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ABSTRACT
This paper presents an innovative modeling strategy for the construction of efficient and compact surrogate
models for the uncertainty quantification of time-domain responses of digital links. The proposed approach
relies on a two-step methodology. First, the initial dataset of available training responses is compressed
via principal component analysis (PCA). Then, the compressed dataset is used to train compact surrogate
models for the reduced PCA variables using advanced techniques for uncertainty quantification and
parametric macromodeling. Specifically, in this work sparse polynomial chaos expansion and least-square
support-vector machine regression are used, although the proposed methodology is general and applicable to
any surrogate modeling strategy. The preliminary compression allows limiting the number and complexity
of the surrogate models, thus leading to a substantial improvement in the efficiency. The feasibility and
performance of the proposed approach are investigated by means of two digital link designs with 54 and
115 uncertain parameters, respectively.

INDEX TERMS High-speed link, least-squares support-vector machine, machine learning, polynomial
chaos expansion, principal component analysis, signal integrity, uncertainty quantification.

I. INTRODUCTION

The ever-growing demand for higher data rates in high-
speed links, along with the increasing complexity and minia-
turization, is making the effect of uncontrolled variations
of design parameters (e.g., geometry, material parameters,
and components tolerances) on system performance far from
being negligible.

Among the several available approaches for uncertainty
quantification, Monte Carlo (MC) simulation is undoubtedly
the most straightforward method for assessing link perfor-
mance with respect to parameter uncertainty. Indeed, MC
allows predicting statistical quantities of the outputs of in-
terests (e.g., voltage/current overshoots, eye digram opening,
maximum dissipated power, etc.) using a set of deterministic
simulations computed for some suitable random samples
of the uncertain input parameters, drawn according to their
probability distribution. While being straightforward to im-
plement and virtually available in any design environment,
an accurate statistical assessment via MC analysis typically
requires an exorbitant number of simulations, thus becoming
impractical for real-life scenarios.

To overcome this computational limitation, stochastic
macromodeling techniques based on the framework of poly-
nomial chaos expansion (PCE) [?] or machine learning
(ML) [?], [?] were extensively investigated in recent years
for electrical and electronic engineering applications, see
for example [?]–[?] and [?]–[?], respectively. The com-
mon underlying idea is to use a small set of simulation
results, exploring the parameter space as much as possible,
to “train” a closed-form surrogate model of the expensive
“full-computational” model. This surrogate model is then
used to inexpensively predict the system performance for any
possible configuration of the uncertain input parameters, thus
allowing for the rapid calculation of statistical information.

In the most versatile implementations, the surrogate model
parameters are calculated, and possibly tuned, via suitable
regression techniques [?], [?], [?]. However, while in stan-
dard PCE implementations a common set of basis functions
is used for any sweep point and any output of interest, non-
parametric regression-based ML tools and advanced PCE
techniques require to tune the hyper-parameters and/or the
basis functions, and therefore to solve a different optimiza-
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tion problem for each output of interest and sweep point
(e.g., [?], [?], [?], [?]). This makes the abovementioned ap-
proaches prohibitive for problems with multiple and possibly
time- or frequency-dependent outputs.

Examples include sparse PCE approaches, such as those
based on tensor recovery [?] or other adaptive schemes [?],
[?], and non-parametric ML regression techniques like
support-vector machine (SVM) [?], [?], least-squares SVM
(LS-SVM) [?], and Gaussian process regression (GPR) [?].
All these techniques help mitigate the “curse of dimension-
ality”, i.e., the efficiency reduction when the number of
uncertain input parameters increases. Therefore, advanced
stochastic surrogate models are the winning choice when
applied to a limited set of outputs of interest. Otherwise,
their direct application to the modeling of multiple transient
responses turns out to be rather cumbersome, because a large
number of time points should be considered to capture highly
nonlinear dynamics.

Usually, there are two different approaches to tackle the
above issue. One solution is to include the effect of both sys-
tem parameters and transient dynamics into a single recursive
model [?], for example via a neural network [?], [?], [?]. Such
models also include the realizations at previous time points
as additional input parameters. Despite its compactness, the
resulting model is so highly complex that a very large number
of training samples (in the order of thousands) is needed,
since a huge number of model parameters must be simulta-
neously tuned. This approach might be a viable solution for
low-order linear systems, but the model complexity grows
exponentially for higher-order nonlinear systems.

A reasonable alternative is to build a different surrogate
model for each output variable and time instant of interest
(see, e.g., [?]). While this reduces the complexity of the
single model, the overall number of models to be created is
potentially huge, especially if a large number of time points
is required, like for example when simulating eye diagrams.

This paper proposes an alternative solution to overcome
the shortcomings of this second approach. Specifically, prin-
cipal component analysis (PCA) [?] is used to remove re-
dundant information from input data samples, which are
therefore reduced to a minimum subset [?]. Briefly speaking,
the underlying idea is to exploit and remove the inherent
correlation existing among several realizations of various
responses of the system evaluated at different time points.
A compression rate of several orders of magnitude is usually
achieved, thus making the application of advanced stochastic
surrogate models feasible for this reduced dataset. The im-
plementation through singular value decomposition (SVD)
allows controlling the accuracy of the compression.

The feasibility and strength of the proposed technique are
assessed by means of two high-speed links: a 16-bit Flash
memory bus operating at 66 MHz (≈ 1 Gbps) and affected
by 54 uncertain design parameters, and a single electronic
link affected by 155 stochastic variables and driven by a
DDR buffer transmitting at 133 Mbps. For both test cases,
PCA is applied to obtain a compressed representation of

the training data. Then, two types of surrogate models are
considered, namely a sparse PCE in combination with least-
angle regression (LAR) [?] and a LS-SVM regression [?].

The paper is organized as follows. The problem and the
goals addressed in this work are stated in Section ??. Sec-
tion ?? outlines the proposed compression scheme based
on PCA. The performance of the proposed methodology
is investigated in Section ?? by means of two digital link
designs. Finally, Section ?? concludes the paper. Throughout
the paper, X , x, x, X, X denote a set, a scalar, a vector, a
matrix, and a tensor, respectively.

II. PROBLEM STATEMENT
This section briefly introduces the problem under considera-
tion. We consider a generic dynamic nonlinear system

y(t) =M(t; x), (1)

where x = [x1, . . . , xd]
T ∈ Rd is a set of (uncertain) input

design parameters, y(t) = [y1(t), . . . , yM (t)]T ∈ RM are
the system outputs, and t is an independent sweep variable
which the outputs depend on.1 Without loss of generality,
we do assume that all d uncertain parameters in x are
independent and equally significant. Techniques are available
to possibly reduce the set of input parameters when they are
correlated [?].

Let us introduce the following set of training pairs:

D = {(xl,yl(tk))}L,Kl,k=1 (2)

where yl(tk) are vectors collecting the M system out-
puts, computed from (??) for a specific configuration xl
of the input parameters at K distinct and increasing time
points {tk}Kk=1. For the sake of notation compactness, the
set of training pairs is rewritten as a union of subsets

D =

K,M⋃
k,m=1

Dk,m (3)

where each subset is defined as

Dk,m = {(xl, yl,k,m)}Ll=1, (4)

and yl,k,m denotes the mth output evaluated at the kth time
instant for the lth configuration of the input parameters, i.e.,
yl,k,m =Mm(tk; xl), with subscriptm denoting the specific
system output considered.

Starting from a set of training pairs Dk,m, we seek for
the best configurations of parameters {wk,m}K,Mk,m=1, each
defining a surrogate model M̃m(tk; x,wk,m) that minimizes
the empirical risk functional

R(wk,m) =
1

L

L∑
l=1

`(M̃m(tk; xl,wk,m), yl,k,m) (5)

1In the context of this paper, t denotes time; however, it could also be any
other sweep variable like frequency, input power, temperature, etc.
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where ` is the so-called loss-function. For example, the
squared difference

`(M̃(t; x,w), y) = (M̃(t; x,w)− y)2 (6)

is the loss function used by the ordinary least-squares regres-
sion. Specifically, we are looking for the best set of model
parameters w∗ that minimize the model error (??) on the
available set of training samples D, i.e.,

w∗ = arg min
w

R(w). (7)

In the framework of uncertainty quantification, the train-
ing set D is obtained by drawing samples xl of the input
variables randomly or pseudo-randomly, and computing the
corresponding system responses yl. In this paper, we use
a Latin hypercube strategy to randomly sample the design
space with good exploration properties.

III. PCA-COMPRESSED SURROGATE MODELING
Since the system outputs are time-dependent, it is virtually
impossible that a single surrogate model can accurately pre-
dict the entire system dynamics at each time point, for each
output, and for any configuration of the input parameters x.
Therefore, the conventional, practical approach is to build a
different surrogate model for each time point tk and output
variable ym for which data are available, with k = 1, . . . ,K
and m = 1, . . . ,M . In turn, the set of model parameters
changes with time and output variable, and therefore we
denote it as wk,m. These parameters are obtained by suitable
regression techniques using L training responses {yl,k,m}Ll=1

for each of these variables.
The complete dataset of training responses in D, let us

denote it with Y = {yl,k,m}L,K,Ml,k,m=1, can be interpreted as
a L×K ×M three-way tensor. The data in tensor Y exhibit
some inherent correlation, since they come from the same
system. Specifically, data for different responses, at different
time points, are not completely unrelated to each other, but
rather exhibit a large amount of interdependency. If tensor Y
is reshaped by stacking data for all outputs and time points
rowwise, a matrix Y ∈ RKM×L is obtained. This new
dataset Y can be interpreted as a columnwise collection of L
realizations {ζl}Ll=1 of a KM -variate stochastic variable ζ.

We calculate the experimental covariance matrix of ζ, i.e.,

Σζ =
ỸỸT

L− 1
, (8)

where Σζ ∈ RKM×KM and

Ỹ = Y − µζ (9)

is the dataset with the samples epurated from the mean

µζ =
1

L

L∑
l=1

ζl, (10)

which is subtracted columnwise.

Each of the ζ-realizations can be expressed as [?]

ζl = µζ +

KM∑
n=1

Zl,nun, (11)

for l = 1, . . . , L, where

Zl,n = uT
n(ζl − µζ) (12)

and {un}KMn=1 are the left singular vectors, obtained by calcu-
lating the SVD

Ỹ = USVT (13)

and taking the columns of U.
We can now truncate (??) to retain only the n̄ “principal

components”:

ζl ≈ ζ̂l = µζ +
n̄∑
n=1

Zl,nun, (14)

which can be identified by setting a threshold ε on the relative
magnitude of the singular values of Ỹ, collected in descend-
ing order into the diagonal matrix S. The singular values of
Ỹ are proportional to the square root of the eigenvalues of
its covariance matrix Σζ . If we define Σζ̂ as the covariance
matrix of the approximated data (??), using matrix properties
we can conclude that

‖Σζ̂ −Σζ‖2
‖Σζ‖2

=

(
σn̄+1

σ1

)2

≤ ε2 (15)

where σ1 is the first singular value of Ỹ and σn̄+1 is the
first singular value that is discarded by the PCA truncation.
Hence, setting a threshold on the singular values allows a
rigorous control on the approximation in terms of variance.
In this paper, we truncate when the magnitude falls below 1%
of the first singular value (i.e., ε = 10−2).

The key achievement is that the set {Zl,n}L,n̄l,n=1 of PCA
coefficients (??) can be interpreted as a collection of L
samples of n̄ new output system variables Zn(x), with
Zl,n = Zn(xl), describing the information pertaining to
the entire set of original time-dependent outputs y(t). Since
typically n̄ ≪ KM , the PCA truncation leads to a substan-
tial compression of the number of variables to be modeled.
Each of these reduced variables can be approximated using
any surrogate model. Once a model is available for the
compressed variables Zn, new samples for the original time-
dependent output variables can be recovered via (??). It is
important to remark that no specific assumption on the nature
of the correlation among the available data is required by the
PCA algorithm.

In the appendices, we introduce the two surrogate models
that are used in the application examples in conjunction PCA
compression, namely the sparse PCE [?] and the LS-SVM
regression [?]. However, the proposed compression strategy
outlined in this section is general and applies to any generic
surrogate model.
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FIGURE 1. Illustration of the 16-bit digital channel for the Flash memory chip.

IV. APPLICATION EXAMPLES
In this section, the feasibility and performance of the pro-
posed methodology are assessed based on two application
examples: a 16-bit channel with 54 uncertain parameters
driven by Flash memory chips and a single-channel elec-
tronic link with 115 uncertain parameters [?] and driven by a
DDR buffer. For the drivers, we use behavioral macromodels
constructed using the method in [?], [?], but any other model,
either behavioral or transistor-level, may be used.

We use the UQLab toolbox [?] for calculating sparse
PCE surrogate models and the LS-SVMlab toolbox [?] to
carry out LS-SVM regressions. Specifically, we use third-
order polynomials and RBF kernels for the two methods,
respectively. This provides a satisfactory trade-off in terms
of accuracy and training cost for the considered application
examples.

All circuit simulations are performed using HSPICE on a
Dell Precision 5820 workstation with an Intel(R) Core(TM)
i9-7900X, CPU running at 3.30 GHz, and 32 GB of RAM.
The time step of the transient simulation is set to one half
of the risetime of the digital signals to ensure satisfactory
accuracy and resolution of the waveforms.

A. EXAMPLE 1: 16-BIT FLASH-MEMORY BUS
As a first application test case, the proposed methodology
is applied to the link depicted in Fig. ??, which represents
a 16-bit transmission channel of a memory chip. For the
I/O buffers, we use behavioral macromodels compatible with
the drivers of a Flash technology operating at 66 MHz. The
structure includes a resistive rail for the power supply of the
buffers, a RLC network with package parasitics, and a trans-
mission channel consisting of 16 coupled microstrip traces.
The far-end terminations are floating to mimic connection
to high-impedance receivers. The even-bit drivers transmit
slightly asynchronous pulses with a duration of 15 ns and
rise/fall times of 0.1 ns, whereas odd-bit drivers remain quiet
in the “low” state.

FIGURE 2. Normalized singular value plot of the 16-bit bus dataset (blue line).
The horizontal line indicates the 1% threshold for the PCA truncation.

There are d = 54 uncertain design parameters, each with
an independent Gaussian distribution and a 10% standard
deviation from the nominal value. Namely: the resistance of
the power rail (nominal value: r = 1.14 Ω), the package par-
asitics (nominal values: resistance R = 50 mΩ, inductance
L = 2 nH, capacitance C = 5.5 pF), the width and thickness
of each microstrip trace (nominal values: w = 150 µm
and t = 30 µm, respectively), the gap between the traces
(nominal value: g = 150 µm), and the substrate parameters
(nominal values: thickness h = 460 µm, relative dielectric
permittivity εr = 4.1, loss tangent tan δ = 0.02). The values
of package parasitics are here assumed to be independent,
even though some correlation usually exists between them.
The power supply voltage is VDD = 1.8 V and the microstrip
trace resistivity is ρ = 1.72 Ω ·m. The bus is 18-cm long.

The outputs of interest are the terminal voltages at the re-
ceiver side of each line and the supply voltages of each driver.
These M = 32 outputs are evaluated at K = 901 equally-
spaced time points between 0 and 45 ns. A naive application
of advanced surrogate modeling techniques would require
the construction of KM = 28832 models. On the other
hand, the use of a standard, non-sparse PCE implementation
with order p = 3 would require the determination of the
coefficients for |K| = 29260 basis functions, and hence the
use of an exorbitant number of training samples to solve the
corresponding regression problem.

We consider instead L = 300 training configurations
of the uncertain parameters, generated according to a Latin
hypercube scheme. The corresponding responses are eval-
uated by means of HSPICE simulations. Figure ?? shows
the normalized singular values of the training dataset. The
singular values drop below the 1% threshold at n̄ = 51.
Therefore, we retain the first 51 terms in the PCA (??), with a
compression rate amounting to less than 0.2% of the original
variables. It should be noted that lowering the simulation time
step only adds redundant information to the data, which is
then cut off by the PCA compression. For example, if the
time step is reduced to one tenth of the risetime, the data
contains K = 4501 time points, but the PCA compression
still retains the same number of n̄ = 51 terms. Moreover,
if the PCA is applied separately to each of the 32 outputs
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FIGURE 3. Collection of four out of the 32 output voltages for the 16-bit bus of
Fig. ??. Green lines: MC samples; solid blue, dashed red, and dotted yellow
lines: standard deviation computed with MC, sparse PCE, and LS-SVM
regression methods, respectively.

(thus only exploiting the correlation of data over time), the
overall number of models to be computed becomes 624. This
demonstrates that modeling all outputs concurrently allows to
effectively take advantage of their interdependency and leads
to further compression.

We construct surrogate models for the PCA coefficients
using both a sparse third-order PCE and a LS-SVM regres-
sion with RBF kernel. In the former case, the cardinality of
the subsets K̆ for the sparse models of the various PCA coef-
ficients varies between 29 and 132, meaning that the number
of non-negligible PCE coefficients is between 0.1% and 0.5%
of the total. On the other hand, the hyper-parameters of the
LS-SVM regression, such as γk,m in (??) and θk,m in (??),
are tuned based on the available set of training samples using
the leave-one-out cross-validation score [?].

Figure ?? shows the variability and the standard deviation
of a selection of four outputs, namely the terminal voltages
on channels #0, #1, and #11, and the supply voltage of the
buffer of channel #15. The green lines are a set of 500
responses from a reference MC analysis, which help visualize
the voltage variation due to the parameter uncertainty. It
should be noted that the second and the third plot refer to
crosstalk voltages, as the drivers of channels #1 and #11
are not transmitting. Moreover, from the fourth plot, a large
fluctuation of the supply voltage is observed, resulting from
the commutation of the buffers. The solid blue, dashed red,
and dotted yellow curves are the standard deviation estimated
from 10000 MC samples, with the sparse PCE, and with the
LS-SVM regression, respectively. The results provided by
the two surrogate models compare well, and they are also
in fairly good agreement with the reference MC results. An
exception is the case of the crosstalk voltage on channel #1,
for which a rather large discrepancy is observed. The reason
could be ascribed to the large amount of “outlying” responses
that can be observed in Fig. ??, which particularly affects the
estimation of the standard deviation, especially around 20 ns.
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FIGURE 4. PDFs of the output variables in Fig. ?? computed at selected time
points of large variability using the MC samples (blue histograms), the sparse
PCE (solid red line), and the LS-SVM model (dashed yellow line).

TABLE 1. Performance of the sparse PCE and LS-SVM surrogate models in
conjunction with PCA compression for the 16-bit bus of Fig. ??.

sparse PCE LS-SVM

RMS error (V)
Minimum 5.8095×10−7 2.4235×10−7

Average 4.8885×10−3 5.2712×10−3

Maximum 7.0072×10−2 7.1321×10−2

Time (s)

Training 4798.4
Compression 1.6
Building 84.8 87.4
Evaluation 4.4 3.1
Recovery 8.8
Total 4898.0 4899.3
Speed-up 32.7× 32.7×

To further assess the accuracy, we calculate the probability
density function (PDF) of the quantities in Fig. ?? at time
points exhibiting large variability. The results are shown
in Fig. ??. A remarkable accuracy is established for both
the PCE and the LS-SVM models, even for the crosstalk
on channel #1. Similar or better results are found for the
remaining outputs.

Table ?? provides the main figures concerning the ac-
curacy and efficiency of the sparse PCE and LS-SVM re-
gression methods in conjunction with PCA compression.
The accuracy is assessed in terms of the root-mean-squared
(RMS) error over the 10000 samples of the reference MC
analysis. The minimum, average, and maximum error over
the time points and the various outputs are provided. As far as
the computational times are concerned, the table lists the time
required by the HSPICE simulation of the training samples,
by the PCA compression, for building and evaluating the
surrogate models of the PCA coefficients, and by the recov-
ery of the corresponding samples of the orginal variables,
from which the statistical information is eventually extracted.
For comparison, the HSPICE simulation of the reference
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FIGURE 5. Normalized singular value plot of the single-link datasets.

MC responses takes about 160000 s (1 day 20 h 27 min).
The processing time of both the sparse PCE and LS-SVM
regression is minor compared to the simulation of the training
samples, and the two techinques exhibit similar performance
in terms of accuracy and computational efficiency for this test
case.

B. EXAMPLE 2: EYE DIAGRAM OF A DDR LINK
As a second application example, we consider the electronic
link investigated in [?]. However, differently from [?], we
consider a time-domain simulation in which a behavioral
macromodel of a DDR driver operating at 133 Mbps trans-
mits a pseudo-random bit sequence and the uncertainty is
provided by d = 115 parameters, again following a Gaussian
distribution with a 10% relative standard deviation. These
parameters include the rail resistance of the driver power
supply (nominal value: r ≈ 0.866 Ω), the package parasitics
(same nominal values as in the previous test case), as well
as the values of all lumped elements and of all geometrical
and material parameters of the microstrip lines along the link
(we refer to [?] for the numerical values). Both training and
validation samples from the full-computational model are
again generated by simulating the link using HSPICE.

In this case, we analyze a single output variable, i.e., the
voltage at the receiver side (hence, M = 1). However,
because we consider a sequence of about 1000 bits, each data
consist of K = 150001 time points, leading to an even larger
dataset compared to the previous test case. Different datasets
are used to train the surrogate models, with increasing sam-
ples sizes of L = {50, 100, 200, 300}. It should be noted that
the number of basis functions for a full PCE would be in this
case |K| = 266916.

Figure ?? shows the normalized singular values of the var-
ious training datasets. For the smallest dataset with L = 50
responses, only the last singular value drops below the 1%-
threshold. It is important to mention that the last singular
value is always zero because one degree of freedom is lost
in removing the mean from the dataset in (??). Therefore, we
can conclude that this dataset is not large enough to suffi-
ciently exploit the correlation between the various responses.
For the datasets with L = 100, L = 200, and L = 300

FIGURE 6. Eye diagram of the received voltage in the link of [?] with a DDR
transmitter. Green lines: superposition of a subset of bit sequences from the
MC analysis; solid blue, dashed red, and dotted yellow lines: mask of the eye
opening based on the 95%-quantiles of the high- and low-level voltage
distributions.

training responses instead, the singular values drop below the
threshold after index 90, 83, and 76, respectively, leading to a
PCA compression between 0.05% and 0.06% of the original
variables. It is interesting to note that larger datasets lead to
a more effective PCA compression, as a result of the higher
amount of information contained. For the sparse PCE trained
with the largest dataset (L = 300 samples), the size of the
reduced sets of basis functions ranges from 47 to 147, with a
sparsity well below 0.06%.

Figure ?? shows the eye diagram resulting from the super-
position of the received bit sequences for a small number of
stochastic link realizations. The colored lines represents the
eye masks obtained by considering the 95%-quantiles of the
distributions of the high and low voltage levels based on 1000
link realizations. The solid blue line is the result obtained
with the reference full-computational HSPICE simulations.
The dashed red and dotted yellow lines are the eye masks
based on the the sparse PCE and LS-SVM surrogate models,
respectively, both trained with L = 300 responses. Excellent
agreement between these techniques is again established.

Furthermore, the four panels of Fig. ?? compare the PDFs
of the eye height (maximum opening) obtained with different
training set sizes and the reference distribution estimated
from the MC analysis (blue histogram). The standard de-
viation of the eye height estimated from the MC samples
is 49.0 mV. The values obtained with the sparse PCE and
LS-SVM models are reported in Table ??. It is important to
remark at this point that the proposed technique allows for the
uncertainty quantification of the entire received bit sequence,
and not of just a single synthetic output quantity like the
eye height, and hence the determination of more complex
information such as the probabilistic eye mask of Fig. ??.

Finally, Table ?? also provides other relevant figures about
the accuracy and efficiency of the two surrogate models for
this second test case. It is observed that the calculation of the
PCA compression, i.e., of the SVD (??) and the subsequent
projection (??), has a negligible impact on the overall compu-
tational cost, even for this large-size example. Moreover, the

6 VOLUME x, xxxx



TABLE 2. Performance of the sparse PCE and LS-SVM surrogate models in conjunction with PCA compression with different training set sizes for the electronic
link in [?] driven by a DDR buffer.

L = 50 L = 100 L = 200 L = 300

sparse PCE LS-SVM sparse PCE LS-SVM sparse PCE LS-SVM sparse PCE LS-SVM
Height standard deviation (mV) 36.4 33.2 43.6 42.6 45.9 45.7 46.7 47.1

RMS error (V)
Minimum 1.3438×10−3 1.1758×10−3 1.2737×10−3 9.7132×10−4 1.1394×10−3 9.2412×10−4 1.0261×10−3 7.7654×10−4

Average 1.1013×10−2 1.4516×10−2 6.6618×10−3 8.3816×10−3 5.1892×10−3 4.9290×10−3 4.4366×10−3 4.5496×10−3

Maximum 6.7498×10−2 1.3732×10−1 5.6511×10−2 7.0687×10−2 4.0517×10−2 4.9146×10−2 3.0716×10−2 4.8434×10−2

Time (s)

Training 3446.7 6893.4 13786.8 20680.2
Compression 1.2 4.1 7.5 10.5
Building 177.1 13.6 615.5 32.7 1067.7 66.8 1374.2 119.4
Evaluation 2.3 0.3 4.5 0.4 4.7 0.7 4.0 0.8
Recovery 4.7 8.2 7.6 7.1
Total 3632.0 3466.5 7525.7 6938.8 14874.3 13869.4 22076.0 20818.0
Speed-up 19.0× 19.9× 9.2× 9.9× 4.6× 5.0× 3.1× 3.3×
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FIGURE 7. PDF of the eye height. The distribution of the MC samples (blue
histogram) is compared in the four panels to the PDFs estimated with the
sparse PCE (solid red lines) and LS-SVM regression (dashed yellow lines)
using different training set sizes.

sparse PCE achieves slightly lower average and maximum
RMS error compared to LS-SVM regression. However, for
this application, the latter is much more efficient in the model
building phase. This is readily explained by the fact that, as
opposed to PCE, the LS-SVM model complexity depends on
the training set size rather than on the number of uncertain
parameters, as discussed in Appendix ??. The time required
by the HSPICE simulation of the 1000 reference MC samples
is 68934 s (19 h 9 min). This analysis was limited to a smaller
number of samples due to the difficulty in handling larger
datasets.

V. CONCLUSIONS
This paper presented an uncertainty quantification frame-
work for large time-domain datasets. The proposed approach
consists of combining a PCA compression with advanced
surrogate modeling strategies such as those based on PCE

or ML. The PCA allows reducing the amount of output data
to be modeled to a minimum set of variables by exploiting
the inherent correlation between the various responses at
different time points.

The advocated technique allows the straightforward ap-
plication of advanced surrogate modeling techniques to the
uncertainty quantification of systems with multiple and time-
dependent outputs. Two application examples concerning
the signal integrity assessment of digital links affected by
54 and 115 uncertain parameters illustrate the strength and
feasibility of the proposed approach.

.

APPENDIX A SPARSE PCE
Given a set of training pairs Dk,m, computed for the time
point tk and output ym, the corresponding PCE surrogate
model has the form

M̃PCE
m (tk; x,wk,m) =

∑
κ∈K

βk,mκ ϕκ(x), (16)

where the functions ϕκ form a basis of orthonormal multi-
variate polynomials in the input design parameters x. They
are typically built as the product combination of univariate
polynomials, i.e.,

ϕκ(x) =

d∏
i=1

ϕκi
(xi), (17)

and K is a set of multi-indices κ = [κ1, . . . , κd] indicating
the degrees of the polynomials in each variable. In this case,
the model parameters are the PCE coefficients, i.e., wk,m =
{βk,mκ }κ∈K.

It is important to point out that in standard and naive PCE
implementations [?], [?], the set K is formed by the multi-
indices up to a given total degree p, i.e.,

K =
{
κ :
∑d
i=1 κi ≤ p

}
, (18)

leading to a cardinality of |K| = (p + d)!/(p!d!). The same
set K is used for each time point and output variable, which
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implies that also the basis functions ϕκ do not change. This
makes the calculation of the model parameters relatively
simple.

Indeed, given a set of training samples Dk,m =
{(xl, yl,k,m)}Ll=1, with yl,k,m = Mm(tk; xl), the risk func-
tional (??) reads

R(wk,m) =

L∑
l=1

(∑
κ∈A

βk,mκ ϕκ(xl)− yl,k,m
)2

= ‖Φwk,m − qk,m‖2
(19)

where qk,m = [y1,k,m, . . . , yL,k,m]T ∈ RL and Φ ∈ RL×|K|
is a Vandermonde-like matrix with entries ϕκ(xl), ∀κ ∈ K,
∀xl ∈ Dk,m. The optimal parameter set, minimazing the
risk-functional, is readily found as

w∗k,m = Φ+qk,m, (20)

where Φ+ = (ΦTΦ)−1ΦT is the Moore-Penrose pseudo-
inverse of Φ.

Since the regression matrix Φ is the same ∀k,m, its
pseudo-inverse Φ+ is computed only once and the above
calculation is readily vectorized by stacking data for different
datasets Dk,m columnwise, thus obtaining the parameter set
for all time points and port variables simultaneously. On the
other hand, such a simple model structure may hinder the
applicability of this method to high-dimensional problems.
Since the regression problem needs to be overdetermined
w.r.t. to the number of unknowns |K|, typically at least
L = 2|K| training samples are used, thus rapidly causing
the well-known “curse of dimensionality” as the expansion
order and/or the number of uncertain design parameters is
increased.

In order to mitigate the above limitation, sparse PCEs
have been proposed [?], [?]. These techniques exploit the
“sparsity-of-effects principle”, meaning that most of the
coefficients βk,mκ in (??) are actually negligible [?]. This
suggests the adaptive identification of a small subset K̆ ⊂
K of basis functions and corresponding coefficients, with
|K̆| � |K|. However, the subset K̆ typically differs for each
output variable and time point. Hence, a separate regression
problem must be set up and solved for each of these variables,
with a detrimental impact on the efficiency when dealing with
multiple and/or time-dependent outputs.

APPENDIX B LS-SVM REGRESSION
Given again a set of training samples Dk,m, we now look for
the best set of parameters wk,m of the LS-SVM regression in
the primal space [?], which reads:

M̃SVM
m (tk; x,wk,m) = 〈wk,m,φ(x)〉+ bk,m (21)

where wk,m = [w1
k,m, . . . , w

D
k,m]T is a vector collecting the

regression coefficients and φ(x) = [φ1(x), . . . , φD(x)]T is
a vector collecting the set of basis functions, such that φ(x) :
Rd → RD.

The risk-function minimization problem (??) for the SVM
regression reads

min
wk,m,γk,m,e

1

2
‖wk,m‖2 +

γk,m
2

L∑
l=1

e2
l

subject to: yl,k,m = 〈wk,m,φ(x)〉+ bk,m + el,

(22)

where the loss-function ` combines the least-squares error e2
l

with a Tikhonov regularization. The parameter γk,m provides
a trade-off between model flatness and accuracy on the
available training samples, thus reducing the overfitting. The
above formulation of the LS-SVM in the primal space is
equivalent to ridge regression.

By using the Lagrangian, the solution of the optimization
problem (??) can be recast in terms of the following linear
systems of equations:

∑L
l=1 αl,k,m = 0

y1,k,m −
∑L
l=1 αl,k,mK(x1,xl)− α1,k,m

γk,m
− bk,m = 0

...
yL,k,m −

∑L
l=1 αl,k,mK(xL,xl)− αL,k,m

γk,m
− bk,m = 0,

(23)
where the coefficients αl,k,m, for l = 1, . . . , L, are the
Lagrangian multipliers associated to the LS-SVM model for
the output ym at the time instant tk, whereas K(x,x′) =
〈φ(x),φ(x′)〉 is the so-called “kernel function”, such that
K(·, ·) : Rd×d → R.

By introducing the kernel function K(x,x′), the linear
system (??) can be recast in matrix form:[

0 1T

1 Ωk,m + I/γk,m

] [
bk,m
αk,m

]
=

[
0

yk,m

]
(24)

where αk,m = [α1,k,m, . . . , αL,k,m]T ∈ RL, yk,m =
[y1,k,m, . . . , yL,k,m]T ∈ RL, 1T = [1, . . . , 1] ∈ RL,
I ∈ RL×L is the identity matrix, and Ωk,m ∈ RL×L is
the kernel matrix with elements Ωm,kij = K(xi,xj ;θk,m),
∀xi,xj ∈ Dk,m with i, j = 1, . . . , L, and in which θk,m is a
set of hyper-parameters characterizing the kernel function.

By solving (??), we can write the LS-SVM formulation in
the dual space:

M̃SVM
k,m (x) =

L∑
l=1

αl,k,mK(x,xl;θk,m) + bk,m, (25)

where the regression coefficients αl,k,m, the bias term bk,m,
and the kernel hyper-parameters θk,m, need to be computed
for each set of training pairs Dk,m, i.e., for each output ym
and time point tk.

As opposed to the PCE, the LS-SVM regression in the
dual form is a non-parametric technique in which the number
of coefficients αl,k,m to be estimated equals the number L
of training samples, and it is completely independent from
the number d of uncertain design parameters. Thanks to the
kernel function K(·, ·), the dual space formulation does not
require an explicit definition of the basis functions φ(x). This
is the so-called “kernel trick”.
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In this paper, we use the Gaussian radial basis function
(RBF) kernel:

K(x,x′; θk,m) = exp

(
−‖x− x′‖2

2σ2
k,m

)
, (26)

where θk,m = σk,m is a single hyper-parameter tuned
according to the training samples.
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