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Abstract Representative models of the nonlinear
behavior of floating platforms are essential for their
successful design, especially in the emerging field of
wave energy conversion where nonlinear dynamics can
have substantially detrimental effects on the converter
efficiency. The spar buoy, commonly used for deep-
water drilling, oil and natural gas extraction and stor-
age, as well as offshore wind and wave energy gen-
eration, is known to be prone to experience paramet-
ric resonance. In the vast majority of cases, paramet-
ric resonance is studied by means of simplified ana-
lytical models, considering only two degrees of free-
dom (DoFs) of archetypical geometries, while neglect-
ing collateral complexity of ancillary systems. On the
contrary, this paper implements a representative 7-DoF
nonlinear hydrodynamic model of the full complexity
of a realistic spar buoy wave energy converter, which
is used to verify the likelihood of parametric instabil-
ity, quantify the severity of the parametrically excited
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response and evaluate its consequences on power con-
version efficiency. It is found that the numerical model
agrees with expected conditions for parametric insta-
bility from simplified analytical models. The model is
then used as a design tool to determine the best bal-
last configuration, limiting detrimental effects of para-
metric resonance while maximizing power conversion
efficiency.

Keywords Parametric resonance · Parametric roll ·
Spar buoy · Wave energy converter · Nonlinear
hydrodynamics · Floating oscillating water column

1 Introduction

Spar floating platforms are axisymmetric thin and
long structures that became established solutions for
deep-water drilling, oil and gas extraction and stor-
age, and, more recently, for hosting offshore wind tur-
bines [6,8,27,41]. In fact, in such applications, cor-
rect operational conditions require the floating struc-
ture to be as stable as possible, i.e., unresponsive to the
wave excitation. Thanks to their reduced water-plane
area and long draft, they can be designed so that their
roll/pitch natural periods (Tn,4 = 2π/ωn,4) lay beyond
the typical range of wave periods. However, spar buoys
became popular also in the wave energy field, where
the objective is to maximize the motion just in the
degree of freedom (DoF) where the power take-off
(PTO) system performs the energy conversion, while
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avoiding motion all others [22,25]. In fact, response in
other DoFs would effectively represent a dissipation,
decreasing the power available to the PTO and, ulti-
mately, the power efficiency [19,21,39].

On the one hand, a large Tn,4 makes spar buoys unre-
sponsive in roll/pitch, hence ideal for both classic off-
shore applications and wave energy converters operat-
ing in heave. On the other hand, since Tn,4 is so large,
Tn,4/2 typically falls in the range of operational wave
periods, generating conditions for roll/pitch paramet-
ric resonance to settle [4]. Several experimental stud-
ies have confirmed the appearance of parametric roll
in container ships [35], spar platforms [29] and wave
energy converters (WECs), either spar buoys [7,23] or
self-reacting [5,30,39]. A few studies have purposely
tried to exploit parametric resonance to extract energy,
such as [3,13,43]. Conversely, for other conventional
WEC concepts, parametric resonance is usually unde-
sirable because it is often unexpected, detrimental for
power extraction and threatens the device survivability.
Therefore, representativemathematical models, able to
accurately articulate such a nonlinear behavior, are cru-
cial for reliable design of the mooring system [36],
power-optimizing control algorithms [32,33] and sur-
vivability strategies [19,39]. Furthermore, only compu-
tationally fast models are eligible to be used for exten-
sive simulations required to inform the design and con-
trol tasks.

Parametric resonance in roll is aMathieu-type insta-
bility, arising when two conditions are met [31]: the
frequency of the excitation force is about twice the nat-
ural frequency of the parametrically excited mode; the
external force exceeds internal dissipations. Parametric
resonance is due to nonlinear time-variations of one or
more parameters of the system. In the case of a float-
ing body, changes are due to variations of the wetted
surface, determined by the relative movement of the
floater with respect to the wave field. The vast major-
ity of models for parametric resonance tend to intro-
duce important simplifications of the system in order
to fit it into an analytical framework: [34] uses multiple
scale perturbation techniques for a 2-DoF model of a
container ship, while [38] uses Markov and Melnikov
approaches; [12] studies parametric resonance for a 2-
DoF model of an archetypal spar buoy, determining
nonlinear vibrationmodes by the application of asymp-
totic and Galerkin-based methods. Simplified models
are successful in predicting the likelihood of parametric
resonance, but are less informative about the severity of

the parametrically excited response [11,39,42], mainly
due to the mismatch between the simplified analytical
model and the complex real system.

Modeling parametric resonance with analytical appr
oaches usually requires three common but substan-
tial simplifications about: (1) the number of DoFs,
(2) the time-varying parameter and (3) the geometry.
Only 2DoFs are commonly used, although interactions
between all 6 DoFs and other ancillary components
(PTO, controller,mooring system, etc.) are important in
generating nonlinearities and have a substantial impact
on mooring loads and power production. Moreover, in
order to fit into a Mathieu-type instability, it is usually
assumed that the only time-varying parameter is the
hydrodynamic stiffness, with simple harmonic varia-
tions. However, due to the 6-DoF motion and the com-
plex intersection between the floater and thewave field,
non-harmonic variations of both the hydrostatic stiff-
ness and external excitation force are to be expected.
Finally, archetypical geometries are usually consid-
ered, because they ease the analytical computation of
main physical properties.

However, fully appreciating the nonlinear complex-
ity of a real system is likely to require overly time-
consuming models based on spatial discretization of
at least the wetted surface [14,39], or the whole fluid
domain [1,28]. Due to their computational cost, these
models are unfeasible for extensive design purposes.
However, this paper implements a computationally effi-
cient nonlinear model which is able to compute in real
time [17] thanks to an analytical representation of the
converterwetted surface. Such amodel is able to articu-
late parametric resonance and has been effectively used
to inform the design of the mooring system of a WEC
[16].

The objective of this paper is to provide a com-
prehensive and computationally accessible nonlinear
model, able to articulate parametric resonance due to
nonlinear time-variations of the parameters of the sys-
tem, for a realistic device, comprising complex viscous
losses, PTO, and realistic mooring system. It is shown
that the model agrees with the instability conditions
predicted by simplified models. Moreover, the severity
of parametric resonance and the extension of the region
of instability is computed, also according to a set of dif-
ferent physical properties of the device. In fact, since
the model runs at a fraction of the computational time
typically required by other analogous nonlinear mod-
els, it can be used as a design tool in order to assess the
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impact of parametric resonance for different control
and ballast configurations.

The reminder of the paper is organized as follows:
Sect. 2 introduces parametric resonance and typical
analytical models, focusing on simplifications andmis-
matches with respect to realistic devices. Section 3
presents the device case study while Sect. 4 details
the numerical model implemented. Finally, Sect. 5 dis-
cusses results and Sect. 6 presents some conclusions.

2 Parametric instability

Althoughfloating structures in unidirectionalwaves are
externally excited only in 3 DoFs (surge, heave and
pitch), under certain conditions they may respond also
in the roll DoF, due to an internal excitationmechanism
activated by time-variations of the system parameters.
Such a phenomenon is related to parametric resonance,
which is usually treated as a Mathieu-type instability
[11]. The Mathieu equation is a second-order differen-
tial equation that represents the equation of motion of
variable χ with the stiffness term varying harmonically
over time with a frequency ω [26]:

χ̈ + (Δ + Λ cos τ) χ = 0, (1)

where τ = ωt and the dot represent a derivative with
respect to τ . The parameter Δ represents a dimension-
less stiffness and Λ is the dimensionless amplitude of
the stiffness variation. In real engineering applications,
the damped Mathieu equation is considered instead,
which is a particular case of the Hill’s differential equa-
tion:

χ̈ + μχ̇ + (Δ + Λ cos τ) χ = 0, (2)

where μ is the dimensionless damping coefficient.
The stability diagram of equations (1) and (2) is

shown in Fig. 1, where Δ = (
ωn,4/ω

)2. Two condi-
tions for instability (shaded areas in Fig. 1) arise:

– The excitation frequency is 2/n times the natural
frequency of the system, with n being a positive
integer; primary parametric resonance appears for
n = 1

– The excitation amplitude exceeds internal dissipa-
tions of the system

Fig. 1 Stability diagram of the damped and un-dampedMathieu
equations, shown in (1) and (2). Unstable regions are shaded

While the Mathieu equation can give precious
insight on the conditions for parametric resonance, it is
not applicable for a reliable prediction of the severity
of the parametric response of a floating body, espe-
cially because there is no straightforward correspon-
dence between the coefficient of equation (2) and the
physical phenomenon. In fact, the variations of the stiff-
ness term are, in general, not harmonic, but depend
on the intersection of the floater (moving in 6 DoFs)
and the wave field. Moreover, similar nonlinearities are
expected in the wave excitation force and dissipations
due to viscous drag. Finally, the PTO and mooring sys-
tem can add further nonlinearity in 6 DoF motions.

The substantial mismatch between simplified ana-
lytical models and the physical device is discussed for
a realistic case study of the spar buoy OWC (oscillat-
ing water column) WEC [22], presented in Sect. 3. A
representative model, able to articulate parametric res-
onance, is presented in Sect. 4.

3 Case study

The spar buoy device, schematically shown in Fig. 2, is
a WEC extracting energy from the relative movement
between the floater and the inner water column free
surface, which forces a bidirectional air flow through
a turbine, acting as the PTO system. Therefore, in
ideal operational conditions, pure heave movements
are desirable, while any response in other DoFs would
represent a decrease in the power conversion efficiency.
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Fig. 2 Vertical cross section of the submerged part of the body
(DRT4) at equilibrium. Relevant dimensions are annotated and
declared in Table 1

Main geometrical and physical properties are reported
in Table 1. Note that the air turbine damping effect is
represented here by an equivalent orifice plate of diam-
eter d0 [23].

Figure 2 and Table 1 refer to a configuration with
draft equal to 7.91m. However, since parametric reso-
nance depends on inertial properties of the device, six
different ballasts (hence drafts) are considered (DRT1-
DRT6), as tabulated in Table 2. Since each draft con-
figuration is characterized by a different natural period
in roll (Tn,4), a shift of the parametric instability region
is expected.

4 Numerical model

The system can be studied with 7 DoFs, 6 DoFs for
the floater and one additional DoF for the water col-
umn displacement. In this section, for sake of clarity
and generality, the 6-DoF dynamics of the floater are
first presented. It is then straightforward to expand the
system to 7 DoFs. The dynamics and kinematics of
the floater are conveniently represented by two right-
handed frames of reference, as schematically shown
in Fig. 3 for a generic axisymmetric device. The first
frame (x, y, z) is inertial (world-fixed), with the x-axis
along and in the same positive direction of the wave
propagation, the z-axis pointing upwards, with the ori-
gin at the still water level and laying on the axis of the
buoy at rest. The inertial frame is used to describe the

x, ẋ

y, ẏ

z, ż

x̂, u

ŷ, v

ẑ, w

SWL

Fig. 3 Inertial frame of reference (x, y, z), centered at still water
level (SWL), and body-fixed (non-inertial) frame of reference(
x̂, ŷ, ẑ

)
, after an arbitrary displacement. At rest the two frames

coincide. Velocities according to the inertial frame (ẋ, ẏ, ż) and
the body-fixed frame (u, v, w)

body displacements (ζ ), divided into translations (p)
and rotations (Θ):

ζ =
[
p
Θ

]
, p =

⎡

⎣
x
y
z

⎤

⎦ , Θ =
⎡

⎣
φ

θ

ψ

⎤

⎦ , (3)

where x is surge, y is sway, z is heave, φ is roll, θ is
pitch, and ψ is yaw.

The second right-handed frame of reference is(
x̂, ŷ, ẑ

)
, fixed with the body, hence non-inertial, and

initially overlapping with the inertial frame when the
buoy is at rest. The body-fixed frame is convenient
for writing the dynamic equation of the system, since
the inertial properties remain constant in time. There-
fore, both forces and velocities are represented in the
body-fixed frame, along the axis of the buoy. Velocities
(ν), divided into translation (v) and rotations (ω), are
defined as:

ν =
[
v
ω

]
, v =

⎡

⎣
u
v

w

⎤

⎦ =
⎡

⎣
˙̂x
˙̂y
˙̂z

⎤

⎦ , ω =
⎡

⎣
p
q
r

⎤

⎦ . (4)

It is worth remarking that forces and velocities are
along time-varying axes,while displacements are along
fixed axes. Therefore, a mapping from body- to world-
frame velocities should be applied, at each time step, in
order to obtain the correct displacements. One possible
mapping is the following:
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Table 1 Main physical properties of the Spar-buoy OWC device (DRT4) shown in Fig. 2, in full-scale

Parameter Value Units

Water depth h 80.00 (m)

Diameter of the top cylinder dc 16.00 (m)

Draft of top cylinder Lc 7.91 (m)

Total submerged length Lt 50.91 (m)

Vertical coordinate of centre of gravity zCoG -31.96 (m)

Vertical coordinate of centre of buoyancy zCoB -22.14 (m)

Mass M 2.86 · 106 (kg)

Perpendicular moment of inertia Ix = Iy 1.57 · 109 (kgm2)

Axial moment of inertia Iz 1.12 · 108 (kgm2)

Axial moment of inertia Iz 1.12 · 108 (kgm2)

Metacentric height GM 11.13 (m)

Orifice diameter do 0.8640 (m)

Table 2 Different draft configurations of the device, with consequent shift in natural period in roll

Conf. M (kg) Lc (m) Iy (kg m2) GM (m) Tn,4 (s)

DRT1 2.40 · 106 5.30 1.39 · 109 4.33 27.3

DRT2 2.55 · 106 6.17 1.44 · 109 6.81 23.1

DRT3 2.71 · 106 7.04 1.50 · 109 9.07 20.6

DRT4 2.86 · 106 7.91 1.57 · 109 11.13 19.0

DRT5 3.02 · 106 8.78 1.64 · 109 13.03 17.9

DRT6 3.17 · 106 9.65 1.71 · 109 14.78 17.2

ζ̇ =
[
ṗ
Θ̇

]
=

[
RΘ 03×3

03×3 TΘ

] [
v
ω

]
= JΘν, (5)

whereRΘ is the rotationmatrix, dependingon theEuler
anglesΘ , defined according to the 3-2-1 convention as
[10]:

RΘ = Rẑ,ψRŷ,θRx̂,φ

=
⎡

⎣
cψ −sψ 0
sψ cψ 0
0 0 1

⎤

⎦

⎡

⎣
cθ 0 sθ
0 1 0

−sθ 0 cθ

⎤

⎦

⎡

⎣
1 0 0
0 cφ −sφ
0 sφ cφ

⎤

⎦ ,

(6)

with c and s standing for cos() and sin() trigonomet-
ric operators, respectively. RΘ is applied to transla-
tional velocities. TΘ is applied to rotational ones, and
is defined as follows:

TΘ =
⎡

⎣
1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

⎤

⎦ , (7)

where t stands for the tan() trigonometric operator.
Note that the singularity of TΘ in ±π/2 is usually not
an issue in wave energy applications, since the ampli-
tude of the pitch angle is, by design, always expected
to be smaller than π/2.

Another consequences of using a body-fixed frame
are Coriolis and centripetal forces, which are normally
neglected under the assumption of small rotational
velocities. Let us define, for convenience of notation,
the skew-symmetric operator S : R3 → R

3×3 as
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S :
⎧
⎨

⎩
λ ∈ R

3

∣∣∣∣
∣∣
S(λ)

Δ=
⎡

⎣
0 −λ3 λ2
λ3 0 −λ1

−λ2 λ1 0

⎤

⎦

⎫
⎬

⎭
. (8)

It follows that S(λ) = −S(λ)T , and that the cross-
product can be written as:

λ × a = S(λ)a (9)

Using such a notation, it is possible to defineCoriolis
and centripetal forces as [10]:

FCor = CCorν (10)

=
[

MS(ω) −MS(ω)S(rg)
MS(rg)S(ω) −S(Irω)

] [
v
ω

]
,

(11)

where M is the mass of the body, rg is the vector from
the origin of the body-fixed frame (reference point) to
the centre of gravity, and Ir is thematrix of themoments
of inertia with respect to the reference point.

Finally, the dynamical equation in 6 DoFs for the
floater becomes:

⎧
⎨

⎩

ζ̇ = JΘν

Mν̇ + CCorν =
∑

i

Fi
(12)

where M is the inertial matrix and Fi comprises all
external forces, namely diffraction, Froude–Krylov,
radiation, drag, power take-off andmooring loads.Note
that F ∈ R

6 is a generalized force, composed of a lin-
ear force vector f ∈ R

3, and a torque vector τ ∈ R
3.

Finally, note that the 6-DoF dynamic system in (12) for
the floater is readily expanded to 7-DoFs by appending
the water column velocity to ν and expanding M, JΘ ,
CCor, and F accordingly.

While radiation and diffraction can be assumed as
linear [18,37], a nonlinear representation of FK forces,
viscous drag effects, PTO force, and mooring loads is
implemented, as further explained in following subsec-
tions.

4.1 PTO force

The power take-off system is an air turbine, which con-
verts the alternating air flow induced by the water col-

umn motion relative to the floater. The pressure drop
across the turbine can be simulated using an orifice
plate which, neglecting compressibility [9], induces a
PTO force of:

FPTO = 8ρa A3
a

π2C2
dd

4
0

( ˙̂z − ˙̂z7
) ∣∣∣ ˙̂z − ˙̂z7

∣∣∣ (13)

where ρa is the air density, Aa is the cross-sectional
area of the air chamber, Cd is the discharge coefficient
(Cd = 0.6466 [23]), d0 is the diameter of the orifice,
and ˙̂z7 is the velocity of the water column along the
axis of the buoy. Note that FPTO acts on both the buoy
and the water column, but with opposite sign.

The damping introduced to the system by the PTO,
depending on the area of the orifice opening, is a con-
trol parameter that can be used to maximize the power
extraction, as well as hinder the development of para-
metric resonance. Therefore, the sensitivity of the para-
metric roll amplitude and power conversion efficiency
to different d0 configurations has been studied. Diam-
eters in Table 3 are considered, including 4 operational
conditionswith the areal ratio betweenorifice andwater
column between 0.65% and 4.31%, one almost-closed
condition, with areal ratio of 0.10% that effectively
makes the water column and floater move together,
and a free-flow condition, with areal ratio of 20% that
makes the floater and the water column move indepen-
dently.

Note that the closed and free-flow conditions are
often alternative solutions in survivability strategies
in severe wave conditions, when avoiding failures
acquires higher priority than producing power. Models
that articulate parametric resonance are crucial in such
analysis, since parametric roll, potentially threatening
the device survival, depends on the damping and stiff-
ness characteristics of the system, which are modified
by the PTO force [39].

4.2 Mooring force

The mooring system, schematically shown in Fig. 4,
is based on experiments performed in Plymouth, UK
[7]. It is composed of three lines, equally spaced in the
radial direction around the vertical axis of the buoy at
rest. Each line is divided in three segments, connecting
the anchor to a jumper (line of length L1), then to a
clump weight (line of length L2), and finally to the
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Table 3 Different orifice diameters and areas, and areal ratio with respect to the area of the water column

d0 (m) Area (m2) Areal ratio (%)

0.1863 0.0273 0.10 (≈ closed)

0.4739 0.1764 0.65

0.6968 0.3813 1.40

0.8640 0.5863 2.15

1.2218 1.1724 4.31

2.6351 5.4536 20.0 (≈ free-flow)
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Fig. 4 Schematics of the mooring system layout for configura-
tion DRT4, with three lines 120◦ apart. Each line comprises an
anchor, a jumper, and a clump-weight. Figuremodified from [16]

buoy (line of length L3). Relevant parameters for the
equivalent full-scale model of the mooring system are
tabulated in Table 4.

A quasi-static model is defined to compute the ten-
sion on each line depending on the 6-DoFs displace-
ments of the attachment points of the buoy and conse-
quently obtain the total forces and torques acting on the
floater, around the origin of the body-fixed frame and
along its axes. Relying on the fact that for this system
each line has a relatively high tension when compared
with their mass, it is possible to model each mooring
line segment as a rigid and inelastic line. Consequently,
for each line, two equations are written for the verti-
cal and horizontal force equilibrium, one for the torque
balance, and two for imposing geometrical constraints
[16].

4.3 Nonlinear hydrodynamic forces

The main source of time variations of system param-
eters inducing parametric instability are nonlinear
Froude–Krylov forces [39], which are the integral of
the undisturbed pressure field onto the instantaneous
(time-varying) wetted surface (Sw(t)) of the floater:

fFK = fg +
∫∫

Sw(t)

Pn dS, (14a)

τ FK = rg × fg +
∫∫

Sw(t)

Pr × n dS, (14b)

where P is the pressure field, fg is the gravity force,
n is the unity vector normal to the surface, r is the
generic position vector, and rg is the position vector
of the centre of gravity. For geometries of arbitrary
complexity, it is necessary to perform a spatial dis-
cretization of the wetted surface by means of plane
mesh panels [14], implying the use of a computation-
ally expensive re-meshing routine to recompute, at each
time step, the submerged portion of the device. How-
ever, for axisymmetric geometries as spars, a conve-
nient analytical representation of thewetted surface can
be defined, using cylindrical coordinates (
, ϑ) in the
body-fixed frame. The integral in (14a), for example,
after appropriate mapping from inertial frame to body-
fixed frame, becomes [16]:

fFK = RT
Θ fg +

∫∫

Sw(t)

P(x̂, ŷ, ẑ) n dS

= RT
Θ fg +

π∫

−π


2∫


1

P(
, ϑ)
(
e
 × eϑ

)
d
 dϑ,

(15)

The analytical description of the instantaneous wet-
ted surface, hence the integrals in (15), enables compu-
tation in about real time and, therefore, extensive sensi-
tivity analysis and design optimization [16]. Paramet-
ric coupling is mainly due to nonlinear Froude–Krylov
forces, shown in (15). This can be verified by inspection
of the mathematical structure of an analytical represen-
tation provided in [24], obtained thanks to multivariate
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Table 4 Parameters of the full-scale mooring system for configuration DRT4, based on the experimental tests in [7]

Parameter Value Units

Line diameter dl 32 (mm)

Net line density ρ∗
L 3.55 (kg/m3)

Jumper mass MJ 4030.5 (kg)

Jumper density ρJ 123.00 (kg/m3)

Jumper mass MC 36140 (kg)

Clump-weight density ρC 8097.50 (kg/m3)

Length anchor→ jumper L1 143.28 (m)

Length jumper→clump-weight L2 37.01 (m)

Length clump-weight→buoy L3 50.40 (m)

Radius at the anchor Ra 211.2 (m)

Depth at the anchor h 80 (m)

Attachment radius at the buoy Rb −9.28 (m)

Attachment depth at the buoy hb −2.58 (m)

Taylor expansion. The formulation in (15) is notionally
equivalent to the one in [24], relying on direct numeri-
cal integration instead of series expansion.

A further source of nonlinearity is the viscous drag
force, acting in all DoFs with a notional quadratic
dependence on the relative velocity between the floater
displacement and the fluid velocity field. Due to the
typically long draft of a spar, an integral formulation is
adopted, using the same coordinates as in (15) [16].

5 Results

A refined set of representative regular waves is con-
sidered, with period (Tw ∈ [5 s, 20 s]) and height
(Hw ∈ [0.5m, 5.5m]) in the typical range of opera-
tion. However, waves with excessive steepness (higher
than 6%) are excluded from the analysis due to physical
constraints of the linear potential flow theory. Figure 5
shows an example of the amplitude of the displace-
ments in 6 DoFs of the floater (configuration DRT4),
with the orifice diameter thatmaximizes power produc-
tion. Dashed and dash-dotted red lines highlight Tn,4/2
and Tn,4, respectively.

As expected, parametric resonance produces a roll
response in the vicinity of Tn,4/2, with the instability
region widening as the wave height increases, with a
consequent increase in the amplitude of oscillation. The
motion in sway is induced by the coupling with roll due
to mooring and hydrodynamic restoring forces. Since,

in axisymmetric floaters, the natural period in pitch
(Tn,5) is the same as in roll, also pitch is prone to experi-
ence parametric instability. In fact, Fig. 5 shows a clear
local increase in pitch around Tn,4/2. Similarly to the
sway-roll pair, also surge is coupled with pitch. Finally,
note that also the yaw DoF shows a local response only
around Tn,6/2, due to parametric instability induced by
a nonlinear stiffness effect in the tangential direction of
the mooring lines at the fairleads [16].

The increase in surge, sway, roll and pitch DoFs is
the main reason why parametric resonance has signif-
icant impact on the device survivability and design of
the mooring system. On the other hand, it is possible to
notice a local drop of heave response when parametric
roll appears. In fact, since parametric instability opens
a channel to internally transfer energy from heave to
other DoFs, the power available to the PTO and the
conversion efficiency decreases. This process is partic-
ularly evident in the time traces and envelope shown
in Fig. 6. Since parametric roll response has a signif-
icantly longer transient than externally excited DoFs,
it is possible to remark the energy transfer from heave
to roll, making the heave displacement decrease as roll
increases. Despite the fact that the drop in heave ampli-
tude is apparently small, the generated power experi-
ences a significant decrease, showing how detrimental
parametric resonance is for energy absorption and con-
version.

Figures 5 and 6 show that parametric resonance is
not just evident in roll, which is excited only internally,
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Fig. 5 Motion amplitude of the six DoF of the floater DRT4 for the optimal orifice diameter. Dashed and dash-dotted red lines are at
Tn,4/2 and Tn,4, respectively. The dashed green line is at Tn,6/2

but also in heave and pitch, that show a clear pertur-
bation at the resonance instability frequency as para-
metric resonance arises. The waterfall plots and maps
in Figs. 7 and 8 represent the fast Fourier transform
(FFT) for different incoming wave frequencies ωe, at a
constant wave height (Hw = 3m). All frequencies are
normalized by the natural period in roll/pitch. All the
spectral energy in roll is focused around ω/ωn,4 = 1
and only when ωe/ωn,4 = 2, generating roll oscilla-
tions at a frequency which is half the excitation fre-
quency.

The spectral energy in the pitch DoF is divided into
two regions. Similarly to roll, parametric pitch gener-
ates a response at ω/ωn,4 = 1 when ωe/ωn,4 = 2.
Parametric pitch is superimposed to the linear behav-
ior that makes the floater pitch at the same frequency
of the excitation force. This is particularly evident in
the map in Fig. 8, since the spectral energy lays on the
bisector of the plane, i.e., at ω = ωe.

Further insight in the nonlinear dynamic response of
the system can be obtained from the resonance curve in
roll, as shown in Fig. 9. For each of three relevant points
in the parametric resonance region (Tw equal to 9 s, 9.5 s

and 10s), the phase portraits of heave, roll and pitch are
presented in Fig. 9. Moreover, the Poincaré map shows
frequency doubling, especially in the rotational DoFs.
Note that the markers in the phase portraits are taken
at the peaks of the incoming wave.

The influence of changes of initial conditions is stud-
ied in Fig. 10, where the phase portraits of a wave in the
parametric resonance region (Hw = 3m, Tw = 9.5s)
is studied for 9 different initial conditions (φ0): one
at φ0 = 0.5◦, and 8 from 0 to 17.5◦, with step equal
to 2.5◦. Although such initial conditions span around
the steady-state amplitude of the limit cycle, the same
attractor is reached. Figure 10 also shows a similar pat-
tern for the transient which, although faster for larger
initial conditions, presents the same drop of the enve-
lope after about 55 s of simulations. Furthermore, note
that the transient from φ0 = 0◦ is much longer than the
one from φ0 = 0.5◦. However, since the exact zero in
real applications is highly unlikely (if not impossible),
in the simulations used to produce all other results, an
initial condition of φ0 = 0.5◦ is assumed, in order to
reduce transient periods.
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Fig. 6 Example of time trace (in grey) and envelope (in blue)
for heave (top), roll (middle) and generated power (bottom) for
configurationDRT4,withd0 = 0.864m, in parametric resonance
conditions (Tw = Tn,4/2 = 9.5s and Hw = 3m). (Color figure
online)

Finally, it is worth to reconstruct the stability dia-
gram using the results of the numerical simulations.
However, as discussed in Sect. 2, several simplifica-
tions are needed to fit the model of (12) into the equa-
tion in (2). Let us consider the uncoupled roll DoF and
neglect nonlinearities due to the excitation force, kine-
matics, PTO and mooring systems. Let us consider the
linearized definition of hydrostatic stiffness in roll [10]:

K4 = ρg∇
(
Ia
∇ − BG

)
(16)

where ρ is the water density, g the acceleration of
gravity, ∇ the submerged volume, Ia the geometrical
moment of inertia of the water plane area, and BG

Fig. 7 Example of waterfall plot for roll (top) and pitch (bottom)
for configuration DRT4, with d0 = 0.864m and Hw = 3m. The
corresponding map is shown in Fig. 8. A waterfall plot repre-
sents a series of fast-Fourier transforms for different excitation
frequencies (ωe). Frequencies in the horizontal axis are normal-
ized by the natural frequency in roll (ωn,4)

the distance between centres of buoyancy and grav-
ity. Using the same numerical framework described in
Sect. 4.3, the time-varying∇ and BG can be computed
according to the 6-DoF displacements [15]. Since the
time-variations of K4 are not exactly harmonic, the
amplitude Λ is estimated as half the excursion from
peak to trough of K4 and normalized by its mean. The
resulting (Δ − Λ) coordinates are shown in Fig. 11,
where the colour of each marker is proportional to the
amplitude of the roll response. In this way, the stability
diagram can show both regions of instability and the
severity of the parametric response.

Consistently with Fig. 1, the main unstable region is
located around Δ = 0.25 and widens as Λ increases,
with a corresponding increase in roll amplitude. A
small roll response can be also found at Δ = 1. The
reduced extension of this secondary unstable region
is due to viscous losses. Note that the area of primary
instability is wider than the one predicted by the simpli-
fied analytical model (as shown in green in Fig. 11 and
in Fig. 1), highlighting the value of using a more rep-
resentative model of higher complexity for advanced
design considerations.

In order to provide a rough comparison with Fig. 1,
the non-dimensional linear dissipation coefficient (μ)
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Fig. 8 Example of
waterfall colour-map for roll
(top) and pitch (bottom) for
configuration DRT4, with
d0 = 0.864m and
Hw = 3m. The
corresponding plot is shown
in Fig. 7. A waterfall map
represents a series of
fast-Fourier transforms for
different excitation
frequencies (ωe).
Frequencies in the
horizontal axis are
normalized by the natural
frequency in roll (ωn,4)

Fig. 9 Resonance curve in roll, for configuration DRT4 and Hw

of 3m. Dashed and dash-dotted red lines are at Tn,4/2 and Tn,4,
respectively. Phase portraits are shown for Tw equal to 9 s (left),

9.5 s (middle), and 10s (right). Themarkers in the Poincaré maps
are taken at the peaks of the incoming regular wave. (Color figure
online)
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Fig. 10 Phase portrait for configuration DRT4, Hw = 3m and
Tw = 9.5s, d0 = 0.864m, for 9 different roll initial conditions.
The systems show only one attractor, since the same limit cycle
is obtained, regardless of the initial condition considered
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Fig. 11 Reconstructed stability diagram from numerical simu-
lation for configurationDRT4 and d0 = 0.864m. The green lines
show the theoretical limits of stability for μ = 0, as in Fig. 1.
Maximum non-dimensional damping term (μ) of 0.032. (Color
figure online)

is defined [11]:

μ(ω) = B(ω) + Clin

(Ix + A(ω)) ω
(17)

where A is the radiation added mass, B is the radi-
ation damping, and Clin is an equivalent linear vis-
cous drag coefficient. Clin is chosen a posteriori such
that the resulting linear viscous force dissipates the
same energy of the nonlinear force over the same peri-
odic time window [40]. Using the definition in (17),
μ, which depends on the incoming wave and motion
response, reaches the maximum value of 0.032.

The discussion carried out so far is based on regu-
lar waves since, being monochromatic, they are fit to
clearly describe the frequency-dependent attitude of the
system. However, since real waves are panchromatic
stochastic processes, the instability excitation may dif-
fer. Ref. [2] studies more realistic non-sinusoidal wave
profiles, still inducing instability into the system, while
[44] discusses how the instability regions becomewider
as the noise intensity increases, while tongues of insta-
bility domains rise up. This is consistent with experi-
mental observation [23] and numerical modeling [20]
of a WEC prototype. Note that the proposed NLFK
force calculation can be also applied to irregular wave
conditions, as discussed in [20]. Regions of instabil-
ity become wider because of the spread of spectral
energy content across the frequency range. However,
due to an unsteady and non-uniform energy supply
at the parametric resonance frequency, transients are
longer and a sustained instability is reached for a larger
overall excitation, namely a larger wave height. Never-
theless, numerical simulations in irregular wave condi-
tions become more sensitive to the representation vis-
cous losses, which have a direct impact on the transient
evolution [20].

5.1 Sensitivity analysis

As discussed in Sect. 2 and shown in Sect. 5, the like-
lihood of parametric instability mainly depends on the
natural period of the parametrically excited DoF, i.e.,
inertial and restoring properties in thatDoF. In addition,
the severity of the parametric response also depends on
the overall stiffness of the system, as well as internal
dissipations. Since the model proposed in this paper is
able to quantitatively predict the amplitude of the para-
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Fig. 12 Amplitude of roll response for configuration DRT4 varying the orifice diameter (the smaller d0, the larger the PTO damping).
Dashed and dash-dotted red lines are at Tn,4/2 and Tn,4, respectively. (Color figure online)

Fig. 13 Optimal orifice diameter (for maximum power extraction while avoiding survivability conditions) for different draft configu-
rations
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Fig. 14 Roll amplitude (using orifice diameters in Fig. 13) for different draft configurations

Fig. 15 Optimal power extracted (using orifice diameters in Fig. 13) for different draft configurations
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metric response, depending on changes of virtually any
parameter of the system, it is used to perform a sensi-
tivity analysis that can inform and effectively guide the
design of the system.

The first parameter considered is the diameter of the
orifice plate, tabulated in Table 3, emulating the damp-
ing action of the PTO system. The PTO force, shown in
(13), is the control action that is normally used to max-
imize the absorbed power while remaining compliant
to constraints, usually related to the safety of compo-
nents of the system. In fact, in case of extreme wave
conditions, the control strategy should prioritize sur-
vivability over power production. A common strategy
is to increase the PTO damping in order to avoid rel-
ative motions between parts whose relative movement
is normally used to extract energy [39]. However, this
strategy can be counterproductive if the system is prone
to parametric resonance, since a stiffer system tends
to experience larger parametric response, potentially
threatening the device integrity [39]. This is shown in
Fig. 12 for configuration DRT4, where parametric roll
increases in amplitude and width as d0 decreases (as
the PTO damping increases).

The second relevant parameter considered in the
sensitivity analysis is the ballast or, alternatively, the
consequent draft. Table 2 shows the 6 different draft
configurations, the draft of the top part of the floater,
and the consequent natural period in roll, which is the
most important parameter determining the region of
parametric instability. As the draft increases (due to a
higher ballast at the bottom part of the converter), both
the hydrostatic stiffness (due to increase in BG) and the
rotational inertia increase. The increase in hydrostatic
stiffness presents an higher importance over the inertia
variation and, consequently, Tn,4 decreases. Therefore,
parametric instability is expected to appear at lower
periods as the draft increases. Figure 13 shows the
map of optimal d0 that maximize power production
for each wave condition, while ensuring survivability.
At a period of about 14 s, all configurations present
a relatively large value for the optimum orifice plate
diameter. This is associated with an improved excita-
tion of the OWC due to the reduction of the turbine
damping effect, since the OWC heave natural period is
observed at 14 s. Using d0 from the maps in Fig. 13,
Fig. 14 shows the amplitude of parametric response for
the different draft configurations.

As expected, the condition for parametric resonance
shifts to lower periods as the draft increases. However,
the width of the unstable region, as well as the ampli-
tude of response, considerably shrinks as Lc increases.
Remarkably, configuration DRT6 is almost unaffected
by parametric response, likely due to the increase in the
rotational hydrostatic stiffness, which make its relative
variation less significant.

Ultimately, since the system is a wave energy con-
verter, the most important quantity to consider is the
converted power, as shown in Fig. 15. For all configura-
tions, a clear local drop of power production is visible
around the region of parametric instability, confirm-
ing the detrimental effect of parametric resonance for
all draft configurations. Overall, the best configuration
appears to be DRT4, with a wider and higher-power
conversion region, as shown in Fig. 15, and a rela-
tively low and localized parametric response, as shown
in Fig. 14. From Fig. 15, it seems that configuration
DRT6 is the one where the power extraction is less
affected by parametric resonance, as the relevant power
spectrum falls between the two instability regions at
around Tn,4/2 and Tn,4. Ultimately, two conflicting
design objectives should be balanced, namely power
conversion capabilities, shown in Fig. 15, and oper-
ability/survivability, which depends on several differ-
ent aspects, including roll response, shown in Fig. 14.
One potential proxy for survivability is the resulting
mooring load, as considered in [16], or the maxi-
mum pitch/roll angle, which may affect the structural
integrity of the tube.

As a final remark, note that all discussion and sensi-
tivity analysis herein performed is based on idealized
monochromatic waves, which are simple and concise,
carrying univocal frequency and amplitude informa-
tion. However, real waves are random realization of
a stochastic process, so the likelihood and severity of
parametric resonance, although correlated to regular
wave conditions, is potentially changing. Therefore,
consideration regarding relative advantages of differ-
ent design solutions is to be read as preliminary and
further investigation and testing is required to corrob-
orate such conclusions.
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