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Paper submitted for the Special Issue celebrating the

75th Anniversary of Professor J.N. Reddy

Popular benchmarks of nonlinear shell analysis solved by
1D and 2D CUF-based finite elements

E. Carrera∗, A. Pagani†, R. Augello‡, B. Wu§

Mul 2 Group
Department of Mechanical and Aerospace Engineering, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

Abstract: This research work deals with the analysis of shell structures in the large dis-
placement and rotation field adopting one-dimensional (1D) and two-dimensional (2D) unified
models. Namely, higher-order beam and shell theories accounting for geometrical nonlineari-
ties are formulated by employing a unified framework based on the Carrera Unified Formulation
(CUF) and a total Lagrangian approach. Thus, a Finite Element (FE) approximation is used
along with a Newton-Raphson method and an arc-length path-following approach to perform
nonlinear analyses. Low- to higher-order beam and shell theories are used to evaluate the
nonlinear equilibrium path, and results are compared between the two models, with reference
solutions coming from literature or 2D and three-dimensional (3D) models from NASTRAN.
Convergence analyses show how CUF 1D models are able to describe the geometrical nonlinear
behavior of analyzed structure with a lower number of Degrees of Freedom (DoFs) than 2D
and 3D models.

Keywords: Carrera unified formulation; Geometrical nonlinearities; Beam and shell the-
ories; Convergence analyses.

1 Introduction

Shell structures are widely adopted in various engineering fields and, as a matter of fact, mod-
ern design processes demand for accurate prediction of their mechanical behaviour. When
external loading conditions become large, shell structures are prone to suffer large rotations,
and the adoption of models able to describe internal stress states as well as complex dis-
placement fields in this condition is of paramount importance. For this purpose, designers
often rely on three-dimensional (3D) Finite Element (FE) simulation to obtain a reasonable
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structural response. The need to reduce the computational cost of the analysis of structures
with complex geometry, such as thin-walled and shell-like components, pushed scientists and
researchers to develop refined one-dimensional (1D) and two-dimensional (2D) theories for
the modeling of such structures, with an acceptable loss of accuracy. The main goal of this
research work is a comparison between 1D and 2D shell models developed in a unified manner,
for the geometrical nonlinear analysis of shell structure.
Beam models represent a suitable solution for the analysis of structure in which length is
dominant compared to the other dimensions. The interest in the development of beam mod-
els is high due to the possibility of its adoption in many engineering fields, such as aerospace
engineering for the analysis of aircraft wings of helicopter blades, civil engineering for slender
bridges, or automotive engineering for transmission shafts. Interestingly, the lower computa-
tional cost compared to 2D and 3D models, makes beam models the optimal solution for the
analysis of slender structures. The best-known beam theories, considered as classical beam
models, are those by Euler [1] and Timoshenko [2, 3]. These models are reliable when dealing
with slender and compact structure. In fact, the former does not account for shear deforma-
tions, whereas the latter considers a uniform shear distribution along the cross-section of the
beam-like structure. On the contrary, when dealing with structures in which the cross-section
deformability plays an important role in the overall static behavior, the adoption of more
sophisticated 1D models is needed, see [4]. For this reason, higher-order 1D models were
developed to overcome these limits. A comprehensive discussion about higher-order beam
models for the linear analysis of metallic structures can be found in the paper by Carrera et
al. [5]. A comprehensive review of beam (including plate) theories was presented by Kapania
and Raciti [6, 7]. An overview of existing beam FEs was made by Reddy [8], where beam
elements based on classical and higher-order theories were described, and the problems of
shear locking and locking-free beam elements were discussed. As further examples, Petrolito
[9] and Eisenberger [10] dealt with the exact stiffness matrix analysis of a high-order beam el-
ement: the refined displacement field was based on a cubic variation of the axial displacement
over the cross-section of the beam, and the importance of higher-order terms in case of short
beams was underlined. The Generalized Beam Theory (GBT) was used to implement beam
theories accounting for the in-plane cross-section deformations, and shell-type results were ob-
tained by using appropriate cross-section shape functions describing the beam displacement
field. GBT was also used by Rendek and Baláž [11], for the static analysis of thin-walled
beams and comparisons with experimental results. The adoption of higher-order beam mod-
els is required when the structures is in the large deflection and rotation field. For instance,
Frischkorn and Reese [12] used a eight-node beam element with only displacement Degrees of
Freedoms (DoFs) for the nonlinear modeling in the large displacement field. Vieira et al. [13]
proposed an higher-order beam model for the geometrical nonlinear analysis of thin-walled
structure, with an opportune integration over the cross-section.
As far as the 2D model is concerned, a variety of shell theories were proposed in the last
decades. The classical theories come from the pioneering works by Cauchy [14], Poisson [15],
Kirchhoff [16], Love [17] and by Reissner [18] and Mindlin [19]. To overcome the approxima-
tions and assumptions made by classical theories, for example when dealing with composite
structures or, in general, when the through-the-thickness strains and stresses highly afflict
the overall static behavior, a series of higher-order 2D theories have been developed. For
example, Reddy [20] reviewed and described the mechanics of laminated 2D structures (ind-
luding plate theory). Reddy and Liu [21] developed a shear model accounting for a parabolic
distribution of the trhough-the-thickness transverse shear strains. A parabolic shear strain
distribution was assumed also by Kulkarni and Bakora [22] to develope an eigth node FE of
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a shell element with piezo-elettric effects. Moreover, Liew and Lim [23] resorted to a cubic
distribution of the shear strains to evaluate the vibration caharacteristics of thick cylindrical
shallow shells. The literature about the adoption of higher-order shell models for the geomet-
rical nonlinear analysis is wide. Hughes and Liu [24] developed a nonlinear FE formulation
for the quasistatic analysis of shells in the large strains and rotations field. Surana [25] used
a total lagrangian approach for the 3D curved shell elements. Large membrane strains were
anayzed by the developed model from Hughes and Carnoy [26]. A shell model with six DoFs
per node was been developed by Park et al. [27] for the accurate description of the strain field
in the geometrical nonlinear analysis. The large deformation field of both single-layered and
laminated shells was been investigated by Lee and Kanok-Nukulchai [28], using the arc-length
method to follow any load-displacement paths. Finally, Providas and Kattis [29] adopted the
well-known von Kármán approximations for the geometrical nonlinear analysis of thin shells.
The 1D and 2D shell models and the related nonlinear analysis proposed in this work are
based on the Carrera Unified Formulation (CUF) [30, 31]. According to CUF, any theory
of structures can degenerate into a generalized kinematics that makes use of an arbitrary
expansion of the generalized viariables. In this manner, the nonlinear governing equations
and the related FE arrays of the beam and shell theories are written in terms of fundamental
nuclei. These fundamental nuclei represent the basic building blocks that, when opportunely
expanded, allow for the straightforward generation of low- and high-order finite beam and
shell elements. CUF has been utilized for many engineering problems over the last few years;
e.g., composite structures [32], rotating blades and rotors [33], civil engineering structures
[34], aerospace constructions [35, 36], and multi-field problems [37], among the others. CUF
was extended to geometrical nonlinear problems, for both metallic and composite structure
regarding the static [38, 39] and vibration analysis [40, 41]. Here, the formulation is further
extended to deal with the geometrical analysis of shell structures, which formulation was pre-
sented by [42].
This paper is organized as follows: (i) first, preliminary and introductory information about
1D and 2D models are reported in Section 2, including the geometrical and constitutive ex-
pressions for elastic metallic materials, the Green-Lagrange nonlinear geometrical relations,
CUF, and the related FE; (ii) subsequently, Section 3 briefly reports the solution adopted in
this work for the resolution of the geometrical nonlinear FE equations; (iii) then, numerical
results are discussed for a pinched cylinder and a cylindrical panel, including a comparison
with literature results and results from the commercial software NASTRAN in Section 4; (iv)
finally, the main conclusions are drawn.

2 Carrera unified formulation

One-dimensional (1D) beam and two-dimensional (2D) shell models for a generic cylindrical
structure are described hereafter. Figure 1 shows the 1D model, with the cross-section Ω,
which lays on the xz-plane of a Cartesian reference system (x, y, z). As a consequence,
the beam axis is placed along y. The transposed displacement vector is introduced in the
following:

u(x, y, z) =
{
ux uy uz

}T
(1)

The stress, σ, and strain, ε, components are expressed in vectorial form with no loss of
generality,

σ =
{
σxx σyy σzz σxz σyz σxy

}T
, ε =

{
εxx εyy εzz εxz εyz εxy

}T
(2)
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Figure 1: The modeling of a generic shell structure using both 1D and 2D models. For 1D
model, y is the direction of the beam axis, whereas for the 2D model z is the shell thickness
coordinate.
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The 2D model of a generic shell structure is also reported in Fig. 1, along with its curvature
radius Rα and thickness h. The geometry is described using a orthogonal curvilinear reference
system (α, β, z), in which α and β are the two in-plane directions and z represents the through-
the-thickness coordinate. The three-dimensional (3D) displacement transposed vector u of a
given point in the continuum shell is:

u(α, β, z) =
{
uα uβ uz

}T
, (3)

The transposed strain (ε) and stress (σ) vectors defined in the curvilinear reference system
are:

σ =
{
σαα σββ σzz σαz σβz σαβ

}T
, ε =

{
εαα εββ εzz εαz εβz εαβ

}T
, (4)

2.1 Geometrical and constitutive relations

As far as the geometrical relations are concerned, the Green-Lagrange nonlinear strain com-
ponents are considered. Therefore, the displacement-strain relations are expressed as

ε = εl + εnl = (bl + bnl)u (5)

where bl and bnl are the linear and nonlinear differential operators. The complete expression
of bl and bnl are different for 1D and 2D models. In the case of 1D model, they read:

bl =



∂x 0 0

0 ∂y 0

0 0 ∂z

∂z 0 ∂x

0 ∂z ∂y

∂y ∂x 0


, bnl =



1

2
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2 1

2
(∂x)

2 1

2
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2

1
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(∂y)

2 1
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2 1
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(6)

where ∂x =
∂(·)
∂x

, ∂y =
∂(·)
∂y

, and ∂z =
∂(·)
∂z

. For the 2D model, bl and bnl are defined as:

bl =



∂α
Hα

0 1
HαRα

0
∂β
Hβ

1
HβRβ

0 0 ∂z

∂z − 1
HαRα

0 ∂α
Hα

0 ∂z − 1
HβRβ

∂β
Hβ

∂β
Hβ

∂α
Hα

0


, (7)
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and

bnl =



1
2H2

α
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(∂α)2 + 2uz∂α
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+ uα
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]
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,

(8)

in which ∂α =
∂(·)
∂α

, ∂β =
∂(·)
∂β

, Hα = (1 +
z

Rα

), and Hβ = (1 +
z

Rβ

). Note that Eqs. 7 and

8 are valid for a doubly curved shell, although single curvature structures are considered in
this paper. More detail about nonlinear CUF-based shell models can be found in [42].
As far as the constitutive relation is concerned, linear elastic metallic shell structures are
considered in this work. Consequently, the constitutive relation reads as:

σ = Cε, (9)

where and C is the material elastic matrix, which explicit form can be found in many books,
see [43, 44].

2.2 Finite element approximation

The 3D displacement field u(x, y, z) of the 1D models, within the framework of the Carrera
Unified Formulation (CUF), can be expressed as a general expansion of the primary unknowns,
as follows:

u(x, y, z) = Fs(x, z)us(y), s = 1, 2, ....,M (10)

where Fs are the functions of the coordinates x and z on the cross-section, us is the vector
of the generalized displacements which lay along the beam axis, M denotes the order of
expansion in the thickness direction, and the summing convention with the repeated index s
is assumed. The choice of Fs determines the class of the 1D CUF model that is required and
subsequently to be adopted. The research work proposed in this paper makes use of nine-point
Lagrange polynomials to approximate the cross-sectional displacement field. As widely shown
and demonstrated in [45], this approximated but refined kinematics can describe accurately
a wide range of classes of structures. The Finite Element Method (FEM) is adopted to
discretize the structure along the y axis. Thus, the generalized displacement vector us(y) is
approximated as follows:

us(y) = Nj(y)qsj j = 1, 2, . . . , p+ 1 (11)

where Nj(y) stands for the j-th 1D shape function, p is the order of the shape functions and
j indicates summation. qsj is the following vector of the FE nodal parameters:

qsj =
{
qxsj qysj qzsj

}T
(12)
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For the sake of brevity, the shape functions Nj are not reported here. They can be found in
many reference texts, for instance in Bathe [43]. However, it should be underlined that the
choice of the cross-section polynomials sets for the LE kinematics is completely independent
of the choice of the beam Finite Element (FE) to be used along the beam axis. In this work,
classical one-dimensional FEs with four nodes (B4) are adopted, i.e. a cubic approximation
along the y axis is assumed.
As far as the 2D models are concerned, through CUF, the 3D displacement field u(α, β, z)
can be expanded as a set of thickness functions depending only on the thickness coordinate z
and the corresponding variables depending on the in-plane coordinates α and β. Specifically,
we have

u(α, β, z) = Fs(z)us(α, β), s = 0, 1, · · · , N, (13)

where N is the the order of expansion in the thickness direction. In this work, three-node
quadratic (LD2) Lagrange expansion function is adopted. For the sake of generality, FEM
is used to discretize the shell structure in the α-β plane. Thus, the generalized displacement
vector us(α, β) is approximated as follows:

us(α, β) = Nj(α, β)qsj, j = 1, 2, . . . , p+ 1, (14)

where Nj is the j-th shape function, p denotes the order of the shape functions and the
repeated index j indicates summation. The vector of the FE nodal parameters qsj is defined
as

qsj =
{
qαsj qβsj qzsj

}T
(15)

In this work, the classical 2D nine-node quadratic FEs (Q9) will be adopted for the shape
function in the α-β plane. For a better understanding of the proposed models, Fig. 2 reports
the approximations previously explained for a generic shell structure adopting 1D beam (Fig.
2(a)) and 2D shell(Fig. 2(b)) models. In particular, the expansion functions Fs, used to
approximate the cross-section of the 1D model and the thickness of the 2D shell model, are
highlighted in red, whereas the shape functions Nj for the beam axis and the 2D surface are
reported in blue.

z
xy

Fs(x,z)

Nj(y)

(a)

z

β

j( ,β)

Fs(z)

(b)

Figure 2: Approximations of the 1D model (a) and 2D model (b) of a generic shell structure.

Finally, introducing the CUF ((Eqs. (10) and (13))) and FEM ((Eqs. (11) and (14))) relations
into Eq. (5), the strain vector can be written in algebraic form as follows:

ε = (Bsj
l + Bsj

nl)qsj (16)

7



where Bsj
l and Bbsj

nl are the linear and nonlinear algebraic matrices with CUF and FEM
formulations. The explicit form of these two matrices are not reported here for the sake of
brevity, but they are reported in [38] for 1D models, and in [42] for 2D shell models.

3 Nonlinear governing equations

For the evaluation of the nonlinear FE governing equations, consider the principle of virtual
work. For a generic body, it reads:

δLint = δLext (17)

where δLint is the virtual variation of the strain energy and δLext is the virtual variation of
the work of the external loads. It is important to note that the equations and mathematical
steps shown hereafter are suitable for both 1D and 2D models.
The virtual variation of the internal work can be expressed as:

δLint =

∫
V

δεTσ dV (18)

where V is the volume of the body. Introducing the geometrical (Eq. (10)) and contitutive
relations (Eq. (17)) into Eq. (18), it takes the following form:

δLint = δqTsj

(∫
V

(
Bsj
l + 2 Bsj

nl

)T
C
(
Bτi
l + Bτi

nl

)
dV

)
qτi (19)

The argument of the integral of the Eq. (19) represents the so called secant stiffness matrix
Kijτs
S , so that the equation can be written as:

δLint = δqTsjK
ijτs
S qτi (20)

The complete form of the secant stiffness matrix Kijτs
S is omitted here for the sake of brevity,

but can be found in [38, 46].
The right term of Eq. (17), omitting some mathematical steps, that can be found in Carrera
et al. [47], can be written as:

δLext = δqTsj psj (21)

so that Eq. (17) becomes:
Kijτs
S qτi − psj = 0 (22)

Equation (22) can be arbitrarily expanded to reach any desired theory, from low- to higher-
order ones, by choosing the values for τ, s = 1, 2, . . . ,M and i, j = 1, 2, . . . , p+ 1, to give:

KS q− p = 0 (23)

where KS, q, and p are the global, assembled finite element arrays of the final structure.
Equation (23) represents a nonlinear algebraic system of equation for which an iterative
method is needed. We employ here the same procedure detailed in the work by Pagani and
Carrera [39], where a Newton-Raphson scheme is derived by making use of a path following
constraint. The main steps of the procedure is explained in this work. This procedures
demands for the linearization of the nonlinear governing equations. As a result, we need to
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introduce the so-called tangent stiffness matrix KT =
d(KSq− p)

dq
. The explicit form of KT

is not given here, but it is derived in a unified form in [42]. The resultant system of equations
needs to be constrained. In this work, an opportune arc-length path-following constraint is
adopted. More detail about the arc-length method adopted can be found in the works by
Carrera [48] and Crisfield [49, 50].

4 Numerical results

Various benchmark problems are herein addressed for demonstrating: 1) convergence analyses
and comparison between 1D and 2D models; 2) the enhanced capabilities of the proposed 1D
and 2D nonlinear refined formulation. Large deflection and quasi-static analyses of cylindrical
shell structures are taken into account. The considered cases are inspired from the well-known
work by Sze et al. [51]. In addition, 3D NASTRAN analyses are conducted for the convergence
of the proposed 1D and 2D models.

4.1 Pinched thin-walled cylinder

The capability of the proposed geometrically nonlinear 1D and 2D models is demonstrated by
the comparison with the results proposed by Pagani et al. [46], where a pinched thin-walled
cylinder was analyzed. The material and geometrical properties come from the well-known
problem analyzed by Flügge [52]. The material is isotropic with Young modulus E = 3× 106

psi and Poisson ratio ν = 0.3. The geometry is shown in Fig. 3, with length L = 600 in, radius
r = 300 in and thickness t = 3 in. The displacement field was evaluated adopting both 1D and

P

L/2

r

t

L/2

Figure 3: Geometry and loading condition for the pinched thin-walled cylinder.

2D theories in the framework of CUF. As far as the 1D model is concerned, the discretization
of the cross-section is reported in Fig. 4(a). 10L9, 20L9, and 30L9 Lagrange polynomials
were employed for the evaluation of the 3D displacement field over the cross-section, whereas
a cubic interpolation along the y-axis is assumed by introducing 1, 2 and 3 classical 1D FEs
with four nodes (B4). Fig. 4(b) shows the 2D shell model, and from 12Q9 up to 600Q9
polynomials were employed for the surface discretization, whereas 1LD2 is employed in the
thickness direction.
Figure 5 shows the quasi-static equilibrium curve of the transverse displacement of the point
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y
z
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(a)

A α

z

β

(b)

Figure 4: Cross-section approximations of the 1D model (a) and 2D model (b) for the pinched
thin-walled cylinder.

A (see Fig. 4). Fig. 5(a) reports the results for the 1D model. Regarding the cross-section,
it results clear that the 30L9 discretization represents a reliable approximations, whereas
for the beam axis, increasing the number of the elements leads to more accurate results.
30L9/20B4 represents a good discretization for the evaluation of the 3D displacement field.
Fig. 5(b) reports the solution for the 2D shell model, and the solution is achieved with a
great accuracy starting from 600Q9 elements to describe the kinematic of the surface of the
cylinder. Correspondent values are reported in Table 1 and compared with those from the 2D
and 3D analysis of NASTRAN. The NASTRAN mesh for both models is depicted in 6. For
the 2D model, 5400 shell elements were used, 90 along the circumferential direction and 60
along the length. Each element has thickness t. For the 3D model, 126000 solid elements were
used, 315 along the circumferential direction, 200 along the length and 2 for the thickness.

Model Approximation DoFs P = 500.0 P = 1000 P = 1500 P = 2000
uzA uzA uzA uzA

1D Beam 10L9 + 3B4 1890 30.64 42.35 49.63 55.15
30L9 + 1B4 2196 28.38 39.00 45.91 51.23
20L9 + 3B4 3690 32.97 44.30 51.38 57.02
30L9 + 3B4 5490 33.35 44.72 51.86 57.57
30L9 + 10B4 17019 34.13 45.86 53.58 59.50
30L9 + 15B4 25254 34.26 46.14 53.73 59.82
30L9 + 20B4 33489 34.49 46.89 54.21 59.92

2D Shell 12Q9 + 1LD2 567 8.865 26.70 35.71 41.74
40Q9 + 1LD2 1683 28.08 39.61 47.08 52.70
70Q9 + 1LD2 2835 30.48 41.85 49.18 54.79
200Q9 + 1LD2 7749 33.16 44.61 51.99 57.62
600Q9 + 1LD2 22509 34.35 46.11 53.68 59.15

3D NASTRAN 200 × 315 571644 34.36 46.23 54.76 59.58

Table 1: Transverse displacement for the 1D and 2D models of the pinched thin-walled cylinder
evaluated at the middle of the thickness of the structure (see point A in Fig. 4). P is expressed
in klb, uzA in inches.

Subsequently, a comparison between the converged 1D and 2D models and the 3D solution
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0
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1000
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2000

2500

0 10 20 30 40 50 60

P, klb

uz, in

1890 DOF - 10L9 + 3B4
2196 DOF - 30L9 + 1B4
3690 DOF - 20L9 + 3B4
5490 DOF - 30L9 + 3B4

17019 DOF - 30L9 + 10B4
33489 DOF - 30L9 + 10B4

(a) 1D Beam CUF model

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60

P, klb

uz, in

567 DOF - 12Q9 + 1LD2
1683 DOF - 40Q9 + 1LD2
2835 DOF - 70Q9 + 1LD2

7749 DOF - 200Q9 + 1LD2
22509 DOF - 600Q9 + 1LD2

(b) 2D Shell CUF model

Figure 5: Nonlinear equilibrium curves of the pinched thin-walled cylinder using 1D (a) and
2D (b) models. Displacement evaluated at the middle of the thickness of the structure (see
point A in Fig. 4). P is expressed in klb, uz in inches.
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t

(a) (b)

Figure 6: Mesh of the 2D model (a) and 3D model (b) of NASTRAN for the pinched thin-
walled cylinder.

from NASTRAN was made. The results are shown in Fig. 7, and the solution from both
models perfectly match the reference one, with 33489 Degrees of Freedom (DoFs) for the 1D
model and 22509 DoFs for the 2D model. The convergence analysis between the two models
compared to the 3D solution of NASTRAN is shown in Fig. 14. It can be pointed out that
the 1D model presents a faster convergence than the shell model. The shown convergence
analysis was conducted for P = 1000 klb.
As a final analysis, a 1D model with different sizes of the FEs is proposed. In fact, for the
results previously shown, a homogeneous discretization for the beam axis is adopted, so that
every B4 element has the same size. This choice was made to make the proposed model as
more generic as possible and suitable for every loading and boundary condition. However,
one of the main features of proposed the unified 1D model is the possibility to refine the
mesh in certain zones of interest within the structure without any issues. As depicted in Fig.
10, one can add more FEs in the proximity of interested areas (for example, the external
force) without any mesh problems. For the 2D models, the refinement is not possible without
resorting to external and time-consuming techniques. Fig. 10(b) shows a finer mesh, and
some red nodes are not connected. Next, a 15B4 1D model with a different size of the FEs
is considered in the next analysis. To distinguish this analysis from the other, an apex is
used, so that 15B4∗ means that the FEs are not equi-sized. The displacement trend is shown
in Fig. 9. Clearly, the results are slightly different from the equi-sized FE mesh, and the
15B4∗ solution is closer to the previously shown with 20B4, with a significant loss of DoFs.
Correspondent values are reported in Table 2.

4.2 Cylindrical hinged panel

As a further example, a cylindrical panel with hinged-free-hinged-free boundary condition is
addressed. The analyzed structure comes from the work by Sze et al. [51]. The material
and geometrical properties are report without any unit of measure, so they are reported
hereafter in the same way. The structure is made of an isotropic material with Young modulus
E = 3102.75 and Poisson ratio ν = 0.3. The geometry is shown in Fig. 11, with length L = 508
in, radius R = 2540, thickness t = 12.7, and θ = 0.1 rad. The sides Ω1 and Ω2 are hinged,
while the other sides are free. As in the previous study case, both 1D and 2D models were
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Figure 7: Nonlinear equilibrium curves of the pinched thin-walled cylinder using 1D and 2D
converged models compared to 2D and 3D analyses with NASTRAN. Displacement evaluated
at the middle of the thickness of the structure (see point A in Fig. 4). P is expressed in klb,
uzA in inches.
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Figure 9: Nonlinear equilibrium curves of the pinched thin-walled cylinder using 1D models.
Transverse displacement valuated at the middle of the thickness of the structure (see point A
in Fig. 4). 15B4∗ means that elements along the beam axis do not have the same size, but
they are finer near the external force.

Model Approximation DoFs P = 500.0 P = 1000 P = 1500 P = 2000
uzA uzA uzA uzA

1D Beam 30L9 + 10B4 17019 34.13 45.86 53.58 59.50
30L9 + 15B4 25254 34.26 46.14 53.73 59.82
30L9 + 15B4∗ 25254 34.32 46.32 54.26 60.43
30L9 + 20B4 33489 34.49 46.89 54.21 59.92

3D NASTRAN 200 × 315 571644 34.36 46.23 54.76 59.58

Table 2: Transverse displacement for the 1D model of the pinched thin-walled cylinder eval-
uated at the middle of the thickness of the structure (see point A in Fig. 4). P is expressed
in klb, uzA in inches. 15B4∗ means that elements along the beam axis do not have the same
size, but they are finer near the external force.

14



B4B4

(a)

Q9 Finer Q9 element 

(b)

Figure 10: 1D elements (a) allow for the refinment of the model without any mesh incon-
gruence. 2D elements (b) present lack of nodes connectivity if a finer mesh is employed in
portions of the structure.

15



t

P

L/2

L/2

R

θ

Ω
1

Ω
2

Figure 11: Geometry and loading condition for the cylindrical hinged panel.

used to evaluate the displacement field over the whole panel. From 4 to 10 L9 Lagrange
polynomials were employed for the evaluation of the 3D displacement field over the cross-
section of the 1D beam model, whereas a cubic interpolation along the y-axis is assumed by
introducing 10 B4 FEs. As far as the 2D shell model is concerned, 25, 36 81 and 100 Q9 were
employed for the surface approximation, whereas 1LD2 is employed in the thickness direction.
Then, the quasi-static nonlinear equilibrium curve was evaluated, and the results are shown
in Fig. 12 in terms of the transverse displacement of the middle point of the panel. Figure
5(a) shows the results for the 1D model. Clearly, 8L9 and 10L9 lead to the same results,
so 8L9/10B4 is assumed as an enough refined model, whereas the solution from 4L9 and
6L9 slighltly deviate from the converged solution. Figure 5(b) reports the solution for the
2D model, and the solution is achieved with a great accuracy starting from 81Q9 elements
to describe the kinematic of the surface of the panel. Correspondent values are reported in
Table 3, comparing them to the Reference solution coming from Sze et al. [51]. Subsequently,
a comparison between the converged 1D and 2D models and the reference solution was made.
The results are shown in Fig. 13, and the solution from both models perfectly match the
reference one, with 4743 DoFs for the 1D model and 3969 DoFs for the 2D model.
Finally, convergence analysis is shown in Fig. 14. As in the previous analysis case, it can be

pointed out that the beam model presents a faster convergence than the shell model, although
the two curves overlap near the 3300 DoFs. The shown convergence analysis was conducted
for P = 2000.

5 Conclusions

The present paper has demonstrated the capability of one-dimensional (1D) and two-dimensional
(2D) models comparing results with those from literature or 2D and three-dimensional (3D)
models from NASTRAN. The large deflection regime of shell structures has been analyzed.
For this purpose, Finite Element (FE) 1D and 2D models have been built within the Carrera
Unified Formulation (CUF), which allows the implementation of low- to higher-order theories,
including geometrical nonlinear effects. Convergence analyses have been carried out by com-
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Figure 12: Nonlinear equilibrium curves of the pinched thin-walled cylinder using 1D (a) and
2D (b) models. Displacement evaluated at the middle of the thickness of the structure (see
point A in Fig. 4). P is expressed in klb, uzA in inches.
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Figure 13: Nonlinear equilibrium curves of the pinched thin-walled cylinder using 1D and
2D converged models compared to the reference solution. P is expressed in N, uzA in mm.
Reference solution comes from Sze et al. [51].

Model Approximation DoFs P = 1.0 P = 2.0 P = 2.5
uzA uzA uzA

1D Beam 8L9 + 4B4 1989 2.859 7.611 27.29
4L9 + 10B4 2511 2.642 6.940 26.79
8L9 + 6B4 2907 2.877 7.649 27.48
6L9 + 10B4 3627 2.815 7.459 27.06
8L9 + 8B4 3825 2.883 7.663 27.19
8L9 + 10B4 4743 2.886 7.671 27.18
10L9 + 10B4 5859 2.923 7.777 27.23

2D Shell 25Q9 + 1LD2 1089 2.719 7.036 26.85
36Q9 + 1LD2 1521 2.712 7.080 26.87
50Q9 + 1LD2 2079 2.776 7.186 26.87
81Q9 + 1LD2 3249 2.857 7.479 27.18
100Q9 + 1LD2 3969 2.884 7.550 27.25

Ref. 2.917 7.640 27.79

Table 3: Transverse displacement for the 1D and 2D model of the pinched thin-walled cylinder
evaluated at the middle of the thickness of the structure (see point A in Fig. 4). P is expressed
in klb, uzA in inches.

18



1

2

3

4

5

6

7

8

3 4

u
*

Log (DOF)

1D Beam
2D Shell

Figure 14: Convergence analysis of 1D beam and 2D shell CUF models of the cylindrical

hinged panel. Reference solution comes from Sze et al. [51]. P = 2000 and u∗ =
uz − uz Ref.
uz Ref.

.

paring nonlinear quasi-static results with reference ones. Relevant conclusions can be drawn
from the obtained results:

• The capability of the unified FE 1D and 2D models to deal with geometrical nonlinear
problems is fully demonstrated by comparing obtained results with those from reference
and from 3D analysis calculated with NASTRAN;

• Convergence analyses of 1D and 2D models were carried out, and they demonstrate the
possibility of 1D models to describe the overall nonlinear behavior of analyzed structure
with generally less Degrees of Freedom (DoFs) and, consequently, computational cost
than 2D models. Moreover, geometrical relations of 1D models are mathematically way
simpler than 2D shell.

• The proposed unified 1D models allows the possibility to refine the discretization in
specific parts of the structure, since it is enough to add structural nodes along the
beam axis. The same feature is not possible for the 2D models, without resorting to
external and time-consuming techniques. This aspect will be further analyzed in future
works, including node-dependent kinematics [53] approach, which allows to change the
kinematic assumptions node-by-node.
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