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Evaluation of geometrically nonlinear effects due to large
cross-sectional deformations of compact and shell-like

structures

E. Carrera∗, A. Pagani†, R. Augello‡

Mul 2 Group
Department of Mechanical and Aerospace Engineering, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

Abstract: This paper investigates geometrically nonlinear effects due to large deforma-
tions over the cross-sections of beam-like and shell-like structures. Finite elements are used
to provide numerical solutions along with the Newton-Raphson technique and the arc-length
method. Refined theories able to capture cross-sectional deformation are constructed by refer-
ring to the Carrera Unified Formulation. Full nonlinear Green-Lagrange strains and second
Piola-Kirchoff stresses are employed in a total Lagrangian scenario. The numerical results
demonstrate that geometrical nonlinearities play a fundamental role when cross-sectional de-
formations become significant and theories of structures with nonlinear kinematics are utilized.
In other words, this means that the use of refined beam models may be ineffective if geomet-
rical nonlinear relations are not employed. These phenomena become particularly evident in
thin-walled/shell-like type structures.

Keywords: Carrera unified formulation; Higher-order beam models; Geometrical nonlin-
ear relations.

1 Introduction

Beam theories are an important means for the study of a large number of structural prob-
lems in many engineering fields, such as mechanical, civil and aerospace. Compared to two-
dimensional (2D) and three-dimensional (3D) models, one-dimensional (1D) theories provide
a great advantage in terms of computational costs when dealing with slender structures.
Early theories include the classical models of Eulero-Bernoulli [1], Saint-Venant [2, 3] and
Timoshenko [4]. According to these models, the three-dimensional problem is reduced into
a one-dimensional one, which depends only on the axial coordinate along the beam length
(axis). A detailed analysis and discussion of these classical theories have been provided in
many works, for example by Mucichescu [5].
Classical beam theories are based on the assumption of rigid cross-sections. Nevertheless,

∗Professor of Aerospace Structures and Aeroelasticity
†Assistant Professor. Corresponding author. E-mail: alfonso.pagani@polito.it
‡Post Graduate Research Assistant. E-mail: riccardo.augello@polito.it

1



the analysis of more general structures, such as thin-walled beams, and the need to detect
in-plane distortion, local effects and warping, may require the use of specific and refined beam
theories. Many refined beam theories are available in the literature. A discussion of various
models can be found, for instance, in Kapania and Raciti [6, 7], who provide a review of several
beam and plate theories for vibration, buckling, and post-buckling, with particular attention
to models that account for transverse shear-deformation. A comprehensive discussion about
higher-order beam models for the linear analysis of metallic structures can be found in the
review paper by Carrera et al. [8] and Carrera and Petrolo [9]. A comprehensive review of
theories of beam-like structures is provided in the book of Hodges [10].

The local effects that may occur in the structures are more evident when they are subjected
to loadings that lead to large displacements and large rotations. The nonlinear geometric re-
lations shall be taken into account when these phenomena are current. Based on the classical
Euler-Bernoulli beam theory [1], efficient solutions for this problem are represented by the
works of Barten [11] and Rodhe [12], who analyzed cantilever beams undergoing concentrated
and distributed loads. The problem of beams in the large deflection field was also investigated
by Conway [13], regarding simply supported beams, and Wang [14], who addressed numerical
analysis for these problems. Baẑant and Cedolin [15] proved that it is necessary to carry out
a 3D analysis to detect all the local effects and the post-buckling, that may occur within the
structure. Bathe and Bolourchi [16] proposed an updated Lagrangian and a total Lagrangian
formulation of a 3D beam element, showing its computational efficiency. However, in the pres-
ence of local effects or higher-order phenomena, the implementation of refined beam models
in the geometrically nonlinear analysis is mandatory. Simo and Vu-Quoc [17] considered a
three-dimension rod model accounting for torsional warping of its cross-section. Ibrahimbe-
gović and Frey [18] used finite element analysis to discuss the geometrical nonlinear behavior
of elastic beams, considering the shear deformation, referring to the Reissner work [19]. In the
literature, works on the nonlinear analysis of thin-walled structures can be found:for example,
the book from Doyle [20]. Chan and Kitipornchai [21] derived nonlinear governing equations
for thin-walled elements, including second order nonlinear terms, and Kang and Yoo [22] an-
alyzed the buckling behavior of thin-walled circular beams in the large displacement field. In
this work, an higher-order formulation is used to evaluate geometrical nonlinearities due to
large cross-sectional deformations and large rotations on beam structures. As qualitatively
shown in Fig. 1, beams can exhibit relevant displacements over the cross-section. Figure 1(a)
shows that classical beam theories are not able to catch any cross-section displacement and
deformation. Figure 1(b) shows the evaluation over the cross-section using refined beam
theories. The problems we address in this paper are the following: are the geometrically

(a) Rigid rotations from
classical theories

(b) Cross-section deformations by refined beam theories

Figure 1: Cross-section deformation for different beam theories

linear models able to exactly describe the cross-section deformations and rotations, which
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are described by refined beam models of Fig. 1(b)? Does an higher-order (i.e., kinematically
nonlinear) model require the use of nonlinear displacement-strain relations? What is the
accuracy with respect to the section geometry? This work will demonstrate with practical
examples that, even if higher-order theories are applied to calculate the displacement field
over the cross-section, the geometrical nonlinear relations must be taken into account to be
able to catch the correct displacement field, for a given class of problems. To make that more
clear, consider the Green-Lagrange strain tensor. The strains along the three Cartesian axes
x,y,z are:

εxx = ux,x +
1

2
(ux,x

2 + uy,x
2+

(Section)

uz,x
2 )

εyy = uy,y +
1

2
(ux,y

2 + uy,y
2+

(Flexure)

uz,y
2 )

εzz = uz,z +
1

2
(

(Section)

ux,z
2 +uy,z

2 + uz,z
2)

(1)

where y is the beam axis, and x and z are the coordinates along the beam axis. (see Fig. 2),
while ux, uy, uz are the correspondent displacements, respectively. The term uz,y

2 regard the
nonlinearity along the beam axis, whereas uz,x

2 and ux,z
2 are those within the cross-section.

Figure 2 shows the notation used. The uz,
2
y component of the Eq. 1 would be required to

describe the displacement of the beam in its global bending, while the use of uz,
2
x and ux,

2
z

could be mandatory to catch the nonlinearities over the cross-section. It appears evident that
to approach the problem appropriately it would be necessary to use both higher-order theory
and geometrically nonlinear models. In this paper the higher-order beam model is derived in

L

u

y

z z

(a) Overall

a

a

x

uz

ux

(b) Section

Figure 2: Main displacement components in the global bending and local cross-section defor-
mation for a thin-walled beam.

the framework of the Carrera Unified Formulation (CUF) [23], whose extension to nonlinear
problems was given in [24].
CUF is a hierarchical formulation that considers the order of the structural model as an in-
put of the analysis so that no specific formulations are needed to obtain any refined models.
Any higher-order theory is obtained by means of the so called ”fundamental nuclei” (FN),
which form is independent on the order of the expansion used to express the displacements
unknowns on the cross-section. CUF has been applied to solve various problems, including
post-buckling [24], and thin-walled cross-section [25]. Further examples of CUF applications
are the hygrothermal analysis [26], micromechanics [27], thermo-elastic response [28, 29] and
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free vibration analysis [30], among the others. CUF has been recently extended to nonlinear
geometric problems, for both metallic and composite structure [24, 31]. This paper is orga-
nized as follows: (i) first, some preliminary and introductory information is given in Section 2,
including the kinematic relations and the constitutive expressions for elastic metallic mate-
rials, and the formulation of the refined beam theory used, namely the CUF and the Finite
Element Method (FEM); (ii) subsequently, Section 3 briefly describes the nonlinear govern-
ing equations and the fundamental nuclei of secant and tangent matrices for the solution of
the geometrically nonlinear problem; (iii) then, numerical results are discussed for different
loading and structural cases in Section 4; (iv) finally, the main conclusions are drawn.

2 Higher-order beam element

2.1 Constitutive and geometric relations

In this study, we consider beam elements with arbitrary cross-sections and they lay on the
x-z plane of a Cartesian reference system. The y coordinate is the direction of the beam axis.
Before introducing the constitutive and geometric relations, it is important to state that in
this work, for convenience purpose, stress and strain tensors are expressed in vectorial form.

σ =
{
σxx σyy σzz σxz σyz σxy

}T
, ε =

{
εxx εyy εzz εxz εyz εxy

}T
(2)

Regarding the constitutive relations, a linear elastic isotropic metallic is considered. The
relation between σ and ε is thus expressed by the Hooke’s law, as shown in the following
equation:

σ = Cε (3)

where C is the material matrix. Explicit form of matrix C can be found in many books, see
[32, 33].
For the geometrical relations, the Green-Lagrange nonlinear strain equations are taken into
account.

εxx = ux,x +
1

2
(ux,x

2 + uy,x
2 + uz,x

2)

εyy = uy,y +
1

2
(ux,y

2 + uy,y
2 + uz,y

2)

εzz = uz,z +
1

2
(ux,z

2 + uy,z
2 + uz,z

2)

εxz = ux,z + uz,x + ux,xux,z + uy,xuy,z + uz,xuz,z

εyz = uy,z + uz,y + ux,yux,z + uy,yuy,z + uz,yuz,z

εxy = ux,y + uy,x + ux,xux,y + uy,xuy,y + uz,xuz,y

(4)

The displacement-strain relations can be written in a compact form by introducing the linear
and nonlinear differential operators bl and bnl. The relation is described in the following
Eq. 5.

ε = εl + εnl = (bl + bnl)u (5)
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The complete form of these two matrices can be found in [24].

2.2 Unified beam kinematics

The beam model adopted in this work for the analyses is developed in the framework of the

CUF. Here, the three-dimensional displacement field u(x, y, z) =
{
ux uy uz

}T
can be

expressed as a generic expansion of the primary unknowns. In the case of one-dimensional
theories, one has:

u(x, y, z) = Fs(x, z)us(y), s = 1, 2, ....,M (6)

where Fs are the expansion functions of the cross-section with coordinates x and z, us is
the vector of the displacements evaluated on the beam axis, M represents the order of the
expansion functions, and the subscript s denotes summation. In this formulation, any kind
of 1D models can be adopted by opportunely choosing the Fs. The research work proposed
in this paper makes use of three different cross-section functions: L4, which implies a bi-
linear interpolation on the cross-section; L9 with quadratic interpolation; L16 with cubic
interpolation. For instance, the displacement field given by L16 approximation is:

ux = F1ux1 + F2ux2 + F3ux3 + F4ux4 + F5ux5 + ...+ F14ux14 + F15ux15 + F16ux16
uy = F1uy1 + F2uy2 + F3uy3 + F4uy4 + F5uy5 + ...+ F14ux14 + F15ux15 + F16ux16
uz = F1uz1 + F2uz2 + F3uz3 + F4uz4 + F5uz5 + ...+ F14ux14 + F15ux15 + F16ux16

(7)

where ux1, . . . , uz16 are the displacement at the nodes of the L16, and F1, ..., F16 are expansion
functions. Interested readers can refer to [25] for further details.

2.3 Finite element approximation

To discretize the structure along the y axis, FEM is adopted. Thus, the generalized displace-
ment vector us(y) is approximated as expressed in the following equation:

us(y) = Nj(y)qsj j = 1, 2, . . . , p+ 1 (8)

where Nj stands for the j-th shape function, p is the order of the shape functions, j indicates
summation and qsj is the vector of the FE nodal parameters. It is important to note that
the choice of the expansion functions for the cross-section, in terms of both class and size, is
independent of the finite beam element used to discretize the displacement along the beam
axis.
Finally, Eq. 5 can be written with the introduction of the CUF (Eq. 6) and FEM (Eq. 8)
relations. In this way, the strain vector can be written in algebraic form as follows:

ε = (Bsj
l + Bsj

nl)qsj (9)

where Bsj
l and Bsj

nl are the linear and nonlinear algebraic matrices.

3 Nonlinear governing FE equations

Equilibrium equation is derived from stationary conditions via the principle of virtual work,
which states that the virtual variation of the strain energy (δLint) is equal to the virtual
variation of the work of the external loads (δLext). By adopting the notation described in the
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previous section and as shown in Eq. 2, the virtual variation of the internal strain energy can
be written as:

δLint =

∫
V

δεTσ dV (10)

Starting from Eq. 10, considering the constitutive equations for elastic materials (Eq. 3) and
the geometric relation Eq. 9, one can write:

δLint = δqTτi (
∫
V

(
Bτi
l + 2 Bτi

nl

)T
C
(
Bsj
l + Bsj

nl

)
dV ) qsj

(11)

Equation 11, and in particular the argument of the integral, can be written in terms of FNs.
The result is the secant stiffness matrix Kijτs

S , that is made of the sum of the following four
contributions:

∫
V

Bτi
l C Bsj

l dV = Kijτs
0 linear contribution∫

V

Bτi
l C Bsj

nl dV = Kijτs
lnl nonlinear contribution of order 1∫

V

2 Bτi
nl C Bsj

l dV = Kijτs
nll nonlinear contribution of order 1∫

V

2 Bτi
nl C Bsj

nl dV = Kijτs
nlnl nonlinear contribution of order 2

(12)

Concerning the FN of the tangent stiffness matrix, Kijτs
T , it is derived from the linearization

of the equilibrium equations, see [24]. We assume that the loading is conservative so that
the linearization of the virtual variation of the external loads is zero. Formally, the tangent
matrix can be obtained from linearizing the virtual variation of the strain energy as follows:

δ(δLint) =
∫
V
δ(δεTσ) dV

=
∫
V

(δεT δσ) + (δ(δεT )σ) dV

(13)

where the first term is calculated as follows:

∫
V
δεT δσdV = δqTτi (

∫
V

(Bτi
l + 2 Bτi

nl)
TC (Bsj

l + 2 Bsj
nl)) dV )δqsj

(14)
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As done for the Eq. 11, Eq. 14 can be written in terms of the FN, as shown in the following
system:

∫
V

Bτi
l C Bsj

l dV = Kijτs
0 linear contribution

∫
V

Bτi
l C 2 Bsj

nl dV = 2 Kijτs
lnl nonlinear contribution of order 1

∫
V

2 Bτi
nl C Bsj

l dV = Kijτs
nll nonlinear contribution of order 1

∫
V

2 Bτi
nl C 2 Bsj

nl dV = 2 Kijτs
nlnl nonlinear contribution of order 2

(15)

Note that Kijτs
0 , Kijτs

lnl , Kijτs
nll , and Kijτs

nlnl are the same 3× 3 FNs as given in Eq. 11.
The second term of the Eq. 13 is:∫

V
δ(δεT )σ dV = δqTτiK

ijτs
σ δqsj (16)

where Kijτs
σ is often called the geometric stiffness matrix. The explicit form of the FN of both

secant and tangent stiffness matrix and the omitted steps for the solution of the Eq. 16 can
be found in [24]. A vast numerical investigation has been made to study the effects of section
deformation vs nonlinear effects. Several results are described in the following subsections.
Assessment of the nonlinear model is given in previous works [24, 31]. Also, in these works,
the complete procedure that is used in the present investigation for the resolution of the
nonlinear equations, and which make us of a Newton-Raphson method along with a path
following constraint, is described in detail.

4 Numerical results

4.1 Compact cross-section beam

To show the relationships between the kinematics of higher-order theories and the nonlinear
displacement-strain relations, a square compact cross-section of a beam is considered first.
The beam is made of an aluminium alloy with Young modulus E equal to 75 GPa and Poisson
ratio ν = 0.33, and it is subjected to clamped-free boundary conditions. The geometry of
the cross-section is shown in Fig. 3, with side w = 0.1 m. The beam has length L = 2
m. Two loadings P are applied at two opposite sides of the cross-section, as depicted in the

P P

A

w

Figure 3: Cross-section geometry and loading condition for the compact square beam.

figure. To take into account higher-order theories, 1L4, 1L9 and 1L16 Lagrange polynomial
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discretizations have been adopted for the description of the cross-section, as shown in Fig. 4.
Increasing forces have been applied to the structure, until it reaches the tensile yield strength
which, for the aluminum alloy chosen, is 503 MPa. Both linear and nonlinear analyses are

x

z

(a)

x

z

(b)

z

x

(c)

Figure 4: Cross-section discretization for the compact cross-section beam.

conducted, and the displacement in the x-direction of the middle point of the upper side of the
cross-section (the point “A” in Fig. 3) has been evaluated. Then, the percentage difference
between linear and nonlinear solutions has been plotted in Fig. 5. The results show that the
greater the order of the beam theory, the higher the difference between linear and geometric
nonlinear analyses. Nevertheless, the values of the percentage differences are not relevant from
the engineering perspective, hence linear analyses could be considered quite accurate for the
compact beam analyzed in this section. Figure 5 shows that even with a high order theory

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  50  100  150  200  250  300  350

e%

P, kN

L4
L9

L16

Figure 5: Percentage difference between linear and geometric nonlinear analyses for compact
square cross-section beam.

for the calculation of the displacement field over the compact cross-section, the difference
between linear and nonlinear solutions is low. For the sake of completeness, some significant
displacement values are reported in Table 1. Main results results are highlighted in bold,
showing that the difference between linear and nonlinear solutions increases from 0.4 for a
linear beam theory to 1.1 for a quadratic beam theory and 1.3 to a cubic model.
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L4 L9 L16
P −uxl −uxnl e% −uxl −uxnl e% −uxl −uxnl e%

9.997 0.004 0.004 0.011 0.010 0.010 0.029 0.008 0.008 0.033
52.68 0.020 0.020 0.058 0.051 0.051 0.152 0.044 0.044 0.175
128.3 0.048 0.048 0.141 0.123 0.124 0.370 0.106 0.107 0.427
256.7 0.097 0.096 0.097 0.246 0.248 0.740 0.213 0.215 0.857
392.4 0.149 0.148 0.431 0.376 0.381 1.129 0.325 0.329 1.311

Table 1: Values of the displacement and error of the compact cross-section, for various beam
theory orders and both linear and geometric nonlinear solutions. The load is expressed in kN,
the displacements are expressed in mm× 103.

4.2 Thin-walled beam

The second analysis deals with a thin-walled channel-section beam. The geometry is shown
in Fig. 6, with w = 0.1 m, h = 0.1 m and t = 0.01 m. The length of the beam is L = 2 m.
The material properties are the same as in the previous case. Three different higher-order

P P

w

h

t

A

Figure 6: Cross-section geometry and loading condition for the open section beam.

models are used to describe the channel-section and to calculate the displacement field, and
they differ in the order and number of Lagrange polynomials adopted on the cross-section.
In detail, 8L4, 8L9 and 8L16 have been implemented, as shown in Fig. 7. Increasing forces

x

z

(a) 8L4 discretization

x

z

(b) 8L9 discretization

x

z

(c) 8L16 discretization

Figure 7: Cross-section discretization for the open section beam.

have been applied to the structure until the stress reaches the tensile yield strength. In this
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scenario, linear and nonlinear analyses are conducted and the displacement of the point “A”
along x-axis is evaluated. The difference between linear and nonlinear solutions is calculated
and shown in Fig. 8. In this case, the percentage difference in higher-order theory including

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  5  10  15  20  25  30  35

e%

P, kN

Compact section - L4
Compact section - L9

Compact section - L16

Figure 8: Percentage difference between linear and geometrical nonlinear analyses for open
cross-section.

or not the nonlinear terms is more than 10 times greater than in the previous compact cross-
section case (Fig. 5). The three higher-order theories present the same behavior as in the
previous case. By increasing the external loading, the percentage difference increases. This
trend can be better appreciated in Table 2, where some values of both linear and nonlinear
solution are reported. High difference percentages between linear and nonlinear analyses are

L4 L9 L16
P −uxl −uxnl e% −uxl −uxnl e% −uxl −uxnl e%

1.503 0.498 0.498 0.049 1.314 1.311 0.193 1.363 1.358 0.335
6.377 2.099 2.094 0.258 5.571 5.512 1.064 5.776 5.681 1.665
16.94 5.564 5.626 1.017 14.80 14.21 4.157 15.31 14.49 5.735
25.62 8.338 8.508 1.888 22.38 20.77 7.764 23.13 21.00 10.12
35.08 11.29 11.64 3.044 30.63 27.21 12.57 31.60 27.30 15.74

Table 2: Values of the displacement and error of the compact cross-section beam, for vari-
ous beam theory orders and for both linear and geometric nonlinear solutions. The load is
expressed in kN , the displacements are expressed in mm× 103.

quoted in bold in the table. These values goes from 3.0 for a first order beam model to 12.6
for a quadratic beam model and to 15.7 to a cubic theory. It is clear that for these thin-walled
problems the use of higher-order theory requires the use of nonlinear geometrical relations.

4.3 Thin-walled pinched cylinder

As a final example, a thin-walled pinched cylinder has been analyzed. Material and geometri-
cal data have been taken from a very well known shell problem problem by Flügge [34]. The
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material has Young modulus E = 3 × 106 psi and Poisson ratio ν = 0.3. The geometry is
shown in Fig. 9, with length L = 600 in, radius r = 300 in and thickness t = 3 in. As in

P
L 2

L 2

r

t

Figure 9: Cross-section geometry and loading condition for the pinched cylinder.

the previous cases, three different higher-order beam models have been utilized to evaluate
the displacement field over the cross-section. For completeness reasons, Table 3 shows the
comparison of solutions from the present beam model and the one provided by Flügge. As

Model Displacement
Flügge 0.15118
L4 0.08479
L9 0.15107
L16 0.15174

Table 3: Values of the displacement of the point B in the linear solution, compared to that
from Flügge [34]. The load is equal to 1lb, the displacement are expressed in in× 10−4.

shown in Fig. 10, 30 Lagrange polynomials are spaced over the cross-section and they are
progressively smaller, in order to ensure more accurate results in the position of the applied
load (the decrease of the polynomials is linear so that A1/A2 = 10). Both static linear and

A1

A2

z

x

(a) 30L4 discretization

A1

A2

z

x

(b) 30L9 discretization

A1

A2

z

x

(c) 30L16 discretization

Figure 10: Cross-section discretization for the pinched cylinder.

nonlinear analysis have been performed and the percentage difference between the linear and
nonlinear solution has been evaluated. In Fig. 11, the z component of the displacement of the
point B (in the cross-section depicted in the figure) was taken into account and the results
show how L9 and L16 polynomials lead to the almost same results, while the L4 solution
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Figure 11: Percentage difference between linear and nonlinear analyses results for the pinched
cylinder.

is completely different. Moreover, for all the dicretization, the error is null for some given
positions on the cross-section. The reason is that, before this value, the displacement from
the nonlinear solution is higher than the linear solution one, as can be seen in Fig. 12(a),
while it becomes less increasing the external load, as shown in Fig. 12(b) (in Fig. 12 the dif-
ferences between linear and nonlinear solutions can be better appreciated. Some of the most
important displacement and error values are reported in Table 4. To better appreciate the

L4 L9 L16
P −uzlb −uznlb e% −uzbl −uznlb e% −uzlb −uznlb e%

10.10 0.080 0.085 0.737 0.141 0.153 8.434 0.141 0.153 8.460
80.20 0.634 0.678 5.855 1.276 1.212 −4.052 1.268 1.217 −3.998
272.6 2.512 2.312 −5.943 7.591 4.119 −45.17 7.368 4.137 −45.83
3707 35.09 31.43 −10.67 43.54 56.00 28.05 43.74 56.25 28.60
10928 60.67 91.64 51.06 64.16 165.1 152.2 65.00 165.8 155.2

Table 4: Values of the displacement and error of the thin-walled cylinder, for various beam
theory orders and for both linear and geometric nonlinear solutions. The load is expressed in
lb× 103, the displacements are expressed in in.

difference from the three theories, another displacement has been evaluated: in Fig. 13(a),
in fact, point C has been taken into account, leading to evident differences between the L16
solution and the other two. Moreover, in 13(b) the percentage error of the values of the
von Mises stress in point C are evaluated, showing the same trend as the other figure for the
pinched cylinder.
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(a) Linear solution (b) Nonlinear solution

Figure 12: Global deformation shapes of the thin-walled cross-section beam for the L16
polynomials configuration.
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Figure 13: Percentage difference about the displacement and von Mises stress value at the
point C, between linear and nonlinear analyses.
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5 Conclusions

The effectiveness of geometrical nonlinear relations in higher-order models of beams and
shell-like structures has been investigated in this work. By employing the Carrera Unified
Formulation (CUF), different higher-order theories have been addressed in the domain of
linear and nonlinear elasticity. Different cross-sections have been analyzed, and in particular,
it has been shown that the geometrical nonlinear kinematic relations can be very significant on
thin-walled type structures. It has been proved that in many problems the use of refined beam
model must be accomplished by a geometrical nonlinear formulation to correctly capture the
deformed state of the given structure.
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