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Abstract—This paper presents an alternative approach for the
design of high-speed link based on a preliminary version of a
surrogate model for the inverse problem. Specifically, given the
overall structure of the link, our goal is to build an accurate
and fast-to-evaluate model for the estimation of the geometrical
parameters of its interconnect starting from the desired eye
diagram characteristics. The modeling scheme proposed in this
paper relies on a powerful machine learning regression technique
such as the least-squares support vector machine (LS-SVM)
which is used to provide an accurate relationship among the
desired eye features and the geometrical parameters of the
link interconnect. The proposed model is built from a set of
training samples generated by a parametric simulation of the
link through the full-computational model. The feasibility and the
accuracy of the proposed modeling scheme are then investigated
by comparing its predictions with the corresponding results
provided by the full-computational model on 250 unseen samples.

Index Terms—High-speed link, inverse problem, Machine
Learning, least-squares support vector machine.

I. INTRODUCTION

Nowadays, due to the high level of integration and chip
density, the design of high-speed channel is other than being
straightforward [1]. Usually, complex optimization algorithms
are adopted to guide the designer to find out the optimal
configuration of the link parameters (e.g., the geometrical
parameters of the interconnects, the materials, etc.) in order to
achieve the desired link performances (e.g., the desired eye-
diagram characteristics) [2].

Optimization algorithms are used to efficiently explore the
design parameter space by minimizing the number of calls
to the full-computational model. For the case of high-speed
links, such full-computational model consists of the implemen-
tation of the high-speed link within a commercial solver, thus
providing synthetically (i.e., through simulations) an accurate
and reliable estimation of the link output variables for any
configuration of the input design parameters. To achieve good
accuracy, the channel simulation with the full-computational
model is usually computationally expensive, especially for
complex structures. In order to speed up the optimization
process, several modeling techniques (e.g., [3], [4] and the
references therein) have been developed in the last decades
with the aim of providing fast and accurate alternatives to the
full-computational model.

All the aforementioned models, including the full-
computational model, are referred as forward mapping M,
since they provide a non-linear relationship which maps the
input design parameters x into the corresponding outputs of
interest y, such that:

y =M(x), (1)

where x ∈ X ⊂ Rd represents a vector collecting d design
parameters and y ∈ Y ⊂ Ru is a vector collecting u output
variables.

This paper focuses on a different approach for tackling the
optimization problem in high-speed link based on the inverse
problem formulation. The inverse problem approach proceeds
in the opposite direction with respect to the standard forward
mapping model usually adopted for the optimization purposes.
Specifically, a model M−1 for the inverse problem allows
finding the configuration of the input parameters x starting
from the information on the required set of outputs y such
that:

x =M−1(y). (2)

It is ought to remark that the inverse problem is usually
ill-posed, in the sense that a unique solution is not generally
available, since we deal with a one-to-many mapping (i.e., for
given value of the desired outputs y we can find more than
one configuration of the input parameters x) [5]–[7].

In this paper, the inverse problem in (2) will be applied
to estimate the optimal configuration of the geometrical pa-
rameters of a high-speed link starting from the desired eye
diagram characteristics calculated at the receiver stage, without
using any optimization algorithm. Since the optimization is
implicitly done in the parameter space during the model train-
ing. Different from [5]–[7], in which the inverse problem has
been addressed via a neural network formulation, the proposed
modeling scheme relies on the least-squares support vector
machine (LS-SVM) regression [8], [9]. The resulting surrogate
model is built from a set of training samples provided by the
full-computational model and allows predicting directly the
geometry of the link interconnect.



Fig. 1. Schematic of the high-speed link considered in this paper for the
generation of the inverse model for the optimal design of the embedded
microstrip.
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Fig. 2. Graphical interpretation of the high-speed link design tackled in
this paper: panel (a) presents the standard forward mapping, (i.e., the full-
computational model is used to derive input data), while panel (b) show the
inverse problem mapping for the design. See the text for more details.

II. PROPOSED MODEL FOR THE INVERSE PROBLEM &
RESULTS

Let us consider the high-speed link in Fig. 1. It consists
of a five-channel bus operating at a data rate of 1 Gbps. The
channel is driven by five single ended drivers and terminated
by five receivers, modeled by their internal capacitance taking
the value of 1 pF. Each of the drivers has been fed by a random
bit stream at data rate of 1 Gbps with a rise/fall time of 100 ps
with high and low voltage levels VH = 1V, and VL = 0V,
respectively.

The link consists of an embedded microstrip structure with
five coupled lines of length 10 cm. The traces and the ground
plane are made of copper and the substrate is made of FR4
with εr = 4.3 and thickness 250µm. The ground plane
thickness is set to 20µm. Moreover, the traces width LW ,
separation LD, thickness LH and their distance with respect to
the ground plane SH (see inset of Fig. 1 for additional details)
have been considered as design parameters spanning over the
following intervals: LW ∈ [70, 210]µm, LD ∈ [75, 225]µm,
LH ∈ [15, 45]µm and SH ∈ [50, 150]µm.

The full computation model is obtained via simulations

in HSPICE. Moreover, the embedded microstrip lines are
modeled in HSPICE via the W-element, by using the frequency
dependent per unit length (p.u.l) parameters estimated via the
2D extractor of the solver, for any value of the four geometrical
parameters. Specifically, 8 characteristics of the eye diagram
can be derived, i.e., the mean value of both the high and low
logic levels, the eye diagram width and height, the average
rise/fall time, the root mean square value of the jitter and the
level crossing time point.

A graphical interpretation of the advocated computational
procedure is outlined in Fig. 2(a), where the full-computational
model y = M(x) provides a forward mapping between the
design parameter space x ∈ X ⊂ R4 (i.e., the 4 geometrical
parameters of the embedded microstrip) and the corresponding
simulation outputs y ∈ Y ⊂ R8 (i.e., the 8 eye diagram
characteristics). However, the goal of this paper is to build
an accurate and efficient model for the inverse mapping
x =M−1(y) depicted in Fig. 2(b), which provides as output
the geometrical parameters x of the embedded microstrip,
needed to obtain the desired eye diagram characteristics y.
To this aim, the full-computational model has been used
to generate a set of L training samples {xi,yi}Li=1, where
yi =M(xi). Such samples are required to train the proposed
surrogate model for the inverse problem, which we build via
the LS-SVM regression with radial basis function (RBF) [8],
[9], i.e.,

xi =M−1
i (y) ≈ M̃−1

i,LS−SVM (y), (3)

for i = 1, . . . , 4.
The surrogate model for the above inverse problem has

been trained with an increasing number of training samples
L = 300 and 500. The accuracy of the resulting models
has been first investigated through the scatter plots of Fig. 3.
The plots compare predictions of the geometrical parameters
estimated by the proposed LS-SVM-based surrogare model for
the inverse problem with the corresponding results of the full-
computational model, for 250 validation samples. The plots
highlight the good accuracy of two considered models, since
the points are very close to the dashed black line representing
the perfect correlation between the model and the reference
samples. However, such kind of validation provides the worst-
case scenario for the accuracy of the proposed surrogate model
for the inverse model, since it is not able of accounting for
the one-to-many behavior of the inverse model mapping.

To overcome the above limitation, a second validation
is presented in Fig. 4. In this case, the scatter plots are
computed by comparing 250 values of the desired eye-diagram
characteristics: the mean high logic level, height, width and
jitter with the corresponding results obtained with the full-
computational model by using the geometrical configurations
optimized by the proposed surrogate model. For this second
unbiased validation, the results show the excellent accuracy of
the proposed model for the inverse problem.
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Fig. 3. Scatter plots comparing the geometrical parameters of the embedded
microstrip structure of the link in Fig. 1 calculated via the full-computational
model (FCM) for 250 validation samples with the corresponding ones
predicted by the proposed surrogate model based on the LS-SVM regression
built with L = 300 and 500 training samples.
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Fig. 4. Second validation providing the correlation between the desired values
of the eye-diagram: high level, height, width and jitter with the corresponding
ones obtained by simulating the FCM starting from the geometrical parameters
of the embedded microstrip line optimized via proposed the surrogate model
of the inverse problem for 250 unseen samples. The model is built with
L = 300 and 500 samples.

III. CONCLUSIONS & FUTURE WORKS

This paper focuses on the development of a surrogate model
for the inverse problem based on the LS-SVM regression. The
model is trained with a limited number of training samples
provided by the results of a parametric simulation of the link
based on the full-computational model. The resulting model
allows providing the geometrical parameters of the embedded
microstrip interconnects starting from the desired eye diagram
characteristics without using any optimization algorithm, thus
providing a valuable resource during the design phase of the
channel.

Nevertheless, there are at least two open issues that should
be carefully investigated in future research. Although several
techniques for the selection of the training samples have been
devised for the standard case of forward mapping, additional
efforts are needed to adapt such methods to the case of the
inverse mapping, especially with the aim of reducing the
number of training samples. Also, since in general the inverse
model results from an ill-posed problem having more than one
solution, a large number of information data on the desired
output y must be used in order to get an accurate prediction
of the design parameters x (e.g., we are using 8 eye diagram
characteristic descriptors). The definition of such excessive
characteristics of the model may be cumbersome in realistic
applications.
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