-
ment (FE) modelling approaches have thoroughly been adopted and in-
vestigated [41, 55]. The proximal femur has indeed gained exceptional
consideration in the scientific literature given that hip fractures are recog-
nised as the most severe type of osteoporotic fracture [56]. As a matter of
fact, FE models built from clinical images are able to include most of the
bone strength determinants, integrating patient-specific mechanical prop-
erties, anatomical features as well as the possibility to examine a variety
of loading conditions, which is the reason why they have been employed
for fracture risk and fracture load estimation. Stance [57-60] and fall [60—
63] configurations have principally been studied, with particular atten-
tion to falls, which are the major cause of hip fracture [45]. Potentially,
three-dimensional (Quantitative) Computed Tomography (CT)-based FE
models could be considered extremely accurate and reliable fracture risk
estimators. From this perspective, FE models employed for fracture load
prediction and compared to corresponding in vitro experiments reported
much more accurate estimations with respect to any density-based evalua-
tion [64]. QCT-based FE models were also demonstrated to be 6-7 pp more
accurate than T-score in the femoral strength prediction as well as in the
classification of patients as fractured or non-fractured [28]. Having said
that, the application of CT-based FE in a clinical and thus in an in vivo
setting remains challenging. First of all, their direct application within the
clinical decision process has not yet been demonstrated to be cost-effective
[28]: three-dimensional FE models development requires indeed CT, more
expensive and time-consuming than DXA; besides, different methodolog-
ical choices and modelling assumptions could potentially affect the final
FE models accuracy [64].

Having this in mind, the main purpose of the work presented in this
first chapter was the identification of the Hip Structural Analysis (HSA)
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parameters best related to the strength and fracture risk as identified from
CT-based FE models. In other words, FE analyses outcomes were used to
investigate the predictive capabilities of the already available clinical data,
in order to identify and, in case, provide, additional geometric predictors
for the estimation of hip fracture risk.

2.2 DMaterials and Methods

2.2.1 Subject-specific FE model construction

Twenty-eight post-menopausal female subjects, aged from 55 to 81
years (treated in San Luigi Gonzaga Hospital in Orbassano, Italy), were
involved in the present study after having signed an informed consent.
Patients affected by cancer were excluded due to the possible presence of
bone metastasis, which would have affected bone strength. By means of
cross checks in the Hospital database, only patients with available clin-
ical data, DXA derived information (Discovery DXA system, Hologic,
Waltham, MA, USA), and CT scans (Brilliance 64, Philips, Amsterdam,
Netherlands) acquired in the same year were selected. Since the sourced
CT scans were not prescribed for osteoporosis diagnosis purposes, only
the proximal portion of the femur was included, and only patients whose
femur was clearly visible in the CT scans were included in the study. CT
slices thickness was 2 mm, and the pixel width was 0.6857 mm.

Three-dimensional subject-specific geometric models of the proximal
femur were built (Figure 2.1) through a semi-automatic segmentation pro-
cedure (Mimics, v17, Materialise, Leuven, Belgium) on the CT images
based on Hounsfield Units (HU). Subsequently, all 3D models were cut
2.5 cm below the midpoint of the lesser trochanter.

Once the CT-based geometric models construction was accomplished, a
sensitivity analysis was carried out on FE mesh elements dimensions prior
to the heterogeneous HU-based material properties assignment, in order
to assess the mesh density required to achieve sufficiently accurate results.
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Figure 2.1: One example of geometric model of the proximal femur built from CT
images.

One available patient-specific three-dimensional model was thus meshed
with ten-nodes tetrahedral elements (C3D10 Abaqus elements) with de-
creasing edge dimensions of 3, 2, 1.2, 1, 0.8 mm (Figure 2.2). Subsequently,

KA

)

Va

e
Ko

Figure 2.2: Different mesh dimensions tested within the sensitivity analysis. From
left to right the elements edge length decreases from 3 mm to 2, 1.2, 1, 0.8 mm.

after aligning the proximal femur according to its anatomical reference sys-
tem, defined on neck and shaft axes, simplified boundary conditions were
applied to simulate a fall on the side, as exemplified in Figure 2.3. Briefly,
the load was applied on the greater trochanter, head nodes were restrained
along the impact load direction and the distal nodes connected to a hinge.
These boundary conditions were applied in accordance with a number of
experimental [48, 65, 66] and coupled experimental-computational [60, 61,
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63, 67] studies investigating the resistance and failure of the proximal fe-
mur during a sideways fall. Aiming to investigate the effect of elements
size, the models were assigned a uniform isotropic elastic modulus of 15
GPa and a Poisson’s ratio of 0.3. Mesh sensitivity analysis was based

~ <

Figure 2.3: Boundary conditions employed to carry out the mesh dimensions sensi-
tivity analysis.

on minimum (or compressive) and maximum (or tensile) principal strains
extracted at the neck region. For each mesh, the highest tensile prin-
cipal strain and the lowest compressive principal strain were extracted
at the neck and the corresponding error with respect to the finest mesh
computed. With an error lower than 3% (Figure 2.4), accounting for the
required computational cost as well, the 1.2 mm edge length mesh was
judged sufficiently accurate and therefore selected to mesh all the models,
being in accordance to mesh dimensions adopted in similar studies too
[68, 69].

Subsequently, heterogeneous material properties were mapped onto
the FE models. An elastic bone mechanical response was assumed, since
proximal femur was observed to behave elastically until the onset of a frac-
ture [70] and the study did not want to focus on damage progression. The
elastic modulus was determined based on a density-elasticity relationship
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Figure 2.4: Mesh dimensions sensitivity analysis: % error for tensile and compressive
principal strains computed with respect to the most refined mesh (0.8 mm edge length).

[71] which has been shown to yield accurate strain predictions [69, 72, 73]:

E =15.010 p2}%, if papp < 0.28 g/cm?® (2.1)
_ 1.49 . 3
E = 6.850 pyyp, 5 if papp > 0.28 g/em?, (2.2)

where F is the Young’s modulus, expressed in GPa, and pyp, is the ap-
parent density, computed from CT-derived HU values, in g/cm?.
Without the possibility to properly calibrate the available CT images, a
pseudo-calibration was performed [74], aiming to estimate the linear re-
lation between HU and apparent density (papp), needed to calculate the
relative Young’s modulus values (Equations 2.1, 2.2). The maximum cor-
tical bone density was assumed to be about 2 g/em? [75], corresponding
to the average highest HU value found in the cortical bone (found to be
1200 HU). At the lowest end, the density of 0 g/cm3 was assigned to bone
marrow, and the equivalent average lowest HU value detected to be -140
HU.
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In order to assign HU-based inhomogeneous material properties, mesh el-
ements had to be divided in groups, or bins, based on their HU value.
Hence, an average HU value for each mesh element was first identified;
then, the global elements HU span was divided into a discrete number of
intervals, in order that each element could be assigned to a specific inter-
val on the basis of its own HU value. For each interval, the central HU
was identified and a Young’s modulus (£) value evaluated from it. In this
way, each HU interval represented a material group, where the elements
shared a common elastic modulus (E) value based on the interval central
HU value. Aiming to assess the minimum number of HU bins for the
heterogeneous material properties assignment leading to accurate results,
a further sensitivity analysis was carried out. Highest tensile and lowest
compressive principal strains were considered, with the percentage errors
computed with respect to the output obtained with the highest number
of bins (i.e. 60 bins). With an error inferior to 5% (Figure 2.5), the HU
range partition into 40 different intervals was judged sufficiently accurate
for the inhomogeneous material properties assignment.

The global HU range of the CT images was then divided into 40 different
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Figure 2.5: Material bins sensitivity analysis: % error for tensile and compressive
principal strains computed with respect to the 60 bins-based material properties assign-
ment.
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bins, and the bin-specific Young’s modulus computed starting from the
bin central HU value. On the basis of its average HU, each element was

allocated to one specific bin and assigned with the corresponding FE.

2.2.2 FE analyses generation

Static FE simulations were performed in Abaqus (v13, Simulia, Das-
sault Systémes, Rhode Island, U.S.), aiming to reproduce a sideways fall
condition, the most frequent cause of a femur fracture in the elderly [45].

Two different spatial configurations of the proximal femurs were inves-
tigated. The former one, a reference configuration to some extent, was
achieved aligning the femurs with respect to the anatomical reference sys-
tem defined by neck and shaft axes. Besides, by means of a simultaneous
30° posterior («) and 15° medial (f) rotation with respect to the neck
and shaft axis respectively, a tilted configuration was obtained (Figure
2.6) [63, 72, 76]. The two different configurations were simulated applying
the same boundary conditions (Figure 2.7). The impact load was applied
on the trochanter as a distributed force in the x direction, while the head

nodes, in order to consider acetabular cartilage effect, were bound to the

ground by means of spring elements with a 10000£ stiffness [77, 78]
along both the load and the in-plane orthogonal dirgyt?ons, aiming to let
a static displacement. Although head nodes are usually constrained during
FE analyses, the use of spring elements was coherent with experimental
studies where head cartilage was taken into account [65, 104]. The distal
nodes of the proximal femur models were connected through link elements
to a reference node positioned 0.1 m distally [60, 61, 63], having all the
translational degrees of freedom fixed. Although the lack of experimental
tests here prevented the direct validation of the employed boundary con-
ditions, they were adopted in accordance with validated studies [60, 61,
63, 67].
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Figure 2.6: The two different configurations explored from the axial (left) and coronal
(right) view. First row: the reference configuration; second row: the tilted configuration.

2.2.3 FS and RFI estimates

Within the post-processing phase, principal strains represented the
main variable of interest, in accordance with a large number of similar
studies where maximum principal strain criteria for fracture prediction
were adopted and validated [40, 57, 60, 69, 80, 81].

For each element, the minimum (¢;) and maximum (e3) principal strains
were extracted at the centroid; in agreement with a validated procedure
[60, 69], by comparing their absolute values, a compressive or tensile pre-
dominance was assessed and a Risk Factor (RF') could be calculated at

each mesh element as:
RF = “mez, (2.3)

Elim
where €p,4, refers to the selected tensile or compressive principal strain
value (emmqe = maz(|e1|,€3)), and &y, represents the compressive or tensile
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Figure 2.7: Boundary conditions applied to reproduce the sideways fall. A) head

N
nodes were bound to the ground through spring elements with 10000—— stiffness; B)
m

m
impact load was applied as a distributed force on the trochanteric surface; C) distal
nodes of the proximal femur were connected to a spherical joint placed 0.1 m distally
by means of link elements. From [79].

limit value (0.0074 in tension, 0.0104 in compression) [82]. In particular,
because according to experimental evidences fracture propagates from the
external cortex [48, 60, 69], only superficial elements were considered.

Two different fracture risk predictors were measured based on principal
strains: the Femoral Strength (FS) and the Risk Factor Index (RFI).

The FS, i.e. the maximum force the femur can sustain until the onset of a
fracture, was estimated linearly increasing the impact load up to the onset
of the fracture was hypothesized to occur. Specifically, fracture initiation
was assumed when the number of contiguous elements in the outer cortex
with a RF bigger than 1 exceeded 0.3% (adapted from [60]) of the total
surface elements. At each load increment (200 N), the RF was extracted
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for the cortex elements, and elements contiguity recognized when the dis-
tance between their centroids was lower than 1.5 mm.

The RFT on the other hand, the ratio of the highest tensile or compressive
principal strain to the corresponding threshold limit, was simply derived
as the highest RF' found in the bone outer cortex at a patient-specific
impact load, dependent on patients’ mass and height. Subject-specific
values of the impact load were assessed implementing an equivalent 1
Degree of Freedom mass-spring-damper dynamic system (Figure 2.8) in
Simulink (Matlab v2107b, The MathWorks, Massachusetts, U.S.) to sim-

ulate a sideways impact from standing [83]. The system mass value was

Impact
velocity

S e

Figure 2.8: The 1 Degree Of Freedom model used to determine the patient-specific
impact load. Mass and impact velocity were assigned patient-specifically, while the
stiffness (k) and damping coefficient (c) were kept constant.

assigned specifically for each patient, while the spring and damper values,
accounting for trochanteric soft tissues, were kept constant for all and de-
termined according to [84-86]. Specifically, experimental data contained
in [84] and extracted from trochanteric soft tissues harvested from cadav-
ers of elderly individuals (77 & 10 years), allowed the estimation of the
stiffness and damping as 30 % and 300 %, which found agreement with
[83, 87]. As regards the impact velocity, it was computed integrating the
patient-specific height in a two-link kinematic model [88]: the body was
simplistically seen as a two-link model, modelling legs and trunk as two
uniform slender bars connected with a frictionless hinge located at the hip
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[88]. Employing energy conservation and a 45° Jack-knife configuration,
the impact velocity just before the impact resulted in 2.72v/h (see [88] for
further details on how it was derived), with A being the total body height
(in meters). The average impact velocity was 3.39 m/s, with 0.084 m/s
standard deviation. From the dynamic load output by Simulink, the value
of the first peak was identified as the impact load to be applied on greater
trochanter surface for the RFI extraction.

The FS and RFI were computed with the femur in the neutral orienta-
tion (FS, and RFI,) and in the inclined one (FS; and RFI;). Eventually,
the most critical values for each patient were identified [89], which will be
addressed as FS and RFI:

FS = min(FS,, FSi) (2.4)

RFI = max(RFL,, RFL). (2.5)

2.2.4 Assessment of HSA variables as fracture predictors

As previously explained, the HSA program, based on DXA images,
employs the mineral mass distribution along a line of pixels arranged on
the proximal femur cross-section at particular locations to extrapolate
geometrical and structural descriptors essentially based on the X-ray at-
tenuation profile [90]. Because bone geometry represents a determinant
of bone strength and structural properties of the proximal femur can be
estimated through HSA from routine DXA scans, HSA variables role has
been widely investigated [51, 91]. The HSA variables considered for this
study were represented by the Bone Mineral Density (BMD), the aver-
age cortical thickness (CT), the Buckling Ratio (BR), the Cross-Sectional
Moment of Inertia (CSMI), the Cross-Sectional Area (CSA), the Width
(W) of the considered bone site (Figure 2.9). A summarizing descriptive
table for these variables was provided and is available in the introductive
Chapter (Table 1.3). These measures were all available at the three afore-

mentioned locations: the narrow neck (nn) region, the intertrochanteric
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(it) region, the femoral shaft (fs) region (Figure 2.9). Besides, the Hip
Axis Length (HAL) and the Neck Shaft Angle (NSA), available as addi-
tional HSA parameters (Figure 2.9), were used within this post-processing
phase as well. Because some of these HSA variables were presumably
cross-correlated, being extracted from the same mineral mass distribution
provided by DXA, a collinearity diagnosis was carried out and the Vari-
ance Inflation Factor (VIF) computed for each variable [92]. The VIF can
be computed for each it variable of interest as:

1
1— R%

()

VIF;, = (2.6)
where R? is the coefficient of determination derived regressing the i*" vari-
able on the other ones. An high VIF is then the evidence of the presence
of collinearity. Although usually a VIF>30 is considered of concern, HSA
variables showing a VIF>100 were rejected in the first place, so that all
but 8 HSA variables were kept out because judged collinear. The VIF was
then recomputed on the 8 remaining ones: all exhibiting a VIF<10, they
were not considered to be collinear and thus kept for the regression models
construction. The 8 non-collinear variables kept for the subsequent regres-
sion analysis are presented for the entire cohort included in this study in
Table 2.1.
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Figure 2.9: Overview of the anatomical sites (narrow neck (nn), intertrochanter (it),
femoral shaft (fs)) on which the HSA method is performed. Some HSA parameters are
highlighted. AB: width (W) at the NN site; CD: Hip Axis Length (HAL) identified on
the neck axis between points D (which represents the pelvic brim) and C (the outer
margin of the greater trochanter); the Neck Shaft Angle (NSA) is highlighted in grey,
between the neck and shaft axes. From [79].

Table 2.1: Independent HSA variables used for the regression models construction
for the whole cohort included. Patients 29 & 30 are two additional fractured ones, for
whom CT was not available. They were recorder to have fractured following a fall at
home within 1 year from the DXA. nn: narrow neck; it: intertrochanter; fs: femoral
shaft; BR: Buckling Ratio; CSMI: Cross-Sectional Moment of Inertia; W: Width.

nn it fs
Pat. NSA HAL BR CSMI BR CSMI w BR
®) (mm) (mm*) (mm?*)  (mm)
P1 124.63 95 10.53 2.20 9.43 9.92 5.29 3.62
P2 138.35 106 22.76 1.69 13.37 7.29 5.48 5.89
P3 113.91 108 12.66 2.44 8.49 8.69 5.04 2.83
Py 115.9 85 19.49 3.18 11.70 9.07 6.12 2.37
P5 124 101 11.90 1.60 8.87 12 5.21 4.71
P6 120.47 88 19.21 1.17 16.09 4.83 5.03 4.06
P7 128.10 92 6.42 1.55 6.29 8.22 4.70 1.92
P8 122.80 108 12.42 2.41 9.54 14.21 5.72 3.04
P9 123.21 107 12.12 3.20 10.91 13.91 5.93 3.53
P10 122.58 95 10.97 1.78 8.22 13.28 5.59 3.40
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P11 123.39 107 12.69 2.87 11.11 18.06 6.21 4.02
Pi2 128.52 107 15.63 1.91 10.15 12.95 5.67 3.08
P13 126.19 120 22.49 2.85 14.57 13.58 6.09 5.04
P14 121.18 95 7.93 3.04 9.36 10.7 5.41 2.32
P15 123.36 105 14.96 1.96 13.90 8.68 5.43 5.49
P16 116.55 92 10.76 2.13 7.64 21.52 6.10 2.73
P17 115.82 107 12.33 2.39 10.25 14.21 5.61 4.51
P18 123.76 109 15.84 2.09 12.51 15.43 6.31 3.95
P19 129.94 108 10.23 3.11 8.32 18.01 5.88 2.65
P20 122.68 97 11.27 2.39 9.09 12.76 5.36 3.98
P21 132.62 91 10.61 1.42 7.41 7.46 4.96 1.46
P22 124.14 108 16.17 1.89 10.89 14.66 5.98 4.11
P23 124.17 102 13.57 1.92 11.61 9.46 5.25 3.75
P24 126.7 99 12.73 2.34 8.42 13.80 5.67 3.25
P25 124.37 103 14.01 1.49 12.59 9.47 5.42 5.69
P26 127.49 107 14.24 1.92 13.19 10.31 5.93 4.86
P27 129.47 102 11.52 4.69 8.05 17.90 6.01 2.10
P28 127.48 96 17.21 1.70 13.54 7.79 5.29 4.49
P29 117 87 17.70 2.44 9.70 4.51 6.34 2.80
P30 123 103 19.90 2.28 16.30 3.32 6 5.37

Aiming to understand the HSA most relevant to both the FS and RFI,
taken as dependent variables y once at a time, different multivariate linear
regression models were built from combinations of all the available HSA
variables (z), taken as predictors of the dependent variable y (the F'S and
RFI) according to the relationship:

yzﬁo—l—z:ﬁi z; (2.7)

where By and §; are the regression coefficients and x; represents the 7"
independent HSA variable. For each dependent variable, a total of 238
models were computed, considering all the possible combinations of the 8
independent variables gathered in groups containing from 2 to 6 elements.
The computed models were ranked on the basis of the Akaike information
criterion (AIC) [93].
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The Akaike’s Information Criterion (AIC) measures the relative good-
ness of fit of a model. Based on the maximum value of the likelihood
function of the model (1), the AIC allows to estimate the information lost
when approximating reality, in order to select, from a set of models, the
best one, which minimizes the loss of information. The rationale behind
the model selection process is the principle of parsimony: although a fit
improvement can be obtained by adding parameters to a model, this will
cause the information in the data to be split over an higher number of
parameters. Hence, the criterion includes a penalty term which represents
an increasing function of the number of regressor variables. Therefore, the
AIC for a given model is a function of its maximized likelihood function
(1) and of the number of regressor variables, including the intercept (K):

AIC = =21 + 2K (2.8)

Under the assumption of normally distributed residuals, [ can be estimated
SSE

as 5 log(?5=), where SSE represents the residual sum of squares of the
least square regression and n the sample size. As mentioned before, the
second component (2K) represents a penalty term that becomes larger as
the number of parameters increases and which penalizes the AIC, increas-
ing its value. Therefore, in our work, the combination of HSA variables
included within the regression model selected by AIC would be the one
with the minimum AIC value. However, AIC is not interpretable by itself,
but it becomes valuable when compared with the AIC of a series of mod-
els, since it is only able to provide information about the relative quality
of a model with respect to other models. The Akaike weights (w;), on
the other hand, computed as the relative likelihood of the model normal-
ized to obtain a positive set of Akaike weights, can provide a measure
of the weight of evidence in favour of each model. Akaike [93] suggests
that e 0525 approximates the relative likelihood of the model l; given the
data, where A; = AIC; — min(AIC) are the AIC differences, evaluated

as the difference between the j** AIC and the smallest AIC value among

37



3D Finite Element modelling for hip fracture prediction: a HSA-Based Model

all the candidate models (i.e. the “best” model). Therefore, the Akaike
weights of the j% model in a set of R candidate models can be computed
as follows:

o054,
(2.9)

Furthermore, from this perspective, the relative importance of each predic-
tor variables x; can be assessed by summing the Akaike weights across all
the models in the set where variable ¢ occurs, thus obtaining the cumula-
tive Akaike Weights w (7). The larger the sum w (7), the more important
the variable z; is when compared to the other variables.

In addition to the variables and model ranking based on AIC, the regres-
sion models quality was estimated using the adjusted Pearson’s correlation
coefficient (R2 dj) as well. The predictive ability of the optimal model, char-
acterized by the highest Akaike weight, was assessed exploiting the HSA
parameters of two additional post-menopausal patients (aged 71 and 75
years) who experienced hip fracture and for whom DXA data related to
the year preceding the fall were available. Hence, lastly, FS and RFI val-
ues predicted for the fractured patients were compared to those extracted

from the FE models, in order to establish their patient-specific risk level.

2.3 Results

The two main outcomes extracted from the FE analyses, i.e. the RFI
and the F'S, are compared in Figure 2.10. Although the RFT identification
was dependent on a patient-specific impact load determined taking into
account the patient-specific mass and height values, they turn out to be
quite strongly correlated (R = 0.83,p < 0.0001).

As mentioned in the previous section, the RFI and the FS were ob-
tained comparing RFI,, RFI; and FS,, FS;, i.e. the corresponding values
related to the two different proximal femur configurations explored (neu-
tral and tilted configuration), and taking the most critical values for each
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Figure 2.10: Comparison between the FE analyses-based RFI and FS values identified
for the 28 patients included in the study.

patient. From this perspective, the comparison between the outcomes of
the two analysed configurations in terms of both the RFI and the FS is
presented in Figure 2.11. Independently of the considered index (RFI or
FS) the outcomes resulting from the two configurations are significantly
correlated (R > 0.7, p < 0.0001). The inclined one, as expected [72],
turned out to be the most critical between the two, with higher RFI and
lower F'S values.

Figures 2.12 and 2.13 show the superficial distribution of the RF for the
28 patients at the load-step when fracture was supposed to occur for the
neutral (Figure 2.12) and inclined (Figure 2.13) femur orientations. For
visualization purposes, the cell-centered variable is shown as interpolated
at the nodes and the RF higher than the 90" percentiles have been de-
picted, judged evidence of a considerable strain level. Some patients show
high RF at the greater trochanter, but that area was not considered while
identifying the contiguous failed elements because it might have been af-
fected by the load application. Whereas the neutral configuration caused
a more inhomogeneous distribution of the failed area among the patients,
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Figure 2.11: RFI (left) and FS (right) values in the neutral and inclined configurations
explored through the FE analyses.

in the inclined one it was mostly located posteriorly, where the femur was
mainly loaded in compression. To help the reader compare the patients
from the perspective of their FS as well, Figure 2.14 offers an overview
of the patient-specific F'S values as assessed from the FE analyses in the
neutral and inclined femur orientation respectively.

Thanks to the AIC-based multivariate linear regression analysis, the
most suitable HSA variables for the RFI and FS prediction could be iden-
tified. For this purpose, both RFI,, RFI; and FS,, FS; were considered,
with an interest in the most relevant variables in the different cases. The
HSA variables included within the best 5 regression models according to
the AIC are presented in Tables 2.2 and 2.3. As visible, the AIC-based
optimal HSA descriptors were strongly related to the bone resistance to
bending, dominant during sideways falls. Nearly all the RFI-based opti-
mal combinations incorporated the NSA, which is known to play a role,
affecting the bending moment arm at the neck, together with the BR at
the narrrow neck (RFI;) and femoral shaft (RFI,). Because in the neutral
configuration the impact load was applied along the neck axis, the neck
was presumably subjected to a predominant axial compression rather than
bending, with the shaft loaded similarly to a fixed beam. On the contrary,
in the inclined one, the introduction of an anteversion angle is likely to
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P4

Figure 2.12: Superficial RF' distribution for the 28 patient-specific models in the
neutral configuration, shown at the load-step causing failure. Only RF values above
the 90" percentile (0.41) are depicted. The arrows highlight the identified failed area.

have caused a more prominent bending loading at the neck itself, which
could have made the BR at the narrow neck a better predictor. Taking
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P5

Figure 2.13: Superficial RF distribution for the 28 patient-specific models in the
inclined configuration, shown at the load-step causing failure. Only RF values above
the 90" percentile (0.49) are depicted. The arrows highlight the identified failed area.

the FS as the dependent variable, the AIC-based regression analysis drew
attention to the BR and CSMI at the narrow neck independently of the fe-
mur orientation. The optimal HSA variables combination for the inclined
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Figure 2.14: The patient-specific FS values (N) in the inclined and neutral orienta-
tions. The corresponding mean values are shown as dotted lines.

femur configuration also included the BR at the femoral shaft, and the
NSA did not appear in any combination.

The coefficients of the optimal regression models for the RFI and the FS,
which can be written as

RFIpgsa = Bo + b1 NSA+ 2 BRyy, (2.10)

FSusa = Bo+ B1 CSMI,y, + B2 BRy, + 33 BRys (2.11)

are shown in Table 2.4, in their standardized version (beta weights) as
well. Looking at the beta weights, the effect of the independent variables
on the dependent one do not differ significantly, except for the NSA con-
tribution which seems to be slightly inferior to that of BR in the case of
the RFI regression model.
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Table 2.2: The HSA variables included in the best five RFI regression models according
to AIC. R?,; and the Akaike weights w are provided too.

adj

R2

Variables adj w
RFI,
{NSA, BR;,} 0.332  0.049
{NSA, BRnn} 0.372  0.047
{NSA, BRun, BRys} 0.442  0.047
{NSA, BRun, BRit, BRys} 0.406  0.035
{BRun, BRit, BRy.} 0.353  0.030
RFI,
{NSA, BRnn} 0.493  0.097
{NSA,CSMIpnn, BRnn} 0.519  0.080
{HAL,NSA, BRnn, BRys} 0.551  0.075
{NSA, BRun, BRys} 0.507  0.057
{HAL,NSA, BRun, BRi+BRys}  0.577  0.053
RFI
{NSA, BRn,} 0.457  0.091
{NSA,CSMIpnn, BRnn} 0.483  0.071
{HAL,NSA, BRnn, BRys} 0.513  0.059
{NSA, BRun, BRys} 0.470  0.051
{HAL,NSA, BRnn, BRiz, BR;s}  0.541  0.041

With the purpose of visualizing the goodness of

the identified predic-

tive models, Figure 2.15 offers the comparison between the true, i.e. as
extracted from the FE analyses, and the predicted RFI and FS values
for the whole dataset, which both resulted to be significantly correlated
(p < 0.0001), with a better performance of the FS predictive model.

Lastly, Table 2.5 provides the eight HSA variables included in the AIC
regression analysis ranked according to their Akaike cumulative weights

w4 with respect to the RFI and F'S regressions.

Looking at it, the attention is drawn to the BR at the narrow neck and

shaft, which might then appear as a pivotal parameter, being placed
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Table 2.3: The HSA variables included in the best five F'S regression models according

to AIC. Rgdj and the Akaike weights w are provided as well.

Variables Ri & w
FS,
{CSMIn, BRnn} 0.592  0.181
{CSMTInn, BRnn, BRys} 0.592  0.072
{CSMTIpn, BRun, CSMI;;} 0.589  0.065
{CSM1In, BRnn, BRit} 0.586  0.059
{CSM1Inn, BRnn, Wit} 0.578  0.046
FS;
{CSMInn, BRnn, BRy} 0.583  0.069
{CSMIn, BRnn} 0.547  0.055

{HAL,CSMIn, BRyn, BRys} 0.603  0.049
HAL,CSMInn, BRan, Wi, BR;s}  0.630  0.0405
f

{CSMIpnn, BRun, Wit} 0.565  0.039
FS

{CSMI,n, BRyn, BRy} 0.566  0.065

{CSMIn, BRyn} 0.531  0.054

{HAL,CSMI,n, BRyn, BRy} 0.589  0.049
{HAL,CSMI,n, BRyn, Wis, BR;,} 0613 0.035
{CSMIpnn, BRun, Wit} 0.545  0.034

Table 2.4: The regression coefficients 3; and standardized regression coefficients SBs;
for the optimal multivariate models.

y Bo B1 B2 B3 Bso Bs1  PBs2 Bs3
RFI -9.35 0.07 0.16 - - 0.35 0.55 -
FS 3302.08 451.22 -81.01 -212.24 - 0.39 -0.37 -0.29

among the first three most important HSA variables.
In Figure 2.16, the predictive abilities of the RFI and FS are compared to
those of the T-score for all the patients. RFI and F'S values are displayed
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Figure 2.15: Comparison between FS, FSuga (left) and RFI, RFIgga (right) for
each patient. The true and estimated values were significantly correlated (p < 0.0001,
R? = 0.50 for the RFI and R? = 0.61 for the FS). The corresponding regression lines
are reported as well.

Table 2.5: The eight HSA variables ranked according to their cumulative Akaike
weights w4 related to the RFI and FS regression analyses.

RFI FS
HSA Variables W4 HSA Variables wy

BRnn 0.9308 CSMInn 0.8702

NSA 0.8233 BRy, 0.6163

BRy, 0.4550 BRun 0.6152
HAL 0.3222 HAL 0.4110
CSMIL,.n 0.2898 Wiy 0.3841
BR;¢ 0.2829 BR¢ 0.3447

Wit 0.2182 CSMI;¢ 0.2335
CSMI;¢ 0.2116 NSA 0.1582

as computed from the FE analyses outcomes for the 28 patients with CT
available and as predicted by the optimal regression models for the two
additional fractured patients whose DXA information was available only.
The two fractured patients are displayed as empty circles, while patients
who may seem highlighted as at higher risk have been depicted with empty

46



2.4 — Discussion

diamonds. As visible, it might seem that among the non-osteoporotic pa-

tients some are at higher risk of fracture.
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Figure 2.16: Comparison between the RFI and FS with the T-score outcomes.
The three standard ranges of the T-score based criterion are highlighted: no osteo-
porosis/osteopenia: T-score > —1; osteopenia: —2.5 < T-score > —1; osteoporosis:
T-score < —2.5. Empty circles refer to the two fractured patients predicted values, while
empty diamond show the non-osteoporotic patients appearing at higher risk. Both RFI
and FS turned out to be significantly correlated to the T-score (RFL: R = 0.42,p < 0.02,
FS R = 0.52,p < 0.003).

2.4 Discussion

The study presented in this chapter aimed to investigate HSA variables
as potential osteoporotic hip fracture risk interpreters, given that in recent
years many studies have confirmed the limitations of the gold-standard T-
score [94-96] together with the role played by femur geometry [30, 51].
Herein, this could not be done retrospectively and the most relevant HSA
parameters assessment was based on two proximal femur fracture risk in-
dices extracted from CT-based FE analyses.

In our findings, the main HSA parameters involved in the optimal regres-
sion models as predictors of the RFI and FS were the BR at the narrow
neck and shaft, together with the NSA. These results turn out to be in
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accordance with the outcomes of Gnudi et al. [52], in which the NSA was
identified as the sole statistically significant variable, and of Kaptoge et al.
[30], where BR and NSA were identified as hip fracture predictors. Coher-
ently with many other studies, the predictive ability of BR highlighted in
this study is consistent with the idea that osteoporosis degrades strength
by reducing cortical stability [30]. In particular, this outcome also high-
lights the important role of the gradual widening of the bone aimed at
maintaining strength while progressively losing bone mass, which even-
tually leads to cortical instability and to an abrupt loss of mechanical
strength [97]. Unfortunately, these changes are concealed by an unaltered
areal BMD [98]. Moreover, the most effective osteoporosis treatments,
leading to fracture risk reduction, are supposed to stimulate cortical bone
thickness increase [99, 100], supporting the relevance of the BR, in which
cortical thickness information is contained. The presence of the BR at
the femoral shaft among the best predictors might seem uncommon, but
it was found to be in accordance with retrospective analyses on fracture-
prone geometric features [101-103].

It is not straightforward to assess why the NSA was not included among
the best FS predictors (Table 2.3): with an effect on the bending mo-
ment arm at the neck, NSA might affect the strain level directly, mirrored
by the RFI which basically represents the highest principal strain value.
However, this direct link may be lost when establishing the load required
to make a specific number of contiguous elements reach a strain threshold.
The HSA-derived BMDs were not included in the AIC-based regression
analysis: being directly calculated from other HSA variables, the VIF
calculation prevented their inclusion in the subsequent analysis. Inter-
estingly, the inclusion of the BMD computed at the femoral neck in the
two identified optimal predictive models did lead to an increase in their
corresponding explained variance (13.5% and 3.2% increase for the RFI
and the FS models respectively), although, with the only exception of the
NSA for the RFI regression model, it entailed the other HSA variables
to lose their significance at the 5% significance level in the models. The
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BMD was indeed significantly correlated to the BR as computed both at
the narrow neck and femoral shaft and to the CSMI at the narrow neck,
once again pointing out the mineral mass-dependency of the considered
HSA variables.

If attention is drawn to Figure 2.16, the predictive abilities of the two
regression models and the T-score for each patient can be compared.
It is noteworthy to observe that, on one hand, the patients who would
be classified as osteoporotic according to the T-score based criterion (T-
score < —2.5) are all correctly identified by relatively high (> 3) RFI
and low (< 2300) FS values; on the other, that, among the patients who
would be classified as only osteopenic (—2.5 < T-score < —1), some are
highlighted as at higher risk according to their RFI and FS values. Ac-
tually, the two fractured patients, classified as osteopenic by the T-score,
are located at the most critical bounds of the FS and RFI range covered
by the other osteopenic patients. One of the two in particular, markedly
outdistances the others. Other osteopenic patients, displayed with empty
diamonds, would appear at higher fracture risk, with the FS covering a
wider range and drawing attention to an higher number of them (patients
1,4,5,9, 10, 16 classified as at higher risk according to the F'S; patients 1,
4 classified as at higher risk according to the RFI). In addition, the same
healthy (T-score > —1) patient (patient 17) was located in an higher risk
region according to the FS.

Unfortunately, these outcomes could not find any real evidence because
of the lack of fracture status information for the considered cohort. The
possibility to access follow-up information for these 28 patients would have
allowed to go beyond speculation, although only two patients subjected
to hip fracture following a fall could be used to test the predictive mod-
els performance. This might not be sufficient for a substantial validation,
preventing further conclusions and deductions from the afore-mentioned
outcomes. Some other limitations characterizing this study are worth
being mentioned. HSA variables are determined on the basis of a sim-
plistic model for the proximal femur cross-sectional geometry based on
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elementary geometric shapes, which may be noticeably altered in reality
[30]: although useful and able to discern different femurs geometries, two-
dimensional scans of three-dimensional bones might indeed provide modest
precision [30]. Furthermore, the sideways fall condition was reproduced
imposing simplified boundary conditions, which have solely considered the
proximal portion of the femur. Since the FE simulations outcomes rep-
resented the starting point for all the subsequent analyses, deductions
and understanding, the imposed boundary conditions assumed a funda-
mental role. From this perspective, they were applied consistently with
approaches adopted in other works [61, 63, 65, 66, 104], where a validation
could be achieved through comparison with experimental data. The distal
hinge, generally employed experimentally [66], has also been often included
computationally [60, 61, 63]. The use of spring elements to account for ac-
etabular cartilage is not usually found in literature, although cartilage has
been accounted for in a number of studies [65, 67, 104]. Here, in this re-
gard, the addition of springs instead of a full constraint is expected to have
reduced the reaction force at the head. It must be said that substantially,
all the studies on the topic could couple ex-vivo experimental and compu-
tational analyses on the same specimens, managing to achieve a straight-
forward validation beyond a perfect methodological correspondence be-
tween the two approaches. Herein, working on living patients’ data, that
was obviously not possible. The aim was not the reproduction of experi-
mental tests, rather, the possibility to get further insights in the relative
fracture probability of the cohort under study. The boundary conditions
were applied in accordance with those afore-mentioned validated studies,
but, though qualitatively the most critical regions were the same and the
strength values were consistent, a direct comparison was not possible, also
given the number of variables involved. As far as the RFT is concerned,
it was extracted applying an impact load determined based on a 1 degree
of freedom mass-spring-damper system, already proposed in [83]. Hence,
trochanteric soft tissues effect could be accounted for in the impact force
definition. However, this was not done in a patient-specific manner, since
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springs and damper values were kept constant for all the patients; from this
perspective, accounting for patient-specific trochanteric tissues impact at-
tenuation might have affected the RFI-based results. Nevertheless, in [105]
neither the stiffness nor the damping properties of the trochanteric soft
tissues were found to be associated with soft tissues thickness. Besides,
the pseudo-calibration procedure represented a further possible source of
error included within the FE models. It might have indeed introduced a
bias in the apparent density estimation form the HU and consequently in
the strains. However, that is not deemed to have affected the outcomes
as a whole. A relative fracture risk was indeed considered attempting to
identify the HSA variables most meaningful to it, without the ambition
of an absolute risk assessment. Furthermore, the simulated impact ori-
entation reasonably has an effect on the corresponding outcomes both in
terms of fracture outcomes and relevant geometric features. Therefore, a
wider variety of orientation could have provided further insights.

In conclusion, this work has combined the development of three-dimensional
patient-specific FE models and the subsequent use of clinical data aiming
to support the present gold-standard for hip fracture risk estimation. Of
course, this approach does not have the ambition to predict when and
where a fracture will occur, rather, to assess the relative fracture risk
among individuals.

Although CT images were necessary to build the three-dimensional FE
models, in order to identify the training set of RFI and FS values, the
identified predictive model only requires HSA variables, which are, at
present, already provided together with DXA images. CT scanning is
not indeed a first choice exam for osteoporotic patients, who only undergo
DXA for diagnosis purposes. The fortuitous availability of both CT scans
and DXA images for the whole patients set has here allowed to build accu-
rate three-dimensional models which have eventually led to the definition
of regression models able to provide a risk prediction. They are inde-
pendent from the CT images themselves, uniquely based on DXA derived
information, already in hands of clinicians at present.
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Hence, the here adopted approach has explored the predictive ability of
a HSA based hip fracture risk estimator which could support the current
diagnostic standard. It has focused on the development of a predictive
model combining the biomechanical approach followed in CT-based stud-
ies [62, 80, 89, 106] with clinical data, aiming to assess the HSA variables
most relevant to the fracture risk and eventually to propose a regression
model based on clinical parameters already provided to clinicians by the
DXA imaging procedure. HSA parameters have been deeply investigated
retrospectively [51], but rarely integrated in this kind of approaches. In
conclusion, the method appears promising in supporting the clinical de-
cision process to assess a relative fracture risk among individuals, and
a larger amount of clinical data with available follow-up, combined with
three-dimensional FE models, will help to achieve advances in the HSA

variables role assessment.
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Abstract

Aiming to overcome the limitations which characterize the gold stan-
dard T-score measurement in the diagnosis of subjects at high risk of
osteoporotic fractures, the possibility to develop 2D Finite Element (FE)
analyses from DXA images would appear promising. DXA-based FE mod-
els indeed, in contrast to the CT-based ones, require the only availability
of DXA images, on which the current diagnostic process of osteoporosis is
based. From this perspective, the purpose of the work presented in this
chapter was the investigation of the role that DXA-based two-dimensional
patient-specific FE models of the proximal femur, in combination with
T-score, could play in enhancing the risk of fracture relative assessment.
With this aim, 2D FE models were built from DXA images of the 30 post-
menopausal female subjects involved. A sideways fall condition was repro-
duced and the Risk of Fracture Index (RFI) and Femoral Strength (FS)
were computed on the basis of principal strains criteria. The outcomes
were then compared to those obtained in the previous chapter, where the
corresponding CT-based FE models were developed. The identified RFI
and FS turned out to be significantly correlated with the corresponding
3D-based predictors, although able to explain only partially their vari-
ance. The patients highlighted as at higher risk were the same. Moreover,
the 2D predictors resulted significantly correlated with the T-score (RFI:
R = 048,p < 0.007 , FS R = 0.54,p < 0.002), and managed to better
differentiate osteopenic patients, drawing the attention to some of them.
In accordance with the three-dimensional outcomes, the most meaningful
Hip Structural Analysis (HSA) variables were the buckling ratio and the
cross-sectional moment of inertia, thus stressing the role of the bone re-
sistance to bending. In conclusion, DXA-based FE models, despite not
appearing equivalent to the corresponding CT-based ones, appeared to be
able to provide further hints compared to the sole T-score.
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3.1 Introduction

Aiming to overcome the limitations of the fracture risk clinical pre-
dictors currently in use, which have been previously tackled, researchers
have turned their attention to biomechanical approaches able to integrate
the gold-standard with biomechanical variables which actually are impor-
tant determinants of bone strength [107]. As seen in the previous chapter,
the development of Finite Element (FE) models from CT images has thor-
oughly been investigated [28, 108], due to the possibility to include patient-
specific actual geometric features and material properties in a reliable way.
However, as already pointed out, CT does not, at present, represent the
routine imaging technique for osteoporosis and fracture risk identification
purposes, primarily because of its high dosage of radiation and, above all,
much higher costs with respect to DXA. Hence, to meet the clinical re-
ality, two-dimensional DXA-based FE models have also been developed
to investigate their potentialities as supportive risk predictors [107, 109—
115]. In spite of DXA projective nature, which provides a two-dimensional
simplified representation of a complex three-dimensional structure, DXA
images are indeed routinely acquired and thus clinically available. Besides,
DXA-based FE models outcomes, despite the number of assumptions and
simplifications introduced in this kind of models, have been shown to po-
tentially enhance fracture risk estimation, bringing additional information
independently from BMD [107, 109, 113-115]. Therefore, aiming to get
further insights in the role 2D FE simulations might play, the main purpose
of the here presented study was, in the fist place, the comparison between
the performances of the developed DXA-based FE models with those of
the Hip Structural Analysis (HSA)-based regression models presented in
the previous chapter; moreover, the DXA- and CT-derived (chapter 2)
outcomes were compared as well. This could be achieved thanks to the
simultaneous availability of CT and DXA images for the same patients,

which rarely occurs.
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3.2 Materials and Methods

3.2.1 Subject-specific FE model construction

The same 28 post-menopausal female subjects (55-81 years, treated
in San Luigi Gonzaga Hospital in Orbassano, Italy) cohort considered in
the previous chapter for the CT-based FE models development was here
used. Clinical and DXA-derived data (acquired with a Discovery DXA
system, Hologic), together with CT scans, were available for the whole
cohort. Therefore, 2D FE models were set up starting from DXA images,
with the purpose of comparing their predictive capabilities with those of
the 3D models built from CT data. Follow-up information for these 28
patients was not available, so, it was not possible to know if they actually
ever fractured. For this reason, two additional post-menopausal female
patients aged 71 and 75 years, fractured at the proximal femur within 1
year after the DXA exam after a fall at home, were included in the cohort,
although the related 3D models construction was prevented by the lack of
the CT scans.

The two-dimensional geometric models extraction from DXA scans was
performed through a semi-automatic segmentation procedure (Mimics,
v17, Materialise, Leuven, Belgium) based on images grey values, assuming
the femoral head to be circular (Figure 3.1).

Subsequently, in order to identify the optimal mesh density, a sensitiv-
ity analysis on mesh dimensions was carried out. In accordance with [112],
a plane-stress approach was chosen, since proximal femur frontal plane di-
mensions are slightly larger than those in the anterior-posterior one. In
the Appendix, at the end of this chapter, a brief discussion comparing
the chosen plane stress approach with the plane strain one is provided.
The femur was assumed to be a plate with subject-specific thickness[112,
115]: therefore, CP6S elements (6-node Abaqus triangular plane stress
elements) were used, and the corresponding thickness determined on the
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Figure 3.1: One example of geometric model of the proximal femur built on a DXA
scan.

basis of the HSA femoral neck width W [112]. Specifically, the subject-
specific element thickness ¢ was calculated as such that, on average, the
area and area moment of inertia (with respect to the longitudinal axis)
of a rectangular cross section at the middle femoral neck (with a width
W) matched those of a circular cross section with diameter W. Hence,
the patient-specific thickness was defined as ¢t = 322 W (further details in

16
the Supplementary Material provided by [112]). Six different models with

decreasing average edge length (3, 2, 1.5, 1, 0.5, 0.25 mm) were built and,
as in the three-dimensional case, boundary conditions imposed to repro-
duce a simplified fall on the side (Figure 3.2). The sensitivity analysis was
based on minimum (compressive) and maximum (tensile) principal strains
extracted at the neck region, and, in particular, the lowest compressive
principal strain and the highest tensile principal strain were identified in
that region of interest for each mesh dimension. Errors were then com-
puted for these two quantities with respect to the finest mesh. The 0.5 mm
edge length mesh was chosen, producing an error lower then 3% (Figure
3.3). Once the optimal mesh dimensions were assessed, local heteroge-
neous material properties could be assigned. Pixel-by-pixel BMD values
were extracted from DXA images, which carry this information; each mesh
node was then assigned the BMD value of the pixel in which it was lo-
cated and a node-based average BMD value was eventually assigned to
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Load

Figure 3.2: Boundary conditions employed to carry out the mesh dimensions sensi-
tivity analysis.
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Figure 3.3: Mesh dimensions sensitivity analysis: % errors for tensile and compressive
principal strains computed with respect to the finest mesh (0.25 mm edge length).

each mesh element. Similarly to the methodology explained in the previ-
ous chapter, the material properties assignment relied on the definition of
a number of BMD-based bins characterized by a unique Young’s modulus
value identified from the bin central BMD value in this case. Therefore, a

further sensitivity analysis was performed aiming to assess the number of
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bins leading to sufficiently accurate results. Six different bin numbers (10,
20, 30, 40, 50, 60 bins) were investigated carrying out FE simulation of
a sideways fall and considering maximum and minimum principal strains.
Eventually, the 40 bins-based material properties assignment was chosen,
with an error on both tensile and compressive principal strains inferior to

5% (Figure 3.4). Hence, elements could be grouped in the correspond-
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Figure 3.4: Material bins sensitivity analysis: % error for tensile and compressive
principal strains computed with respect to the 60 bins-based material properties assign-
ment.

ing bins according to their BMD, so that they were assigned with the
bin-specific £ value. In the case of DXA-derived models, Young’s modu-
lus definition started from the BMD values provided by DXA (aBMD).
Having defined a patient-specific thickness from the femoral neck width
(t = 2570 the volumetric BMD (p,) could be derived according to [112]:

aBMD 1.89
t 1.05’

(3.1)

P

1.89

1.05
identified in [54]. In order to determine the corresponding apparent density

where the ratio, referring to the bone tissue density-BMD ratio, was
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value (pgpp), the volumetric density of Equation 3.1 was then converted
according to [116, 117]:

P

oy = . 3.2
Pavp = 1740598 (3.2)

Young’s modulus values (GPa) could eventually be calculated using the
same empirical relationships [71] used in the three-dimensional case:

E =15.010 p%>, if papp < 0.28 g/cm?, (3.3)
_ 1.49 . 3
E = 6.850 pgryp s if papp > 0.28 g/cm?. (3.4)

3.2.2 FE analyses generation

Boundary conditions reproducing a sideways fall condition were ap-
plied coherently with those presented in the previous chapter. Briefly, in
order to reproduce a sideways-fall condition, the impact force was applied
on the greater trochanter surface in the frontal plane, the femoral head
was bound to the ground by means of spring elements with a 10000 %
stiffness in the impact load direction, while the model distal nodes were
connected to a node located distally, with rotational degrees of freedom
only (Figure 3.5). Analogously to the three-dimensional analyses, two
different configurations were explored: in the former one the 2D model
was aligned to the shaft axis, and the impact load applied perpendicularly
to it; in the second one, on the other hand, the proximal femurs were
medially rotated by 15° in the frontal plane (Figure 3.6). Due to the two-
dimensionality of the problem, the femoral anteversion in the transversal
plane was not possible.

3.2.3 FS and RFI estimates

Principal strain-based failure criteria [60, 63, 106] were adopted to
predict fracture risk. In particular, at each element centroid, the Risk
of Fracture (RF) was computed dividing the prevailing principal strain,
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Figure 3.5: Boundary conditions applied to reproduce the sideways fall. A) head
nodes were bounded to the ground through spring elements with 10000ml stiffness;
B) impact load was applied as a distributed force on the trochanteric surface; C) distal
nodes of the proximal femur were connected to a spherical joint placed 0.1 m distally

by means of link elements. From [118].

Figure 3.6: The two different configurations explored: the neutral (left) and tilted
B was, as in the 3D case, 15°, while o could not be set due to the

configuration.
two-dimensionality of the problem.

evaluated comparing tensile and compressive principal strains, by the re-
spective threshold values, i.e. -0.0104 in compression and 0.0073 in tension
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[82]. The use of thresholds determined on a three-dimensional basis on
two-dimensional-based outcomes is discussed in the Appendix section at
the end of this chapter. The out-of-plane strain, which exists in the plane
stress case, was not considered in the principal strains extraction. As
done in the three-dimensional case, two different fracture risk predictors
were measured based on principal strains: the Femoral Strength (FS) and
the Risk Factor Index (RFI). The F'S was identified increasing the impact
load linearly until the number of failed (RF > 1) contiguous elements
exceeded 0.15% of the total number of elements, in accordance with [112,
113]. Precisely, at each load increment (100 N), the elements characterized
by a RF > 1 were identified, and they were considered contiguous if the
mutual centroids distance was lower than 1.3 mm.

The RFI, instead, was defined as the highest RF value at the patient-
specific impact load identified through the 1 degree-of-freedom mass-spring-
damper model presented in the previous Chapter. Differently from the 3D
case, where only cortex elements were considered when identifying both
the risk indices, the whole elements set was here taken into account due to
the projective nature of the DXA images and thus of the models [112, 113].
Head and trochanteric regions, where results could have been affected by
boundary conditions, were not considered for sake of the F'S and RFI com-
putation [60, 119]. FS and RFI were computed in both the two different
configurations explored, i.e. the neutral one (leading to the FSop, and
RFIop, extraction) and the inclined one (leading to the FSyp; and RFIap;
extraction). Subsequently, comparing the two, the most critical values,
simply called FSop and RFIFSsp, were identified:

FSQD = min(FSQDn, FSQDi) (35)

RFIyp = maz(RFIypy, RFIyp; ). (3.6)
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For comparison purposes, HSA variables most relevant to the 2D risk in-
dices RFIyp and FSop were here identified as well. First of all, a collinear-
ity diagnosis based on Variance Inflation Factor (VIF) [92] calculation was
carried out, so that only independent HSA parameters were selected. Sub-
sequently, Akaike Information Criterion (AIC) [93] was adopted to identify
those accounted for within the best models.

3.3 Results

First of all, focusing on the sole 2D outcomes, the two different frac-
ture risk predictors, the RFIsp and FSop, are compared in Figure 3.7: as
in the three-dimensional case, they turned out to be significantly corre-
lated (R = 0.75,p < 0.0001), although a low FSop area can be identified
spanning very different RFI values. In Figure 3.8, the outcomes related
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Figure 3.7: Comparison between the FE analyses-based RFIap and FSap values iden-
tified for the 30 patients included in the study.

to the neutral and inclined configurations respectively can be observed for
the two risk predictors considered: as visible, a strong correlation exists
in both cases (R > 0.97, p < 0.0001), and analogously to the 3D case, the
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inclined configuration resulted the most critical.
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Figure 3.8: RFIyp (left) and FSop (right) values in the neutral and inclined configu-
rations explored through the FE analyses.

Figures 3.9 and 3.10 display the overall distribution of the RF' for the
30 patients at the load-step when fracture was supposed to occur for the
neutral (Figure 3.9) and inclined (Figure 3.10) femur orientations. For
visualization purposes only, the cell-centered variable is shown as interpo-
lated at the nodes and the RF higher than the 90" percentile have been
depicted, judged evidence of a considerable strain level. Some patients
show high RF' at the greater trochanter, but that area was not consid-
ered while identifying the contiguous failed elements because it might have
been affected by the load application.

While in the three-dimensional case noticeable differences could be ap-
preciated between the localization and distribution of the RF in the two
analysed configurations, in the 2D case only slight alterations of the RF
distribution between the neutral and tilted configuration at the estimated
fracture load could be appreciated. Figure 3.11 offers an overview of the
patient-specific FSop values as assessed from the FE analyses in the neutral
and inclined femur orientation respectively. From this perspective, if it is
compared to the corresponding one in the three-dimensional case (Figure
2.14), some patients can be found (e.g. patients 19 and 27), whose strength
markedly overcomes the average values and conversely whose strength is
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Figure 3.9: RF distribution for the 30 patient-specific models in the neutral configu-
ration, shown at the load-step causing failure. Only RF values above the 90" percentile
(0.47) are shown.

well below them (e.g. patients 1, 2, 6, 22, 28) in both cases. Nevertheless,
cases of considerable low (e.g. patients 4, 5, 10, 20, 25) or high (e.g. pa-
tients 7, 11, 12) FSop did not find a correspondence in the 3D one.
Moreover, Figure 3.12 compares the 28 patients RF distribution in the
3D and 2D models for the inclined configuration at the estimated patient-
specific impact load. As visible, although a precise co-localization of the
regions interested by the highest RF' values cannot be found between the
3D and 2D models, it is still interesting to notice that the patients with
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Figure 3.10: RF distribution for the 30 patient-specific models in the inclined configu-
ration, shown at the load-step causing failure. Only RF values above the 90" percentile
(0.41) are shown.

the largest high RF' regions or showing extremely high (RF > 2) RF
values are often the same. In Figure 3.13, the comparison between the
three- and two-dimensional-based outcomes is shown, both in terms of
the RFI and FS. Regressing the 3D predictors on the 2D ones, the RFIsp
could explain only a small portion of the RFI3p variance, R? being 0.26
(p < 0.0057). As for the FSop, it managed to explain nearly half of the
variance of the corresponding FS3p (R? = 0.46,p < 0.0001). Interestingly,
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Figure 3.11: The patient-specific FSop values (N) in the inclined and neutral orien-
tations. The corresponding mean values are shown as well.

the strength determined in the two-dimensional case was generally under-
estimated compared to CT-based strength (this might have been caused
by the choice to model the femur as a plate with constant thickness, as
shown in the Appendix). In particular, this occurred analogously consid-
ering the neutral and inclined configurations outcomes separately, and the
few cases showing an opposite trend (2D strength higher than 3D strength)
were the same. Although clearly distinctive features could not be identi-
fied characterizing those patients yielding an higher DXA-based strength,
qualitatively they showed 2D shapes generally larger in size compared to
the average, together with, looking at the three-dimensional geometry,
smaller dimensions in the antero-posterior direction.

For sake of comparison with the three-dimensional case, an AIC-based
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Figure 3.12: Comparison of the RF distribution for the 28 patients between the CT-
and DXA-based models in the inclined configuration at the estimated patient-specific
impact load. Only RF values above the 90" percentile (0.51 for the 3D case, 0.6 for
the 2D case) are shown.
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Figure 3.13: Comparison of the RFI and FS in the three-dimensional (RFIsp and
FSsp) and two-dimensional (RFIop and FSop) case. The regression lines are displayed
as well.

multivariate linear regression analysis was carried out, in order to iden-
tify the most relevant HSA variables with respect to the RFIsp and FSop
as well. The HSA variables included within the best 5 regression mod-
els according to the AIC are presented in Tables 3.1 and 3.2. As visible,
the AIC-based optimal HSA descriptors were strongly related to the bone
resistance to bending, which was reasonable and coherent with the three-
dimensional outcomes. Nearly all the RFIop-based optimal combinations
incorporated the BR, the CMSI at the narrow neck and the HAL, rather
than the NSA, included in the 3D case. Moreover, taking the FSop as
the dependent variable, the optimal 2D regression model turned out to
be very similar to the 3D one, including the CSMI and BR at the narrow
neck plus the BR at the femoral shaft. In addition, however, the NSA
appeared within the model.

The coefficients of the optimal regression models for the RFIsp and the
FSop, which can be written as

RFIaprsa = Bo + 1 CSM I + B2 BRyy, (3.7)

FSaprsa = BO + Bl NSA+ BZ CSMIy, + 53 BRyy, + /84 BRfs (38)
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Table 3.1: The HSA variables included in the best five RFIsp regression models

according to AIC. Ridj and the Akaike weights w are provided as well.

Variables R2

adj w
RFI2pn
{CSMTIn, BRnn} 0.319  0.072
{HAL, BRun, BRit, BRys}  0.393  0.061
{HAL, BRun, BRy,} 0.320  0.036
{HAL, BRnn} 0.288  0.036
{BRun, BRss} 0.281  0.031
RFI,p;
{CSMI;, BRnn} 0.289  0.064
{HAL,BRn.} 0.284  0.058
{HAL, BRnn, BRys} 0.319  0.052
{HAL, BRun, BRit, BRys}  0.356  0.044
{BRun, BRss} 0.256  0.033
RFI2D
{CSMI;, BRnn} 0.289  0.064
{HAL,BR.} 0.284  0.058
{HAL, BRnn, BRys} 0.319  0.052
{HAL, BRun, BRit, BRys}  0.356  0.044
{BRun, BRys} 0.256  0.033

are shown in Table 3.3, in their standardized version (beta weights) as
well. Looking at the beta weights, the BR at the narrow neck might seem
to have a stronger effect on both the RFIop and FSop with respect to the
other HSA predictors included within the two optimal models, particu-
larly as far as the RFIop is concerned. With the purpose of visualizing
the goodness of the identified predictive models, Figure 3.14 offers the
comparison between the true, i.e. as extracted from the FE analyses, and
the predicted RFI and F'S values for the whole dataset, which both resulted
to be significantly correlated (p < 0.0001), with a better performance of
the FS predictive model.
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Table 3.2: The HSA variables included in the best five FSap regression models ac-
cording to AIC. Ridj and the Akaike weights w are provided as well.

Variables Rz & w
FSaopn
{NSA,CSMIyn, BRun, BRy,} 0.656  0.164
{HAL,NSA,CSMInn, BRyn, BRss} 0661 0.069
{NSA,CSMInn, BRnn} 0.606  0.057
{NSA,CSMIpn, CSMI;y, Wi, BRgs}  0.657  0.056
{NSA,CSMInn, BRnn, Wi, BRys}  0.654  0.049
FSap;
{NSA,CSMInn, BRnn, BRy.} 0.619  0.119
{NSA,CSMIn, BRy} 0.577  0.068
{NSA,CSMIpnn, CSMI;1, Wi, BRss}  0.6307  0.064
{NSA,CSMIyn, Wis, BRss} 0.597  0.052
{HAL,NSA,CSMInn, BRun, BRss}  0.623  0.047
FS2D
{NSA,CSMInn, BRnn, BRys} 0.619  0.119
{NSA,CSMIn, BRy.} 0.577  0.068
{NSA,CSMIn, CSMI;t, Wiy, BRy,}  0.6307  0.064
{NSA,CSMInn, Wis, BRss} 0.597  0.052
{HAL,NSA,CSMInn, BRun, BRss} 0623 0.047

Table 3.3: The regression coefficients 3; and standardized regression coefficients Ss;
for the optimal multivariate models.

y Bo B1 B2 B3 Ba Bso Bsi  PBs2  Bss Bsa

RFI 1.597
FS -8875.6

-0.57
91.51

0.24 - - -
777.86 -83.60 -331.87 -

-0.21
0.39

0.52 - -
0.46 -0.27 -0.32

Eventually, Table 3.4 contains the HSA variables ranked according to
their Akaike cumulative weights wy, acting as surrogates of their rele-
vance, with respect to the RFIop and FSop regressions. Interestingly, the
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Figure 3.14: Comparison between FSop, FSop nsa (left) and RFIzp, RFIap asa
(right) for each patient. The true and estimated values were significantly correlated
(R* = 0.34 for the RFI and R* = 0.67, p < 0.0001 for the FS). The corresponding
regression lines are reported as well.

first ones in importance, i.e. the BR and the CSMI at the narrow neck
relatively to the RFIop and FSop respectively, were the same as in the
three-dimensional case. On top that, also the BR at the femoral shaft
turned out to be a meaningful variable, in agreement with the findings of
the three-dimensional case. The HAL and NSA were also classified as the
second most relevant variables with respect to the RFIsp and FSop, even
though they had not been highlighted as such by the 3D outcomes.

In Figure 3.15, the predictive abilities of the RFIpga and FSpga are com-
pared to those of the T-score for all the patients. RFIop and FSop values
are displayed as obtained from the DXA-based FE models. The two frac-
tured patients are displayed as empty circles, while patients who may seem
highlighted as at higher risk have been depicted with empty diamonds. As
visible, while the RFIsp predicts as at higher risk only one of the two frac-
tured patients, the FSop manages to locate both in the low strength area.
The RFIsp also spreads the osteoporotic patients in a pretty wide RFIop
interval, so that it might seem some are at a lesser degree of risk with
respect to others. This does not occurr if the FSop is considered, which
locates all the osteoporotic patients in the low strength region. Among
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Table 3.4: The eight HSA variables ranked according to their cumulative Akaike
weights wy related to the RFIz:p and FSaop regression analyses.

RFI>p FS2p
HSA Variables wy HSA Variables wy

BRnn 0.8782 CSMIpn 0.9583
HAL 0.4959 NSA 0.930
BRys 0.4382 BRys 0.7623
CSMI,p 0.3688 BRnn 0.4452
BR: 0.3048 Wit 0.399
Wt 0.2404 HAL 0.3009
CSMI;¢ 0.2313 CSMI;¢ 0.2566
NSA 0.2024 BR;¢ 0.2514

the non-osteoporotic patients, on the other hand, some would be judged at
higher risk of fracture. If the osteopenic patients are taken into account,
patients 1, 4, 20 would be classified as at higher risk by both predictors,
patients 5, 9 and 10 only according to the FSop. The healthy patients,
eventually, do not locate in high risk region, although they would seem
characterized by different risk level: looking at the RFIyp, 2 patients (14
& 19) have slightly higher values, while considering the FSop, two patients
can be identified (14 & 17) with lower strength than those in the same
BMD range.

3.4 Discussion

In the last decades there has been a great effort towards a more ac-
curate and reliable assessment of the fracture risk in elderly osteoporotic
individuals. From this perspective, as mentioned in the previous chapter,
three-dimensional FE models developed from CT and QCT scans have
been shown to have excellent strains and fracture load predictive abilities
with respect to in vitro experiments [63, 69, 106]. Thanks to the availabil-
ity of CT scans for a cohort of 28 patients indeed, in the previous chapter,
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Figure 3.15: Comparison between the RFIsp and FSop with the T-score outcomes.
The three standard ranges of the T-score based criterion are highlighted: no osteo-
porosis/osteopenia: T-score > —1; osteopenia: —2.5 < T-score > —1; osteoporosis:
T-score < —2.5. Empty circles refer to the two fractured patients predicted values,
while empty diamond show the non-osteoporotic patients looking at higher risk. Both
RFI:p and FSop turned out to be significantly correlated with the T-score (RFIap:
R =0.48, p < 0.007, FSop R = 0.54, p < 0.002).

3D FE models were developed aiming to explore their performances in
the proximal femur fracture risk assessment. However, because CT does
not represent the standard imaging technique for osteoporosis screening
purposes, patient-specific three-dimensional FE models do not represent
a clinically attainable risk assessment tool. This is the main reason why
there has been growing interest in 2D FE models derived from DXA as
well, which, on the contrary, represents the gold standard imaging tech-
nique for osteoporosis diagnosis. Hence, the main purpose of this study
was the comparison between the outcomes of 2D and 3D FE models built
from DXA and CT images of the same patients. The interest was in the
investigation on how DXA-derived data and analyses, clinically achiev-
able, could integrate the current standard for an enhanced fracture risk
assessment. To accomplish this goal, two fracture predictors, the RFI and
FS, analogously computed from the 3D models, were extracted as out-
comes of the two-dimensional FE analyses. The availability of CT and
DXA images for the same set of individuals is not straightforward and

74



3.4 — Discussion

only Dall’Ara et al. [115] would seem to have dealt with the compari-
son, ez vivo, of DXA and QCT FE models predictive capabilities. Other
studies focused on DXA derived FE models [107, 109, 111-114], although
mainly retrospectively or comparing DXA and CT in terms of geometric
features computation [120].

Dall’Ara and co-workers [115] achieved better accordance between QCT-
and DXA-based FE strength outcomes than ours, with the 2D strength
being able to predict about 70% of the 3D-based one. Here, the 2D-based
predictors could only explain from 26 to 46% of the corresponding 3D
predictors variance. In [115], nonetheless, the minimum number of failed
elements to be considered for fracture assessment in the 2D case was op-
timized with respect to the experimental data, while the 3D strength was
estimated on the basis of the femoral head displacement coupled with an
elastic-damage constitutive law rather than on a number of failed elements.
From this perspective, the different approach employed to determine the
3D strength might also explain why, contrary to the here obtained out-
comes, in [115] the DXA-based strength was generally higher than the
QCT-based one. Herein, although the correlation between the DXA- and
CT-based strength was significant, the modest R? values would hardly sup-
port the conclusion that the CT- and DXA-based analyses were equivalent.
This might have been expected, since a two-dimensional model constraints
the forces and the whole analysis to the frontal plane, unable to capture
the realistic three-dimensionality of the problem. From this perspective,
this could also be appreciated looking at Figure 3.8, where a markedly
linear relation exists between the neutral- and inclined-related results. In
the three-dimensional case, where the inclined configuration also involved
the anteversion angle, the differences between the two distinct orienta-
tions investigated were indeed deeper. Moreover, DXA, in vivo, might be
subjected to inconsistent positioning during the scanning, thus introduc-
ing errors into both the projected BMD and projected femoral geometry
[121].

Despite the weak correlation found, paying attention to the comparison

75



DXA FE Models for Hip Fracture Risk Prediction: a comparison with 3D Models

between T-score and the RFIyp and FSop (Figure 3.15), the osteopenic
patients highlighted as at considerable risk of fracture with respect to the
others belonging to the same T-score range were the same pointed out by
the three-dimensional risk predictors: only patient 20, here highlighted
by both the RFIsp and FSop, was not identified as at higher risk accord-
ing to the 3D results. Patient 17, healthy (T-score > —1), here showed
a relatively low strength value, but not a severely high RFI, as in the
3D case. The two fractured patients, the only ones whose follow-up was
known, were correctly classified by the FSop, but only one was correctly
located in the high RFIsp region. The other fractured patient had indeed
an extremely low BMI, and the applied impact load, which was patient-
specific and BMI-dependent, was consequently moderate. Hence, if the
femoral strength computation, by definition, does not involve a subject-
specific impact force which encompasses patient-specific anthropometric
parameters [107], it here allowed to achieve a better relative risk assess-
ment. This misclassification result, in spite of the independence between
soft tissues thickness and their damping and stiffness properties found in
[105], might also be due to the fact that patient-specific trochanteric soft
tissues thickness was not embedded within the impact force calculation.
As far as the most relevant HSA variables are concerned, the crucial role
of the CSMI and BR was here stressed as well, in accordance with the
3D outcomes. In addition, the NSA and the HAL resulted meaningful
with respect to the FSop and RFIsp respectively, distancing from the 3D
results, where the NSA was included in the optimal RFT regression model
but the HAL was not considered. The HAL, which is indeed recognized
to be a sensible predictor [51, 122], is biomechanically connected to the
bending moment at the neck, where, in the 2D case, the majority of the
high strained elements gathered. In this regard, the two-dimensionality
of the models, opposed to the CT-based ones where the inclined configu-
ration included an anteversion angle as well, is undoubtedly presumed to
have had an effect. After all, the HSA variables were computed on the
same geometry which was then used for the 2D FE analyses.
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If the BMD computed at the femoral neck was included in the multivariate
model, the increase in the explained variance was modest (4.4% increase
for the RFIsp and 7.4% for the FSop respectively). However, as far as the
RFIop regression model is concerned, the BMD itself was not significant
within the model, and the BR at the narrow neck was the only variable
with a 5% significance level. On the contrary, all the variables included in
the FSop model kept their 5% significance level also after the addition of
the BMD.

Follow-up information unavailability and the limited number of subjects
involved represent the main limitations of this study, since they prevented
the validation of the implemented models as well as the performance of
more robust statistical tests. Of course, the inclusion of the two additional
patients did not allow a real validation of the proposed methods, and con-
sequently further investigations would be needed.

Herein, the CT- and DXA-based analyses did not turn out to be per-
fectly equivalent. This would seem to be evidence of the fact that the
mechanical response of a complex three-dimensional structure cannot be
accurately depicted by an equivalent two-dimensional model. Compared
to CT-based three-dimensional models, 2D DXA-based FE models cer-
tainly have a number of limitations, starting from DXA projective nature,
resulting in the overlapping of cortical and trabecular bone on the im-
age plane, going to the approximation of the femur geometry to a plate
with constant thickness and boundary conditions applied on the unique
image plane. As a consequence, stress and strain distributions may be
altered. Nevertheless, the most relevant HSA variables identified were not
discordant and interestingly, the non-osteoporotic patients highlighted as
at higher risk did not differ noticeably from the 3D case. In this light,
Figure 3.16 stresses the synergical effect of geometry and local material
properties within the bone load bearing capabilities which is captured by
the 2D FE analyses. RFIop and FSop were indeed able to highlight some
osteopenic patients as being at higher risk of fracture, and thus to bet-
ter differentiate patients belonging to the other T-score ranges. Therefore,
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Figure 3.16: Juxtaposition of shapes related to patients with comparable T-score but
different RFI/FS and vice-versa.

these results also prospectively emphasize how the T-score predictive abil-
ity could be enhanced accounting for the role played by the proximal femur
shape and geometrical features in general: T-score, which accounts for the
material properties alone, might indeed be supported by the inclusion of
the HSA variables highlighted as the most relevant with respect to an
estimated fracture risk indicator. Without any substantial modifications
in the diagnostic procedure, HSA variables, already in hands of clinicians
but not used practically, could be thus immediately employed, with the
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potentiality of integrating and improving the current standards for risk of

fracture estimation.
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Appendix

When dealing with the two-dimensional modelling of solids, the plane
stress and plane strain approaches are available. Within the DXA-based
femur modelling, the plane stress approach is usually preferred over the
plane strain one in the literature [112, 113, 115, 121]. While the plane
strain approach assumes a structure has dimensions in the non-planar di-
rection significantly larger compared to the in-plane ones, and that the
strain in the out-of-plane direction is thus negligible, the plane stress as-
sumes the opposite. In this latter, the dimensions in the out-of-plane
direction, smaller with respect to those in-plane, allows to consider the
stress in the out-of-plane direction negligible. Although the proximal fe-
mur does not have different orders of magnitude in its 3 dimensions, the
frontal plane dimensions might be considered marginally larger than the
anterior-posterior dimension, leading to the choice of a plane stress ap-
proach. Due to the different hypotheses on which the two different ap-
proaches are based, the strains formulations differ, with of course an influ-
ence on the results obtained if the two are used to solve a unique problem.
Considering the reference system shown in Figure 3.17, where the out-of-
plane direction is represented by the y-direction, the strain formulations

in the case of plane strain would be:

=%z Vo 3.9

“TE E E (39)
o, VOp V0Oy

=% V9 V9 1

““EFE E E (3.10)
2(1+v)T

%yZTmy (3.11)

with e, = 0.

Differently, in the plane stress case:

Oy VO,
Ep = — —

E E

(3.12)
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Figure 3.17: Two-dimensional profile of the proximal femur with highlighted the
boundary conditions imposed as well as the considered reference system.

v
=% (0z+02) (3.13)
o, Vog
=% 14
=% g (3.14)
2(1+v)7
Yoy = 7E w (3.15)

In this case, o, = 0, but the strain in the y direction is not 0.
Comparing €., the strain in the loading direction, in the two cases, it is
visible that in the plane strain case there is the additional contribution of

the term ng. Given that ¢, = 0,0y = v (0, +0) in the plane strain case.

Hence, considering the specific boundary conditions applied, the contribu-
tion of o, negative in the regions of interest, i.e. neck and intertrochanter,
will make e, (which will be negative due to compressive state) smaller in
modulus in the plane strain case with respect to the plane stress. On the
other hand, o, will yield an higher €, in the plane strain case with respect
to the plane stress one. Therefore, if the principal strains are taken into
account, the minimum principal strain will be higher in the plane stress
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case, while the maximum principal strain will be higher in the plane strain
case. Given the prevailing compressive strains observable in our analyses,
the adoption of the plane stress approach will then result conservative,
yielding higher minimum principal strains with respect the plane strain,
and therefore presumably higher RF'.

Moreover, the adoption of the 3D-based failure thresholds on the 2D-based
FE analyses outcomes might be considered to be conservative. The proxi-
mal femur was indeed modelled as a plate with a constant subject-specific
thickness such that its cross-sectional area and area moment of inertia
were as close as possible to those of a circular cross-section with diameter
equal to the HSA neck width. Therefore, in the neck region, stress and
strain values might be considered to be comparable to the corresponding
3D-based ones. However, in the intertrochanteric region, which repre-
sented the other highly loaded region, the real cross-section is presumably
larger that that at the neck. Here, stress and strain values as computed
from the 2D analyses might thus result to be over-estimated, making the

adopted criteria more conservative.
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Statistical Shape Modelling to
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Abstract

The role played by proximal femur morphology, despite widely inves-
tigated in the literature, has not been fully clarified yet. Hip Structural
Analysis (HSA) variables, which are extracted directly from DXA im-
ages, are actually discrete and correlated measures which do not describe
proximal femur geometry as a whole; on top of that, many of them are
essentially derived from the image pixels intensity, and thus tightly related
to the Bone Mineral Density (BMD) itself. Therefore, aiming to explore
how geometry and BMD interact and contribute to the femur bone re-
sistance to loading, statistical models of the shape, the intensity, i.e. the
BMD distribution across the bone, and their combination have been here
developed. First, Principal Component Analysis (PCA) was carried out,
which yielded the main geometric and intensity features observable in the
population. Besides, aiming to identify the most meaningful features de-
tectable both in the morphology and BMD distribution but relevant to a
fracture risk index as well, Partial Least Square (PLS) algorithm was used.
The Femoral Strength (FS) computed thanks to the three-dimensional FE
analyses previously presented was used as the fracture risk index. While
no significant correlation was found between the FS and the main PCA
shape modes, the first PCA intensity mode was strongly correlated to
the FS (R = 0.79, p = 0.0001). Similarly, PLS outcomes underlined the
stronger relation between intensity and FS: the first PLS intensity modes
were indeed the most relevant with respect to both the intensity itself
and to the FS. The first shape intensity combined PLS mode was consid-
erably correlated with the FS (R = 0.82, p < 0.0001) and compared to
the T-score, allowed a better stratification of the patients, also locating
the two fractured patients in the higher risk area. Canonical Correlation
Analysis eventually allowed, based on combined PLS outcomes, to pre-
dict shapes and BMD distribution associated to an increased/decreased

strength: as the strength increases the femur is characterized by higher
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BMD and thicker cortices and shows a wider intertrochater and a de-

creased neck-shaft angle.
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4.1 Introduction

A fracture occurs when the external load manages to exceed the bone
strength. As mentioned in the previous chapters, several factors, the bone
shape among them, do represent strength vital components and might be
potential fracture risk predictors [51, 123, 124]. However, in clinics, Bone
Mineral Density (BMD) is currently the only variable taken into account
for sake of fracture risk prediction in osteoporotic patients, although it has
been shown not to be sufficient, alone, to explain the fracture occurrence.
From this perspective, three-dimensional Finite Element (FE) models have
been considered extremely promising, able to include patient-specific den-
sity and geometrical properties together. However, their cost-effectiveness
has not been demonstrated yet [28], and their clinical employment has
not taken place. Hence, with the purpose of defining the morphological
features playing a role in the femur strength definition, Hip Structural
Analysis (HSA) variables have been considered. They are indeed easily
extracted from the routine DXA images and those most relevant to the
fracture risk might be readily be integrated in the clinical decision pro-
cess to integrate the T-score predictive abilities [51]. Nevertheless, HSA
variables are highly correlated with each other and, in addition, they are
correlated to the BMD itself, being extracted from DXA bone mineral
mass distribution [51, 124]. In addition, if it is known that femur geome-
try might provide further insights regarding the fracture risk [125] beyond
the gold standard BMD, the results in terms of the most influential HSA
variables are not always consistent [51, 126].

Therefore, in order to assess the anatomical features most relevant to
the risk of a fracture, Statistical Shape Models (SSMs) have been employed
[124, 127]. Primarily used for segmentation [128], they have been demon-
strated, together with Statistical Intensity Models (SIMs), to represent
powerful tools for reconstruction and classification as well [127]. Basically,
given a set of training images, statistical shape modelling allows the devel-
opment of a linear model which is able to describe any new shape as the
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sum of a mean and a linear weighted combination of independent modes
of variation identified within the population. The corresponding weights,
also called shape parameters, carry patient-specific information, providing
a compact description of the patient-specific shape. Analogously, statisti-
cal intensity models are able to describe the image pixel intensities of any
new image according to the same scheme.

The adoption of SSMs alone [123, 129] or in combination with SIMs
[130-134] in the context of osteoporotic fracture risk estimation [124, 127]
has already been proved promising, retrospectively improving the fracture
risk prediction and classification compared to the sole BMD alone.
Herein, the aim was to describe the main morphological and densitometric
variations in our population and particularly to establish the most crucial
ones with respect to the fracture risk. In spite of the availability of the
CT-based three-dimensional models, SSMs and SIMs were here developed
on the DXA-derived shapes, having in mind that DXA images are what
is clinically available at present.

4.2 Materials and Methods

4.2.1 The Statistical Shape Modelling framework: shapes
representations as currents and template computa-
tion

The starting point for the here performed shape analysis was the math-
ematical framework proposed by Durrleman et al. [135], which has been
published as “Deformetrica” (http://www.deformetrica.org/), an open-
source code. Usually, the most common methods adopted for shapes repre-
sentation prior to Statistical Shape Analysis (SSA) of anatomical districts
are parametric. Hence, they rely on landmarking, which requires point-to-
point correspondences between shapes, tending to be error-prone and time-
consuming [136]. The here employed framework, on the contrary, does not
require prior landmarking nor point-to-point correspondence of the input
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shapes as it relies on mathematical currents [137] to model shapes. The
method is therefore particularly attractive for landmark-poor as well as
for highly variable morphologies.

The current of a generic surface S (or curve L) is defined as the flux of
a test vector field w € W across that surface (or curve). The resulting
shape T of the surface S (or of curve L) is then uniquely characterised by
the variations of the flux as the test vector field varies. W, in which w
varies, is a vector space generated by a Gaussian kernel Ky with width
|x—y

Ay

reproducible kernel Hilbert space (r.k.h.s.).

A Kw(x,y) = exp( ) for any points (x,y). It is formally a

The current of a surface (or curve) can be decomposed into an infinite
set of Dirac delta currents, defined at each point of the surface (or curve)
and oriented along the surface normal (or line tangent). Because compu-
tationally the surfaces (or curves) can be represented by discrete meshes
(or polygonal lines), their current representation can be approximated by
the finite sum

St = Zaj;; (4.1)
k

with 03k being the so called Dirac delta current. A Dirac delta current can
be seen as an infinitesimal vector that is concentrated at the barycentres
of the mesh faces (or at the center of each segment) x;, oriented along ay,
the normal of the surface (or tangent to the line). The resolution of the
currents representation is controlled by the above mentioned parameter
Aw, the width of the kernel Kyy. The larger Ay, the higher the spatial
variation in the vector field and the coarser the resolution of the shape
representation. Therefore, Ay here defines the level of the shape details
studied. Smaller Ay values will allow to capture smaller differences be-
tween shapes, while larger values will discard them. Currents thus actually
act as surrogate representations of shapes, characterizing them as distri-
butions of shape features rather than as collections of points.

Once the input shapes have been modelled by means of currents, the
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shape modelling framework then involves, according to the forward ap-
proach [138], the computation of the so called template T', which rep-
resents the mean anatomical shape, and the simultaneous extraction of
the transformation functions ®*, which map it towards each i** patient-
specific shape [139, 140]. Each observation T%, i.e. each subject-specific
shape, is indeed described as a deformation of the template T plus some
residuals €', accounting for features not captured by the template nor by
deformations:

T =d" - T +¢. (4.2)

The function ®’ is defined using the Large Deformation Diffeomorphic
Metric Mapping (LDDMM) approach [136, 141], and it is parametrized
by a time-varying velocity field uniquely characterized by an initial vector
speed vi:
i _ i
VO(X) - ZKV(Xk"X) X (43)
k

V(i) also belongs to a reproducible kernel Hilbert space V with kernel
| xp —x [?
2
AV
the z are the nodes of the surface mesh (or polygonal line), xj, the point po-

Ky (xk,x) = exp( ) for any pair (x,xx). Ay is the kernel width,

sitions of the template Delta currents (also called control points). Hence,
v is completely defined by the moment vectors ﬁ;k centred at the posi-
tions x; of the template delta currents, which drive the transformations
of the template towards each shape and which contain the initial kinetic
energy that is necessary to cover the path of a transformation from one
Dirac delta current to the other. All the shape information present in the
patients population, expressed as a unique deformation of the template
shape, is thus contained in the patient-specific transformation functions
®' = f("). The template T and the deformations ®' towards each patient
are estimated simultaneously by means of an alternate two-step minimiza-
tion strategy [140]. Ay, the width of the kernel Ky, defines the size of
the area which is deformed consistently, i.e. the rigidity of the template
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deformation: the larger Ay is, the stiffer the transformation will be, able
to capture only the overall shape features variations.

Deformetrica, taking the shapes and the kernel widths Ay and Ay as
inputs, computes and outputs the template shape, the reconstructed in-
put shapes, the control point x; coordinates and the corresponding mo-
ment vectors set mapping the template towards each patient-specific input
shape.

4.2.2 Pre-processing

In spite of the availability of both CT-derived 3D surfaces and DXA-
derived 2D profiles of the same patients, the choice was not to consider
the CT-based shapes, having in mind that only 2D shapes are currently
already in hands of clinicians. Therefore, the statistical shape and in-
tensity modelling was carried out on the two-dimensional proximal femur
profiles. This choice was also dictated by the possibility to better control
and interpret the outcomes associated to simpler shapes with respect to
the three-dimensional ones.

From the geometrical 2D models used for the previously presented
FE models, the external profiles of the proximal femurs were extracted.
Only the external profile was considered, since it is not straightforward
to identify the cortical thickness in DXA images. Then, prior to the use
of Deformetrica, shapes had to be realigned and the two kernel widths,
Aw and Ay, needed for the shapes representation using mathematical cur-
rents and for the calculation of the transformation functions ® , had to
be set. For that purpose, a sensitivity analysis procedure similar to that
presented in [142] was adopted, which basically consisted in running De-
formetrica several times altering Ay and Ay values to achieve an optimal
reconstruction of the input shapes from the moment vectors output by
the software. Primarily, the 2D profiles were aligned to their shaft axis
using rotation, and subsequently translated so that their distal portions of
the profile were superimposed. Figure 4.1 displays the patient-specific 2D
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profiles realigned and superimposed. Subsequently, the sensitivity analysis

Figure 4.1: Superimposition of the patient-specific two-dimensional profiles given as
input to Deformetrica after the alignment procedure.

was performed in order to assess the optimal Kernel widths. Two starting
values for Ay and Ay were estimated as a percentage of the smallest prox-
imal femur area [142], which yielded an initial Ay of 17 mm and a Ay of
68 mm. So, an initial template was computed from those values and each
ith patient-specific shape reconstructed from the output transformation
function ®°, mapping the template to the input shapes. Then, Ay and
Ay were progressively varied while evaluating the overall reconstruction
error, which was computed comparing the input shapes with the recon-
structed ones. Specifically, Ay was progressively varied between 12 and 20
mm; each time, Ay was incrementally decreased (from 68 to 35 mm) while
keeping Ay fixed. Being the input shapes two-dimensional, the compu-
tational time was always limited. Eventually, this procedure yielded the
optimal Ay and Ay values of 17 and 38 mm respectively, which were there-
fore input to Deformetrica with the input shapes for the final analysis.

Furthermore, aiming to assess the final template shape was not strongly
modified if one of the shapes was included or discarded, a k-fold cross-
validation was carried out [142]. The whole dataset was divided into
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k=14 random subsets: hence, the template was computed k times, dis-
carding each time one different subset (i.e. 2 subjects). There were 14
resulting different templates and the relative distances among them were
computed, paying attention to both the largest and the average distance
value computed for each template. The highest values were 1.9 mm and
0.53 mm for the largest and average distances respectively, which were
judged satisfactory to say that no subject did affect the template con-
struction. Therefore, after Deformetrica was run, the template shape and
the moment vectors set, encompassing the patient-specific shape-features,
were ready to be used for the statistical shape analysis. Prior to the post-
processing phase, the presence of shapes yielding a reconstruction error
higher than 4 times the average reconstruction error was verified in order
to assess the presence of potential outliers.

4.2.3 Post-processing

Statistical Shape Models (SSMs) and Statistical Intensity Models (SIMs)
are modelling frameworks which are both based on the achievement of the
average shape or intensity (here represented by the pixel-by-pixel BMD
map) computed from a specific population, together with the correspond-
ing main modes of variation of the shape or intensity from the mean. The
idea is that by selecting a limited number of modes, the shape and the
intensity distribution of any individual belonging to a specific population
can be described.

Herein, two different approaches were employed to build SSMs ans SIMs.
First of all, Principal Component Analysis (PCA) was carried out, which
allowed to extract the main shape and BMD distribution features observ-
able in the input population. However PCA by itself is only able to extract
the directions, or modes, of higher variability, without accounting for an
external variable of interest. This is the reason why also Partial Least
Square (PLS) algorithm was adopted. PLS takes indeed one predictors
matrix and one response variable matrix as inputs, identifying the main
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features of the predictors matrix being relevant to the response variable
as well. Hence, it was able to identify the main (shape and BMD dis-
tribution) features which were simultaneously also the most relevant to
the fracture risk, taken as the response variable. Below (Figure 4.2), a
schematic pipeline is presented, which shows the statistical modelling pro-

cedure which will be more deeply tackled in the following sections. Within

Principal
Component Main features
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Shapes

Moment vectors

BMD map

Partial Least Canonical Shape.& Y

- associated to

Square Correlation e naer
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] |
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Figure 4.2: The SSM and SIM pipeline: using PCA, only the main features in terms
of morphology and BMD distribution were extracted. PLS, instead, getting an external
variable as input as well, yielded the main features most relevant to it too. Subsequently,
Canonical Correlation Analysis, based on PLS results, allowed the prediction of the
shape and intensity (BMD) distribution based on a decreased/increased FS value.

PLS, the Femoral Strength (FS) value extracted from the CT-based FE
analyses (FS3p) was chosen as the response variable. Being extracted
from more comprehensive and realistic models compared to those based
on DXA, it was indeed judged more reliable. However, because it could
be computed for the 28 patients only, the overall statistical shape and in-
tensity modelling was carried out neglecting the two additional fractured
patients both within PCA and PLS, for sake of consistency.

Principal Component Analysis (PCA)

PCA is a statistical technique which allows highly dimensional datasets

to be represented in a space where their variance is maximal and thus
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to be decomposed into their most significant components, yielding a re-
duced order model of the original data. Conceptually, PCA performs a
variance maximizing rotation of the original variable space, identifying
the bases of a new space of the variables where their variance is max-

imised (Figure 4.3) [143]. Starting from the variance maximisation objec-

Var 2

Var 1

Figure 4.3: Simple graphical example of a 2D dataset PCA: in red, the first two
principal directions along which the dataset variance is maximal.

tive (maxq—; var(Xq), g being the sought basis and X a generic input
variable), the problem can be converted to an eigenproblem to be solved
with respect to the covariance matrix S of X (Sq = A\q) [128]. Gather-
ing the input variables in a N x n matrix X, with N being the number
of observations and k& the number of variables, PCA then involves the
computation of the eigenvectors q and eigenvalues A of its coviariance ma-
trix. The former represent the principal modes of variation (also called
PCA loadings), i.e. the orthogonal directions, or bases, along which the
variance is maximised; the latter indicate the fraction of the total vari-
ance explained by each mode. The PCA modes are automatically ordered
according to a decreasing explained variance. Usually, only the most in-
fluential modes, i.e. those together explaining a specific percentage ™%
of the total variance, are retained, discarding the others, and therefore
yielding a reduced representation of the original dataset.

Having available not only information about the proximal femur shape
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of our population, output by Defometrica, but also the local BMD map,
PCA was here applied both on the shape and on the density distribution.

PCA-based statistical models of shape Aiming at the extraction
of the main geometrical attributes observed in the cohort, a SSM was
developed using PCA. Specifically, PCA was performed on the moment
vectors B output by Deformetrica, which, as previously explained, contain
patient-specific anatomical information referred to the template. PCA
was directly applied on the centred moment vectors matrix Xz expressed
as Xg = [,Bvl, ...;ﬂNN], with N being the number of observations, i.e. the
total number of patients included, and E = B’ — B the centred moment
vectors set of the i*" patient. Hence, the i*" row of the matrix X con-
tains the 1 x 2k sized centred i*" moment vectors expressed as pairs of
x,y coordinates: E = [BZ, BE, - @, B;], where k is the Ay-dependent
number of control points on which the k moment vectors, 25 in this case,
were centred.

PCA was performed solving the eigenvalue problem relative to the 2k x 2k
covariance matrix of the X3 matrix. It resulted in a set of N — 1 eigen-
values A% and corresponding eigenvectors ¢°, where the apex S is used to
refer to the shape modelling distinguishing it from the subsequent inten-
sity modelling. The eigenvectors g°, i.e. the deformation modes, represent
the bases of the space where the moment vectors variance is maximal, and
their corresponding eigenvalues A° are equivalent to the variance described
by each deformation mode [128]. The principal modes are ordered in de-
scending order according to the percentage of shape variation explained.
Hence, as previously mentioned, only the first ¢ PCA modes, explaining a
specific 7% of the total shape variability, were considered in the subse-
quent analysis. The cumulative explained variance was simply calculated

c S
as m = 7;721 ™ .100, A2 being the variance explained by each m!*
Zmzl )"r‘%
mode.

In this way, any set of subject-specific moment vectors B¢ parametrizing
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the deformation of the template towards the i*" shape can be expressed
as the sum of the average moment vector B8 and the weighted linear com-

bination of the deformation modes according to Equation 4.4:
ﬂZ:,B-f—q)SbS’l:ﬂ-l- ZbrSﬁIQTSm (4‘4)
m=1

S,i

where the weighting factors b.:",

also called shape parameters, can be
gathered in the subject-specific vector bS? with length ¢, which will be
addressed as shape vector, and each deformation mode g, can be gathered
in the matrix of eigenvectors ®°. Each shape vector can be obtained
projecting the subject-specific moment vectors array B’ onto the PCA
subspace defined by the selected ¢ deformation modes: it will then have ¢
components (or shape parameters), one for each PCA mode. Each shape

vector mth

component describes the extent to which the template has to be
deformed along each m!* mode to match the i*" subject shape, and can
therefore be considered as a quantitative representation of the subject-
specific shape attributes encompassed in each mode. As a whole, the "
shape vector might be regarded as a low-dimensional representation of the
ith subject-specific shape.
To visualize the effect of each individual m!" specific deformation mode
on the proximal femur template separately, the equivalent set of moment
vectors B, parametrizing the corresponding template transformation only
along the m* mode can be determined. Each m!* mode g3, can indeed be
considered, and its corresponding weighting factor b arbitrarily varied
in the range —Iy/\S, l\/ﬁ, with [ generally equal to 1-3 (Equation 4.5)
[139, 142].

B =B+ 15 (45)
Hence, substituting 8™ of Equation 4.5 in Equation 4.3, the initial velocity

to be used in order to deform the template along the mode of interest can
be determined.
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PCA-based statistical models of intensity SSMs yield information
regarding the anatomical variations within a population, but do not con-
sider the other crucial determinant of bone strength, which is represented
by the density distribution within bones. SIMs, on the other hand, analo-
gously to SSMs, allow to obtain the average density distribution together
with the main modes of variations of the density distribution itself.

To generate a SIM, local density information is needed, as well as a con-
sistent spatial correspondence of the locations where the BMD is sampled
among the input patients. With this aim, the outcomes derived from
Deformetrica were used in order to morph the meshed template towards
each patient and therefore to obtain correspondent elements on which the
BMD values sampling was based. The template, i.e. the mean anatomical
shape yielded by Deformetrica, was meshed with 1 mm edge triangular
elements. Subsequently, each node of the template was mapped to each
different patient-specific shape so that the template mesh could be mor-
phed towards each patient. To do so, the patient-specific moment vectors
B, output by Deformetrica with the template, were used to compute the
initial velocity v values (Equation 4.3) to displace each template node.
In this way, a unique mesh was morphed towards each patient and could
be exploited to build consistent patient-specific BMD arrays. As only one
single mesh node was identified in every pixel, the BMD of each pixel was
simply assigned to the corresponding node.

Hence, the patient-specific BMD arrays g were organized in a N Xn matrix
G, N being the number of observations (i.e. the patients), n the num-
ber of variables, i.e. the total number of nodes (n = 16208). No density
values normalization procedure [124] was performed, since the intensity
values were actually BMD values instead of grey values. After centring
the matrix with respect to the average BMD values array (g), the PCA
was carried out following the procedure suggested and demonstrated by
Cootes et al., [128], owing to the much higher number of variables than
observations. Basically, instead of solving the eigenproblem for the n x n
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covariance matrix S= G-G’, the eigenproblem can be solved for the covari-

ance matrix T= G’ G which is much smaller (N x N). The eigenvalues of

T are exactly the same as those of S, and therefore they already represent

the variance A® explained by the sought appearance modes ¢ (where the

apex G refers to the SIM); conversely, the main modes of variation of the
G'e¢

= ——— where e
VN —1)\¢

Analogously to the statistical shape modelling approach, any *" patient-

BMD distribution ¢© can be identified as ¢©

represent the eigenvectors of the matrix T.

specific BMD distribution will then be described as a linear combination
of the ¢ modes explaining a certain percentage 7& of the total intensity
variance: .

g =g+ =g+ > 55, (4.6)

m=1

where, coherently with the previous SSM, the weighting terms (or intensity
parameters) bG? can be gathered in the intensity vector b5, describing the
contribution of each principal mode of variation of BMD to the patient-
specific " BMD distribution. ® is the matrix where the eigenvectors ¢©
(the principal modes of intensity variations) are collected.
Eventually, the effect of each individual m* mode on the whole BMD
distribution can be visualized considering only that mode and letting the
weighting factor vary in the range —l\/g, l \/E:

9" =g+ 1/ Ga5. (4.7)

PCA-based combined models of shape and density In the pre-
vious sections, where SSMs and SIMs have been presented, it has been
shown that they allow the construction of any shape or intensity instance
using a set of shape and intensity parameters b% and . Aiming to make
the representation more compact and complete, the two can be unified,
achieving a so called Statistical Shape Intensity Model (SSIM) [144].

The shape and intensity vectors can indeed be gathered in two matrices B®
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and BY, containing all the available patient-specific shape and intensity

vectors as rows, and concatenated into the matrix B:

W, B* W, @5 X
B = = : (4.8)
BG PG’ el

W,, which is needed as a weighting factor between B and B, which
have different units, can be computed as W = rI, r being the ratio
i AY
A

in shape.
If a third PCA on the matrix B is carried out, the relation

[144] between the total variance in intensity and the total variance

B=0"W (4.9)

is obtained, where W is the matrix gathering the patient-specific com-
bined shape-intensity vectors w, and ®° represents the eigenvectors ma-
trix. Therefore, a complete model instance covering the shape and the
texture can be created using w:

B =B+ W'o%y (4.10)
g=9g+8“@" (4.11)
where
¢ = e : (4.12)
HCCG

Partial Least Square (PLS)

PCA allows the identification of the main modes of variation of the

shape and of the intensity detectable in the input population, without any
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association to an external variable, such as the fracture risk. Actually, it
allowed to describe the population in terms of the shape and BMD distri-
bution variability, without being able to relate the two to the fracture risk
and thus to identify those possibly playing a role within it. Nonetheless,
this work mainly aimed at the identification of fracture-prone morpholog-
ical attributes of the proximal femur. Hence, in order to overcome the
aforementioned PCA limitations and account for shape and material fea-
tures relevant to an external response variable too, Partial Least Square
(PLS) Regression was carried out [145]. The method, similarly to PCA,
identifies new bases of the space of predictors, which, nonetheless, are rel-
evant to an external response variable as well. To do so, given two sets of
centred variables, a generic predictors matrix X and a response variables
matrix Y, the space of maximal covariance between them is computed.
Mathematically, PLS estimates the weights vectors r and s which satisfy:

max cov(Xor,Yeos) = max var(Xgr)corr(Xer, Yo s)?var(Yes),

Ir|=ls|=1 Ir|=ls|=1

(4.13)
as opposed to PCA, which solves max,—; var(Xcr). The PLS modes ¢
and u are then found weighting X and Y by r and s within an iterative
process (Table 4.1) which loops until all the PLS modes are extracted and
where, at each step, the variance explained by r and s is removed from
the original data (deflation). Mathematically, this can be written as:

Xc=TPT +E (4.14)

Yo =UQ" +F. (4.15)

T and U are the PLS components matrices, P and Q contain the PLS
modes, or loadings (contrary to PCA loadings, the PLS ones are not nec-
essary orthogonal); E and F are residual matrices. The PLS components
also need to satisfy the regression equation U = TD 4+ G, D being a di-
agonal matrix of weights and G the matrix of residuals.
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Herein, PLS was performed both on the centred moment vectors matrix

Table 4.1: PLS space decomposition (PLS1 algorithm).

Inputs: X¢, Y¢, number of PLS modes p to extract (p = N — 1)
for n=1to p do

r" < first eigenvector of XgTYngTXg (from [145])

t" <« X2rn/|r?|  nth PLS component of X¢

8"+ Yt /(tnTem)

u” « YZ%s"/|s"| nth PLS component of Y

p" « Xzt /(t"Tt") nth PLS loading of X¢

q" + Y2un/(w"Tu”) ntt PLSloading of Y¢

X X2 —tpn T deflation of X¢

YL YR -t gnTYR /7 Tt)]  deflation of Y ¢

end

X and the centred BMD vectors matrix G, taken as predictor matrices,
with the centred Femoral Strength (FSsp) vector taken as the response
variable. The purpose was indeed the extraction of the dominant shape
and intensity features most correlated to the risk of proximal femur frac-
ture. Because the response variable was only one, the PLS1 algorithm,
summarized in Table 4.1, was implemented [146].

The choice of the sole FS3p as the external variable was made aiming
to assess the morphological and intensity features relevant to the bone
mechanical strength. Therefore, the Risk Factor Index (RFI), which also
involved a patient-specific impact load, was not included in the PLS-based
models. Moreover, the FS3p, extracted from the three-dimensional CT-
based FE analyses instead of the DXA-based ones was used. Indeed, not
only was it the outcome of more realistic models, but the FSsp would also
have been naturally correlated to the 2D shape and BMD information
used herein. In the following, the notation F'S will be thus always referred
to the FS3p.
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PLS-based statistical models of shape Aiming to investigate the
main shape features most relevant to the FS as a surrogate of the risk of
fracture, PLS was performed considering it as the response variable and
taking the N x 2k moment vectors matrix Xz as the predictors matrix.
The PLS1 algorithm allowed the extraction of the PLS shape modes P,
which are automatically ordered by decreasing variance and covariance
with respect to the response variable. Therefore, the first ¢ PLS compo-
nents, explaining simultaneously 7x B% of the variance in Xg and 7ps%
of the total FS variance could be selected. In analogy with the PCA-
based statistical shape modelling, any i*» moment vectors set guiding the
template deformation towards a new shape could be seen as:

c
Bprs =B+Pt> =B+ t2'py. (4.16)
n=1

where the shape vectors are actually represented by the t/s = t!, nel...c
of PLS1 algorithm (Table 4.1). Again, each component ¢+ of +%7 is a PLS

shape parameter and delineates the contribution of each PLS mode on the

tS,i

patient-specific shape. As visible from equation 4.14, they do represent
indeed the projection of the predictors matrix Xz on the new space de-
fined by the PLS modes (or loadings) contained in the matrix P°. The
visualization of the n" PLS deformation mode, eventually, is achieved
deforming the template using the moment vectors determined as:

Bhbrs =B E=1\/A3 5., Ph (4.17)

A LS., being the variance explained by the n'" PLS mode.

PLS-based statistical models of intensity Interested in the main
BMD distribution features most related to the fracture risk too, PLS was
performed taking as the predictors matrix the patient-specific BMD vec-
tors g gathered in the matrix G. Hence, the PLS modes p“ together with
the corresponding PLS components t& (PLS intensity vectors) could be
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identified. This then yielded the possibility to represent the i*" intensity
instance as the linear combination of the ¢ modes explaining simultane-

ously mg% of the variance in G and wpg% of that of the FS:

C
9ors =g +POtC =g+ 3 G pC. (4.18)

n=1

Also, each n'" PLS intensity mode could be visualized individually:

gbrs =9 1W/AE g, pY, (4.19)

with )\g LS. the variance explained by the n'* PLS mode.

PLS-based combined models of shape and density Eventually,
in order to unify the PLS-based shape and intensity models in a unique
SSIM, coherently with the PCA-based SSIM, a third PLS was carried out
on the concatenated shape and intensity shape vectors

Wprs s TY W, P% X/
TC = o= ’ (4.20)

T¢ PY G .

Wprrs s, the weighting factor between P? and PY, characterized by dif-
ferent units, was computed as illustrated before: Wprs s = rI, r being

Zi )‘IGDLS,i [

the ratio 144] between the total variance in intensity and the

S
i APLS,i
total variance in shape.

As in the PCA SSIM, relation 4.21 is obtained performing a third PLS on
the matrix TC, :
TC = P Wpps, (4.21)

where W py g is the matrix of combined model vectors wpyg, and P is the
loadings matrix of the combined shape and intensity vectors. Therefore, a
PLS-based complete model instance unifying the shape and the intensity
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can be created using the PLS combined shape-intensity vectors wpyg:

B=B+P Wy s P Swppg (4.22)
g=9+PP%Cup;g (4.23)
where
posS
P = . (4.24)
PC,G

Canonical Correlation Analysis (CCA)

With the purpose of predicting the shape associated to an increased
or decreased risk of fracture (i.e. to different values of the FS), Canon-
ical Correlation Analysis (CCA) was implemented, having in mind the
possibility to build a dataset of different shapes with different BMD dis-
tributions associated to different levels of the fracture risk, to be used
within a clinical context, where they would be compared to the patient-
specific DXA.

Given two sets of variables, the technique computes the bases of a new
space, addressed as the canonical space, where the correlation between
the two is maximal. In this study, the idea was to estimate the extent to
which the template had to be altered in term of both the shape and the
BMD distribution along each PLS mode as the FS value was increased or
decreased with respect to its mean.

To achieve this goal, i.e. the development of new instances both in terms
of moment vectors and intensity vectors, the PLS subspace previously de-
termined within the PLS shape-intensity model was used. Recalling Equa-
tions 4.22 and 4.23 indeed, any new instance could be generated varying
the wprg vector entries. Hence, taking advantage of the shape-intensity
PLS subspace, only the shape-intensity parameter values wip; ¢ for each

n' mode corresponding to increased and decreased FS values had to be
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assessed.
Then, CCA was applied on the centred PLS combined shape-intensity vec-
tors matrix Wprg and the FS vector. CCA allowed the identification of
the space of maximal correlation between W py g and FS and consequently,
of their representation in the canonical space, where they were maximally
correlated:

Z=Wprs-A, (4.25)

V=Y B. (4.26)

Z and V represent the canonical variates, i.e. the original variables in
the canonical space; A, B are the canonical directions, i.e. the canonical
space bases. In this specific case, being FS one single variable, only the
shape vectors matrix Wprgs needed to be transferred to the canonical
space through the matrix A to achieve maximal correlation. Once in the
canonical space, a regression analysis allowing the estimation of Z from the
F'S was performed. Hence, given a new F'S value, the sought corresponding
shape vector z could be identified. Eventually, inverting Equation 4.25, 2z
could eventually be brought back to the original space. The desired wgg‘s‘l
is therefore identified and a new set of moment vectors 8“4 together with
a new intensity vector g¢¢4 can be determined substituting the newly

identified shape vectors within Equations 4.22 and 4.23.

4.3 Results

Deformetrica, run with the optimal identified Ay and Ay parameters,
output the template, the control points coordinates, as well as the corre-
sponding patient-specific sets of moment vectors 5. Due to the specific
Ay value used, 25 moment vectors (z, y pairs) per patient were obtained.
Therefore, the moment vectors matrix Xg was a 28 x 50 matrix. Because
of the choice to use the 3D-based FS as the external variable within PLS,
which was available only for the 28 patients, and for sake of consistency
between PLS and PCA, the whole analysis was indeed carried out only on
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28 patients, thus neglecting the two fractured ones. Besides, patient 27
was excluded from the whole statistical modelling since the shape recon-

struction error was 4 times higher than the average error.

4.3.1 PCA

PCA was first performed on the 27 x 50 Xz matrix. The first 7 PCA
modes were selected, able to explain 96.34% of the total shape variance

(Figure 4.4). The shape variability captured by the 7 modes can be vi-
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Figure 4.4: Cumulative percentage of variance explained by the PCA shape modes. 7
components explained more then 95% of the total shape variance.

sualized in Figure 4.5, as deformation of the template along each mode
between —c \/)\75, C\/)TS, with ¢ = 3. Mode 1, which embodies the most
variable features within the considered population, appears to be related
to the size; in addition, together with mode 2, it results significantly corre-
lated with the HAL (mode 1: R = —0.54, p = 0.0035; mode 2: R = 0.66,
p = 0.0002), thus suggesting HAL is a highly variable feature as well. The
first two modes together were indeed able to gather 80% of the total shape
variance. Interestingly, the only mode correlated to one of two available
fracture risk indices was mode 6, showing a significant correlation with
the RFI (R = —0.43, p = 0,26) only. This mode, although suggesting
slight variations in the neck width and greater trochanter asperity, did
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PCA mode | PCA mode Il PCA mode lll
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Figure 4.5: Visualization of the first 7 PCA deformation modes.
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not highlight clearly distinctive features.

As far as the BMD distribution is concerned, the subject specific BMD
arrays were gathered in the 27 x 16208 matrix G. A total of 21 PCA modes
were necessary to explain at least 95% of the density distribution variabil-
ity, 9 modes managed to explain 75% of it (Figure 4.6). The first 8 in-
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Figure 4.6: Cumulative percentage of variance explained by the PCA intensity modes.
9 components explained 75% of total BMD distribution variance, 21 modes were neces-
sary to account for 95% of it.

tensity modes are displayed in Figure 4.7, where also the template shape
with the average BMD map is shown. Accounting for the first 4 PCA
intensity modes only, 60% of the intensity variation could be explained.
The first mode, which highlights a general increase/decrease of the BMD
within the whole proximal femur, was, as expected, thus significantly cor-
related (R > 0.5, p < 0.01) with the T-score (total femur) and BMD
(HSA-derived BMD, see Table 1.3), but also to BR and CSMI, stressing
their tight link with the intensity distribution on which their computation
relies. At the same time, it was also correlated to both the RFI and FS
(R = 0.6264, —0.6915 and p = 0.0006, 0.0001, respectively), pointing out
the crucial role of the material properties. Mode 2 highlights a decreased
BMD in the trochanteric fossa region, which also comes with a thicker
cortex layer medially in the femur distal portion. Similarly, mode 3 points
out a decreased BMD area in the greater trochanter region. Interestingly,
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Figure 4.7: Visualization of the first 8 PCA modes of the BMD distribution. BMD is
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these two modes were both correlated with the HAL (mode 2: R = 0.42,
p = 0.032; mode 2: R = —0.61, p < 0.0001). Following the performance
of the correlation analysis between the PCA intensity and shape modes,
it was also remarkable to find significant correlations between them (Ta-
ble 4.2). Looking at the strongest, the II intensity mode tuned out to be
correlated (R = 0.63) with the II shape mode, and the IV intensity mode
with the first shape mode (R = —0.60).
Eventually, Figure 4.8 shows the combined Shape-Intensity Model (SIM)

Table 4.2: Correlation analysis between intensity and shape modes.

Intensity mode Shape mode P R

I Mode IIT mode 0.017 0.46

IT Mode I mode 0.034 -0.41

IT mode 0.0004 0.63

III mode 0.036  -0.40

III Mode I mode 0.009 0.49
IIT mode 0.035  -0.41

VII Mode VII mode 0.031 0.42

outputs. A total of 18 modes explained 95% of the combined intensity and
shape variance, and the 6 modes displayed described 75% of it. Among
them, only the second mode was significantly correlated to the RFI and
FS. Analogously to the first mode of the intensity PCA, it was here the
mode carrying the majority of the intensity-related information, strongly
correlated to the T-score (R = 0.9344, p < 0.0001). Figure 4.9 shows
the relation between the shape-intensity parameters (each patient-specific
entry of w in Equation 4.10 and 4.11 for the mode 2) of the II mode with
the RFI and FS.
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Figure 4.9: The RFI (left) and FS (right) compared to the patient-specific shape-
intensity parameters associated to the second shape intensity combined PCA mode.

RFI: R? = 0.35, p = 0.001; FS: R?

= 0.43, p = 0.0002. The regression lines are

displayed as well. Decreasing the weighting term of mode 2, the fracture risk increases:
hence, the RFI boosts and the FS decreases.
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4.3.2 PLS

With a deep interest in the features most meaningful with respect to
the fracture risk in terms of both shape and intensity, PLS was performed
ensuing PCA. As mentioned before, only the FS was considered, with the
aim to identify those features strictly connected to the proximal femur
resistance to loading.

A total of 11 PLS modes managed to explain at least 75% of the variance
observed in the FS (Figure 4.10). In order to achieve 95% of the F'S vari-
ability explained through shape-based modes, 15 modes were necessary
(explaining 99.2% of the shape variance). Figure 4.11 presents the first
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Figure 4.10: Cumulative percentage of variance explained by the PLS deformation
modes. 11 modes described 98.16% of the shape and 78.27% of the F'S variability.

6 modes. Although it is mode 1 which was found to include most of the
shape variance, mode 3, which combines alterations in the intertrochanter
and neck width, as well as in the length and inclination of the neck (HAL:
R = 0.48, p = 0.011; NSA: R = —0.56, p = 0.003; narrow neck width:
R = 0.45, p = 0.02; intetrochanter width: R = 0.47, p = 0.01), was the
mode explaining the majority of the variability in the FS (R = 0.36, p =
0.049, Figure 4.14). Because in this case only one external variable was
included within PLS, the PLS modes were automatically ordered with the
requirement to have decreasing variance in the shape as well as decreasing
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Figure 4.11: The first 6 PLS shape modes disclosing 93% of the shape and 54.6% of
the F'S variance. By construction, each mode moves towards +o when the FS increases.
Hence, the —o deformation mode is here evidence of an increased risk of fracture.
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covariance between shape and FS. The inconsistent decrease in the dis-
closed shape and FS variability by the PLS shape modes therefore appears
to advocate a limited role of the femur shape in explaining the variations
observed in the F'S.

As far as the intensity-based PLS is concerned, in contrast to the pre-
vious one, 4 modes alone managed to describe 97.71% of the F'S variability,
but only 51.71% of the intensity variability. These 4 modes are also dis-
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Figure 4.12: Cumulative percentage of variance disclosed by the PLS intensity modes.
4 modes managed to explain 97.71% of the F'S variance while explaining 51.71% of the
intensity variability.

played in Figure 4.13. Interestingly, the PLS main intensity modes turned
out to be very similar to the corresponding PCA ones, stressing again,
beyond the increased/decreased BMD as a whole, the variations at the
intertrochanteric fossa and greater trochanter. In analogy with the pre-
viously obtained outcomes, the first mode was found strongly related to
the BMD altogether and to the BMD distribution-based HSA parame-
ters (e.g. T-score: R = 0.95; narrow neck BMD: R = 0.93; narrow neck
buckling ratio: R = —0.78; intetrochanteric BMD: R = 0.80, p < 0.0002
for all); consequently, a strong relation was found with the FS as well
(R = 0.76, p < 0.0001). Furthermore, the second mode resulted signif-
icantly correlated with the FS as well (R = 0.48, p = 0.01), while the
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Figure 4.13: Visualization of the 4 PLS intensity modes. BMD is expressed in iz
cm
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IV one was correlated to the HAL (R = —0.46, p = 0.02). Figure 4.14
compares the third PLS shape mode, i.e. the shape mode disclosing the
highest percentage of the F'S variability, and the first PLS intensity mode
in terms of their relation with the F'S itself.

Moreover, considering the presence of meaningful relations with the PLS
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Figure 4.14: The third PLS shape parameters (left) and the first PLS intensity param-
eters (right) displayed with respect to the F'S. Shape: R? = 0.13, p = 0.049; Intensity:
R? =0.57, p < 0.0001.

shape modes, Table 4.3 shows the statistically significant ones.

Table 4.3: Correlation analysis between PLS intensity and shape modes.

Intensity mode Shape mode p R
II Mode I mode 0.04 0.40
IV mode 0.0037  0.54
III Mode I mode 0.01 -0.47
IIT mode 0.005 0.52
IV Mode IV mode 0.009 0.50

Lastly, the PLS-based SSIM allowed to consider the shape-intensity
unified modes most relevant to the FS. Three modes alone explained
96.72% of the FS variance and 56.75% of the combined intensity and shape
variability. The first two, moreover, already achieved 83% of the variance
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found in the FS. They are shown in Figure 4.15. The first two modes were
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Figure 4.15: The first 3 combined shape intensity PLS modes. The —o direction,

N

1.5
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associated to a decreased strength, is that at higher risk. BMD is expressed in LQ
cm

both significantly correlated to the FS (I mode: R = 0.82, p < 0.0001;
IT mode: R = 0.40, p = 0.037). From this perspective, the comparison
between the patient-specific shape-intensity parameters related to the first
mode and the FS itself is offered in Figure 4.16. In addition, Figure 4.17
offers the comparison between the T-score and the first PLS combined
shape-intensity parameters. By projecting their patient-specific moment
vectors and BMD values on the previously identified PLS combined space,
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Figure 4.16: The first mode combined shape-intensity parameters and the FS. The

regression lines are displayed as well (R2 = 0.67, p < 0.0001). Decreasing the weighting
term of mode 1 the fracture risk increases.
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the shape-intensity parameters of the two fracture patients could be com-
puted. As visible, there is a good stratification as far as the osteopenic
patients are concerned; one of the two fractured patients (patient 29) in
undoubtedly located in the highest risk region, the other, on the other
hand, though not at the same degree, is still placed in the higher risk half.
In addition to patient 29, also patients 1, 5, 10, 24, ostepenic, would be
judged at an increased risk of fracture.

At last, CCA allowed to unify the modes which have been presented
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Figure 4.17: Comparison between the first combined shape-intensity PLS parame-
ters and T-score classification performances. The two fractured patients, whose shape-
intensity parameters have been determined a posteriori based on the previously deter-
mined PLS space, are represented with empty circles.

individually in Figure 4.15 and to predict new shape and intensity in-
stances associated to a decreased or increased FS, shown in Figure 4.18.
A more resistant proximal femur thus results characterized, as expected,
by higher BMD values on the whole, with thicker and more defined cortex
layers distally. It would then seem characterized by a markedly increased
intertrochanteric width as well as by a less deep trochanteric fossa, yield-
ing a wider neck cross-section. In addition, the neck inclination appears

less pronounced.
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Increasing FS

Figure 4.18: Shapes and intensities predicted by a decreased /increased F'S with respect

to its average value. In the CCA space, R? = 0.96, p < 0.0001. BMD is expressed in
g
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4.4 Discussion

In this chapter, the role of proximal femur geometry and BMD local
distribution with respect to the previously estimated femoral strength has
been explored through statistical shape and intensity modelling. In con-
trast to HSA parameters, which were employed in the previous chapters
but represent discrete and highly correlated measures of geometry, SSM
allowed indeed to capture all the global geometric variations in the pop-
ulation of input proximal femur shapes. Furthermore, the geometric and
intensity features dependence, caused by the bone tissue adaptation pro-
cess [147], prompted the need to account for them together.

In the first part of the study PCA was carried out. It yielded the most
meaningful features both in terms of geometry and BMD distribution, and
those disclosing most of the variability in the input population were con-
sidered. When accounting for the main anatomical features alone, only
one among them was found to be significant to the RFI, while none of
them was relevant to the FS. This is consistent with the fact that PCA,
by definition, identifies features which are optimal for representing infor-
mation, though not necessarily optimal for classification, and, at the same
time, may hint that the most meaningful morphological features cannot
explain, alone, the fracture risk level variability. From this perspective,
when only the intensity distribution was considered, in order to assess
how the BMD distribution mainly varied within the population, the first
mode turned out be strongly correlated to both the FS and RFI, which
might point out a much stronger link of the BMD distribution with the
fracture risk variation, together with the fact that density might be able
to explain the majority of the fracture risk variance. Moreover, the consid-
erable number of PCA intensity modes necessary to disclose almost all of
the intensity variability suggests more complex inter-subjects variability
patterns in the BMD distribution compared to the morphological ones.
Interestingly, noticeable correlation degrees were found between the II,
IIT and IV main intensity modes and the first three shape modes (Table
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4.2), witnessing a profound and complex interrelation existing between
the shape and the density distribution in a living and continuously loaded
tissue [147]. In this light, unifying the two in a combined SSIM, it was
still the combined II mode, the most related to a thorough change in BMD
-corroborated by its strong correlation with the T-score and BMD-, which
explained most of the RFI and FS variability. The first combined mode,
indeed, showed clearer alteration in the femur shape, while carrying much
less BMD variation. It can also be appreciated, however, that in spite of
its prevalent BMD role, the second shape-intensity PCA mode also en-
compassed changes in the femoral neck angle, width and length (Figure
4.8). Comparable results were shown in [132], accomplished developing
statistical shape and intensity individual modes in a retrospective cohort.

The PLS, which was performed to overcome PCA limitations and
therefore to draw attention to the main shape and intensity features most
relevant to the FS, highlighted the inferiority of the shape modes to ex-
plain the FS variability: as visible in Figure 4.10, the first shape PLS
mode, which alone was able to describe more the 50% of the total vari-
ance in the shape, covered, on the other hand, a very small percentage of
the FS variability. Furthermore, to achieve a 50% explanation of the FS,
6 PLS modes were required, which were basically able to totally cover the
shape variance. The third shape PLS mode was the one explaining the
largest portion of the FS variance (13%), combining, from a morpholog-
ical perspective, alterations in the neck inclination and length as well as
in the intertrochanteric and shaft width mainly. A shorter HAL associ-
ated to an increased fracture risk might result odd and contrasting with
the literature [51], although it is important to recall that each mode will
contribute to the ’final’ shape within a weighted linear combination, and
that mode 2, undoubtedly showing HAL changes too, depicts an oppo-
site trend. Focusing on the intensity PLS analysis, Figure 4.12 depicts a
situation which appears reversed if compared to the shape PLS analysis:
only few modes, although able to disclose only about 50% of the BMD
distribution variability, managed to explain a considerable percentage of
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the FS variability. This is evidence of the pivotal role which appears to
be played by the material properties against the FS, which would then
seem more decisive than that of shape. It is therefore not surprising that
the main intensity PLS modes appear extremely similar to the PCA ones,
given that the intensity variability in itself was already tightly related to
that of the FS.

Besides, the combined PLS model, together with the subsequent asso-
ciated CCA, yielded interesting result. First of all, as shown in Figure
4.17, the I PLS shape-intensity mode parameters allowed a good strat-
ification of the patients within the three T-score categories (osteoporo-
sis: T-score < —2.5; osteopenia: —2.5 < T-score < —1; osteoporosis:
T-score > —21). The two fracture patients, whose shape-intensity pa-
rameters were computed projecting their moment vectors and BMD array
onto the PLS subspace identified previously with the 28 patients, were rea-
sonably located in the higher risk half (lower half of the shape/intensity
parameters values). Moreover, the osteopenic patients highlighted as be-
ing at higher risk did not contrast with those identified as so performing
the CT- and DXA-based FE analyses. On top of that, the combination
of shape and intensity did yield an improvement in the proportion of FS
variance explained with respect to the intensity alone. Comparing Fig-
ures 4.16 and 4.14 indeed, the improved relation with the FS is visible:
the first PLS intensity mode explained 57.18% of the FS variability, while
the combined shape-intensity PLS mode achieved, merging shape and in-
tensity, 66.9% of it. Therefore, although intensity appeared predominant
in explaining most of the estimated femur strength and although it re-
sulted correlated to the most meaningful shape features, the inclusion of
the PLS deformation modes still led to an improvement.

Thanks to CCA, the three combined PLS modes depicted singularly
in Figure 4.15 could be unified to predict shapes corresponding to a pro-
gressively increasing FS. As the strength increases, beyond the general
BMD increase on the whole, with the thickening, especially medially, of
the cortex layers, some changes in shape can be appreciated as well. The
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proximal femur progressively increases its size, considerably widening the
width at the intertrochanter. Besides, the neck-shaft angle decreases and
the trochanteric fossa appears less hollow.

A number of limitations affected the here presented work, and are thus
worth being stressed. First of all, the limited number of patients involved:
dealing with the construction of statistical models, the outcomes would
have undoubtedly benefited from a larger cohort, which might have also
disclosed features here not accounted for. Moreover, the fact the PLS was
carried out on an estimated variable needs to be mentioned. Nonetheless,
in spite of the uncertainties it encloses, F'S allowed to relatively estimate a
patient-specific fracture risk level and thus to obtain, from a relative intra-
cohort perspective, reasonable results. In addition, DXA images, on which
the shape and intensity definitions were based, are known to be strongly
affected by positioning inaccuracy and imprecision: if the patient’s leg is
not positioned correctly the DXA image might carry wrong information
especially in terms of geometry. Ultimately, the intrinsic projective nature
of DXA causes the head region, where the pelvis and femur bones over-
lap, to be erroneously characterized by a high density, which could have
interfered with the statistical analyses. In this regard, aiming to assess
the influence of the high BMD at the head, PCA and PLS were further
performed excluding the BMD information at the head. As visible in Fig-
ures 4.19 and 4.20 (Appendix), the achieved outcomes do not highlight
noticeable differences in the main densitometric features if compared to
those considering the head density in the analyses. Although the density
information at the head is not truly representative, this might not appear
to negatively affect the obtained outcomes.

Despite the afore-mentioned limitations however, the herein presented ap-
proaches appeared to be extremely promising from the perspective of the
current fracture risk assessment enhancement. Once, based on a training
set, the PLS combined shape-intensity space is built determining its bases
(i.e. the PLS modes) indeed, any new patient could be simply projected
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on this space in order to assess the patient-specific shape-intensity pa-
rameter, gathering shape and BMD information together. This procedure
would require information currently attainable: the proximal femur 2D
profile extraction from DXA and the use of the pixel-by-pixel BMD map
instead of the average BMD values used at present, which, however, is
already computed by DXA scanners. Similarly, the possibility to build
a dataset of shapes and corresponding BMD distributions associated to
a progressively increasing risk of fracture might be attractive: given the
patient-specific shape indeed and BMD distribution, they could be com-
pared to the afore-mentioned instances collection to find the closest one
and therefore to assess the patient-specific fracture risk. This of course
would require, first of all, a training set much larger than that used here.
In the end, larger cohorts and the availability of follow-up information
would undoubtedly help to more deeply exploit the herein presented meth-
ods which, so far, have proved promising and attractive. Other studies, as
mentioned previously, have explored the use of statistical shape and inten-
sity models on retrospective cohorts DXA images, aiming to achieve an im-
proved osteoporotic fracture risk prediction [123, 129, 132]. Nonetheless,
PCA was generally adopted, and the interaction and inter-dependency
between shape and density rarely investigated. Herein, due to the lack
of follow-up information, an estimated patient-specific strength had to be
considered; its relation with shape and intensity features was not only in-
vestigated through PCA, but also through PLS, which allowed to better
focus on the features most meaningful to the fracture risk. In addition,
the development of shape-intensity combined models allowed to consider
the interplay between shape and BMD distribution.
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Appendix
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Figure 4.20: Visualization of the first 4 PLS intensity modes obtained neglecting BMD
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Chapter

Conclusions

In light of the T-score limited sensitivity in drawing attention to pa-
tients who actually are at considerable risk of fracture, this thesis was
mainly focused on investigating how the current osteoporotic fracture risk
assessment could be enhanced. It represented an exploratory study, since
the lack of follow-up information prevented the validation of the obtained
outcomes. Therefore, the ambition was not to assess the absolute frac-
ture risk level of the included patients, rather to identify, from a relative
perspective, additional features leading to an enhanced fracture risk es-
timation. Particular attention was paid to data being already clinically
available though without any practical application. From this perspective,
the aim was indeed to detect clinically attainable improvements, able to
be integrated in the current diagnostic process.

Although the attention was directed towards HSA variables at first, widely
considered in literature, it was not found straightforward to assess if the
information they carry is primarily morphological or predominantly as-
sociated to the mineral mass distribution contained in the DXA image.
The HSA Buckling Ratio and Cross-Sectional Moment of Inertia, found
relevant with respect to the fracture risk indices (RFI and F'S) in both the
CT- and DXA-based cases, enclose indeed geometric information, being
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deeply related to the bone mass as well. Only the neck-shaft angle, which
was also found to be meaningful, is not strictly related to the mineral
mass. In this context, statistical shape and intensity analysis allowed to
shed light on the synergic contribution of the shape and BMD distribution
as fracture risk determinants. BMD appeared to be able to explain most
of the variation found in the three-dimensional FS, while the main shape
features appeared to play a more marginal role, not clearly related to it.
The addition of the shape features to the intensity ones, however, did im-
prove the percentage of the FS variance explained. The main shape and
BMD distribution features were also interestingly found to be correlated
to one another, thus suggesting a reciprocal influence. Therefore, the anal-
ysis of the shape or intensity features taken independently would not seem
optimal. It is still worth stressing that the main geometrical and intensity
features were here assessed with respect to a femoral strength determined
on the basis of three-dimensional FE analyses. Nevertheless, although
based on a relative perspective, the here adopted methods suggested fur-
ther investigation of the prevailing role of BMD distribution, considering
that the pixel-by-pixel BMD map is currently provided by DXA scans.
As a whole, focusing on the combination of the main shape and inten-
sity features most related to the estimated strength with approaches, such
the PLS, rarely adopted within this field, these methods also appeared

promising with a view to better interpret the main fracture determinants.
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