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Abstract—In this paper we consider Ordered Statistics Decod-
ing and we discuss some ideas aiming to reduce its complexity.
As a case study, we focus on Single Parity Check Product Codes.
First, we investigate how to simplify the construction of a reliable
basis by exploiting the code structure. Then, we consider the
iterative application of Soft-Input Soft-Output Ordered Statis-
tics Decoding with small order to lower-dimensional subcodes.
Results show that these simplified algorithms, both stand-alone
and iterative, are still able to approach Maximum Likelihood
Decoding of Single Parity Check Product Codes.

Index Terms—Single Parity Check Product Codes, Ordered
Statistics Decoding, Iterative Decoding

I. INTRODUCTION AND MOTIVATIONS

Ordered Statistics Decoding (OSD) is a soft decoding
technique introduced by Fossorier and Lin in 1995 [1] and
further elaborated in a number of following papers [2], [3].
Given a binary code C(n, k), OSD consists basically of four
steps divided in two phases. Phase A (preparation): (i) ordering
of the received n real values by decreasing reliability; (ii) joint
construction of the k-bit Most Reliable Basis (MRB) and of
a systematic generating matrix G using it as information set.
Phase B (evaluation): (iii) generation and distance evaluation
of the first candidate codeword obtained by encoding the k
MRB bits; (iv) generation and distance evaluation of all the
codewords obtained by changing up to I of the k MRB bits,
and selection of the best one.

The idea behind OSD is that when we identify the k MRB
bits, with high probability they contain few “errors”. Then, it
is enough to change a small number of them to generate a list
of candidate codewords containing the Maximum Likelihood
(ML) one, i.e., the codeword at minimum Euclidean distance
from the received vector, which is finally chosen as the
received codeword.

The parameter I , called the order of the OSD algorithm, has
clearly a fundamental impact on the algorithm complexity, be-
cause the number of codewords to be generated and evaluated
is in principal

Nc =
I∑

i=0

(
k
i

)
. (1)

Among the fundamental results derived by Fossorier and
Lin in [1], there is the estimation of the minimum order I

such that with high probability the ML codeword is inside the
list of candidate codewords, given by:

Imin =
⌈

dmin

4

⌉
, (2)

where dmin is the minimum distance of the code. Moreover,
it is possibly to develop techniques to reduce the number
of candidate codewords to be tested, or to early stop the
algorithm. By applying them, a number of results has con-
firmed that OSD allows to approach the Maximum Likelihood
decoding performance of powerful codes with lengths up to
some hundreds of bits [1]–[7].

This is extremely important for practical applications. In
fact, we know there is currently a lot of interest on short
codes. The reason is that 5G and beyond 5G networks are
evolving to include ultra-reliable, low-latency wireless com-
munication with short packets [8], [9]. For these use cases,
the design of powerful short codes that can be encoded and
decoded with small complexity is a key issue [10], [11].
In the short block length regime, Low-Density Parity-Check
(LDPC) codes, Turbo Codes and Polar Codes are still good,
but not so close to ideal limits as for long codeword lengths.
Usually, in this region they can be outperformed by algebraic
codes (like Bose–Chaudhuri–Hocquenghem (BCH) or Reed-
Solomon codes) [7]. (It is interesting to note that the Polar
Code scheme recently selected for 5G control channels [12]
exploits an inner CRC code to further improve its perfor-
mance [11].) Then, the availability of a nearly-optimal, low-
complexity soft decoding algorithm could lead to a revamping
of “classical” codes, or codes obtained by combining them,
for the new applications.

Anyway, the complexity of OSD for powerful codes can
still be an obstacle to its real-time implementation. As an
example, let’s consider the extended BCH code C(128,64) with
minimum distance dmin = 22, which is guessed to be the most
powerful code with these parameters. For this code, the total
number of different codewords to be evaluated by an order
I = 4 OSD algorithm is in principle 679,121. Even if some
reduction can certainly be applied (see for example [3] or [7],
where 200,000 patterns only were considered), these numbers
still look too big for a low complexity implementation.
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As another example, CCSDS (Consultative Committee
for Space Data Systems), that reunites the most important
Space Agencies, has recently updated its Recommendation for
Telecommand (Ground to Space) systems to include LDPC
codes as new coding options [13]. When applied to the
LDPC(128,64) code of [13], simulations show that OSD can
achieve a significant gain of more 1.5 dB with respect to
usual iterative decoding (sum-product, min-sum, normalized
min-sum) [14]. A real-time implementation of OSD (probably
one of the first ever) has been realized for this code within
the framework of an ESA contract [15]. If on one side the
mixed hardware/software implementation described in [15]
confirmed the performance gain, on the other side the achieved
information bit rate was limited to about 2 kbit/s.

All these elements suggest that any idea to further reduce
OSD complexity could ease its application to practical sys-
tems. The scope of this conference paper is indeed to discuss
some simple ideas for this purpose. As a case study, we
focus on Single Parity Check (SPC) codes and its product
concatenation.

If we consider the two phases of OSD, most of the attention
in the literature has been devoted to the second one, aiming
to reduce the number of codewords to be tested or to early
stop the algorithm. This is reasonable, because the complexity
of this phase is much bigger. Anyway, as [15] pointed out,
Phase A complexity is not negligible, especially when many
column swaps of the generator matrix are needed to find an
information set. Moreover, if a high degree of parallelism can
strongly reduce the complexity of Phase B (in principle, any
codeword can be generated and tested in parallel), this is not
true for Phase A.

For this reason, in this paper we study OSD simplification
with two goals: (i) reduce Phase A complexity by simplifying
the construction of a reliable basis, and (ii) reduce Phase
B complexity by using small OSD orders. The basic ideas
contained in this paper are:

• Reliability ordering is obviously simpler when applied to
shorter vectors.

• The code structure can be exploited to identify a Reliable
Basis, equal or close to the Most Reliable Basis, which
is easy to compute and avoids long generator matrix
elaboration. (In other words, we look for a simplified
procedure to select an information set composed by very
reliable bits.)

• If OSD is applied to codes with dmin ≤ 4, order Imin = 1
is enough and the number of codewords to be tested is
very small.

• Working on subcodes allows to implement multiple sim-
plified SISO OSD copies working in parallel, iteratively
exchanging their soft information.

In the following, simulation results show that (stand-alone
or iterative) simplified OSD obtained by applying these ideas
can still approach Maximum Likelihood decoding of 2D and
3D SPC product codes.

The paper is organized as follows. In Section II we intro-
duce Single Parity Check Product codes. In Section III we

present OSD and its Soft-Input-Soft-Ouput (SISO) version.
In Section IV we briefly discuss the application of OSD to
one-dimensional Single Parity Check Codes and its link to
min-sum iterative decoding. In Section V we focus on two-
dimensional SPC product codes and present some techniques
to build a Reliable Basis without matrix manipulation. In
Section VI we consider three-dimensional SPC product codes
and discuss how to build a Reliable Basis with few matrix
manipulation. In Section VII we discuss how to decode 3D
SPC product codes by the iterative application of simplified
OSD working on 2D subcodes. Section VIII concludes.

II. SINGLE PARITY CHECK PRODUCT CODES

Single Parity Check codes are Pk(n = k + 1, k) binary
linear codes with minimum distance dmin = 2 and multiplicity
(number of codewords with weight dmin) Amin = k +

(k
2

)
.

An M -dimensional Single Parity Check Product Code
CM (nM , kM ) = ⊗M

m=1Pkm(nm, km) has parameters

nM =
M∏

m=1

nm kM =
M∏

m=1

km.

Its (non-systematic) generator matrix is obtained by the Kro-
necker product of the generator matrix of the constituent SPC
codes [16].

In [16] Caire, Taricco and Battail proved that the distance
profile of a multi-dimensional SPC product code approaches
that of a random code if the smallest code length in the product
grows to infinity. In the same paper, they showed that the best
choice consists of taking all constituent SPC codes of equal
length, a choice that we also adopt in this paper: ∀m km = k.

The kM = kM information bits are written into an M -
dimensional hypercube with side k, then encoded in all M
directions. Examples of codewords for 1D (a single SPC code),
2D and 3D product codes based on the P2(3, 2) code are
shown in Fig. 1.

Fig. 1. Example of 1D, 2D and 3D SPC product codewords based on
P2(3, 2). Information bits in red, parity bits in black.

It is easy to show that SPC product codes have parameters:

dmin,M = 2M Amin,M = (Amin)M . (3)

Moreover, they have a transitive automorphism group, then the
multiplicty property holds [17], and the information multiplic-
ity (sum of information weights for all the Amin codewords)
can be computed by the formula

wmin,M = Amin,M dmin,M
kM

nM
. (4)

The two multiplicity values Amin,M and wmin,M allow to
compute the truncated union bound involving the minimum
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distance term only, which represents an excellent estimation
of the Maximum Likelihood Codeword Error Rate (CER) and
Bit Error Rate (BER) performance at medium/high Signal-to-
Noise Ratio (SNR), i.e., for CER ≤ 10−3 [17]:

CER $
1
2

Amin,Merfc
√

dmin,M
kM

nM
, (5)

BER $
1
2

wmin,M

kM
erfc

√
dmin,M

kM

nM
. (6)

III. ORDERED STATISTICS DECODING AND ITS SISO
VERSION

Given a binary code C(n, k) with generator matrix G, let
r = (r1, ..., rn) by the received real vector output by the soft
demodulator. The OSD algorithm of order I consists of the
following steps [1]:

1) Order the n components for decreasing reliability. (In
this paper we consider a 2-PSK constellation transmit-
ted over an Additive White Gaussian Noise (AWGN)
channel, then we order for decreasing magnitude.)

2) Start from the vector v∗ made by the k most reliable
components and build a systematic form of the generator
matrix G∗ where the information bits coincide with v∗.
If v∗ is not an information set (i.e., the corresponding
columns of G are not linearly independent), slightly
change v∗ (by swapping the linear dependent columns
with the first unused columns with position from k + 1
to n), until v∗ is an information set and the systematic
G∗ can be built.

3) Encode v∗ by G∗ to get the first candidate codeword
c∗. Compute its Euclidean distance from r. Initialize the
best codeword and its metric.

4) Consider all k-bit vectors (also called error patterns) p
with weight less or equal to I . For each of them compute
the vector v′ = v∗ + p, encode it by G∗ to get c′ and
compute its distance from r. If smaller than the current
value, update the best codeword and its metric. At the
end of the process, release the best codeword as the
chosen received codeword.

To speed up the algorithm, it is possible to stop when the
current best distance (computed on the entire codeword or a
portion only) is below a given threshold (see [7] and references
therein). Moreover, a substantial reduction of the number of
codewords to be tested can be obtained by pattern reordering.
In fact, it can be shown that different patterns with the same
weight have different reliability [5]. Then, we can generate off-
line a list of patterns to be tested with decreasing probability
and stop their processing when the most probable ones have
been considered. This approach allows to strongly reduce the
number of patterns with limited performance penalty (as an
example, only 200,000 out of 679,121 were considered in [7]
for the OSD decoding of an eBCH(128,64) code).

In [2], the Soft-Input Soft-Output (SISO) version of OSD
was presented. The optimal SISO should deliver, for each

component 1 ≤ j ≤ n a Logarithmic Likelihood Ratio (LLR)
value

Lj = log

∑
c∈C,cj=1 P (c|r)

∑
c∈C,cj=0 P (c|r)

. (7)

As an alternative it is possible to apply the sub-optimal Max-
Log-MAP algorithm, which delivers

Lj = log
maxc∈C,cj=1 P (c|r)
maxc∈C,cj=0 P (c|r)

. (8)

To compute this value by OSD, Fossorier and Lin proposed
the two-stage order-I reprocessing decoding described in [2].
SPC structure allows a further simplification, as discussed in
the next sections.

IV. SISO ORDERED STATISTICS DECODING FOR 1D
SINGLE PARITY CHECK CODES AND APPLICATIONS

In this section we briefly discuss the application of OSD
to one-dimensional SPC. Even if its application to higher
dimensions is not the true scope of this work, what follows
can be useful to better understand some properties of OSD
over SPC codes. For 1D Single Parity Check codes, OSD is
very simple due to these properties:

1) Since k = n − 1, we do not really need to order the
entire received vector r, but only to identify its least
reliable bit.

2) Since any set of k-bits is an information set, no matrix
reordering is needed. The least reliable bit can be
generated by simply summing the MRB ones.

3) An order I = 0 is enough, i.e., no pattern must be
tested to determine the minimum distance codeword, be-
cause the MRB bits automatically identify the minimum
distance codeword. (This property immediately follows
from MRB definition. The only bit outside MRB has the
least reliability. Changing an MRB bit inverts this bit and
the least reliable one. The distance becomes bigger.)

If we now consider the SISO version of OSD [2], we can
adapt it to the 1D SPC code by noting that:

• An order I = 1 OSD is enough to obtain the SISO LLR
values.

• For each bit, the most likely codeword is the output of
the order-0 OSD.

• For all MRB bits j ∈ MRB, the most likely codeword
with inverted bit is obtained by changing this bit and the
least reliable one. Since all the other bits are the same,
for the output LLR we have:

Lj = log
maxcj=1 P (c|r)
maxcj=0 P (c|r)

= L(cj) ± L(cj′), (9)

where the last sign is positive if, in the most likely
codeword, the last bit was one (or negative if zero), so it
depends if the other bits agree or not.

• For the least reliable bit j′ /∈ MRB, the most likely
codeword with inverted bit is obtained by changing this

Authorized licensed use limited to: Politecnico di Torino. Downloaded on September 22,2020 at 16:28:45 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Bipartite graph representation of 1D SPC (4,3).

bit and the least reliable bit inside MRB. If j′′ denotes
the position of the second, for the output LLR we have:

Lj′ = log
maxcj′ =1 P (c|r)
maxcj′ =0 P (c|r)

= L(cj′) ± L(cj′′), (10)

where again the last sign depends on the other bits.
Then, the only difference between the input and output LLR
values of a given bit is the smallest LLR among the other
bits. It is plain to note that these equations are very similar to
the check node processing for an LDPC-like bipartite graph
representation of the SPC, when the MinSum update rule is
applied. Taking as a reference the bipartite graph of an SPC
code depicted in Fig. 2, the messages sent from the check
node to the variable nodes are given by this equation:

Λj→i =




∏

h∈A(j)\i

sgn (Γh→j)



 ·
[

min
h∈A(j)\i

|Γh→j |
]

(11)

where, as usually, the symbol A(j)\i represents all the variable
nodes connected to check node j, but variable node i. By
comparing (11) with (9) and (10), we note they are applying
the same reprocessing.

V. OSD FOR 2D SPC PRODUCT CODES: SIMPLIFIED BASIS
CONSTRUCTION

In this section we discuss how to generalize the ideas
presented in the previous section to 2D SPC product codes.
Since every 2D SPC product code has distance dmin = 4,
then with high probability order Imin = 1 OSD is sufficient
to find the minimum distance codeword. The problem is that,
in this case, it is no longer true that every set of k2 bits is
an information set as for the 1D SPC code: matrix reduction
is required. If the starting set of most reliable bits is not an
information set it is necessary to swap some columns, a simple
but not costless operation.

Now, let us suppose that, before applying matrix reduction,
we are able to delete a significant number of bits that will
certainly not be part of the Most Reliable Basis. This way,
the following construction will certainly be simplified because
applied to a much smaller set. Now, if we take any parity
check equation of the code and we consider its least reliable

bit, it will certainly not belong to the MRB. By looking at 2D
product code structure, all rows and columns are parity check
equations. Then we can analyze them in parallel and cancel
their least reliable bit. This suggests the following algorithm.
Algorithm A. Given a 2D SPC codeword:

• There are n rows and n columns, each of them is an n-
bit vector. Process these 2n vectors in parallel and for
each of them delete the least reliable bit (you may have
collisions, i.e., some of the deleted bits can be the least
reliable for both the two vectors it belongs). Let us denote
by n ≤ α ≤ 2n − 1 the number of deleted bits.

• Build the Most Reliable Basis working on the survived
n2 − α bits.

• Apply the order 1 OSD on this Most Reliable Basis.
This algorithm allows to reduce the complexity of phase
A because the MRB is built starting from a quite smaller
set. Ordering is faster and for matrix reduction we have a
significant decrease of column swap operations. The price to
pay is the initial row and column processing, but they can be
analyzed in parallel.

As an alternative, we have considered a method to directly
obtain an alternative information set, that we call a Simplified
Reliable Basis (SRB).
Algorithm B. Given a 2D SPC codeword:

• For each row identify the two least reliable bits, erase the
last one.

• Erase the row with least reliable bit.
The process is further explained by the example depicted in
Fig. 3.

Fig. 3. Identification of the Simplified Reliable Basis for a (3, 2)2 code.

The Simplified Reliable Basis may be slightly different from
the exact Most Reliable Basis, but has two big advantages:

• We do not need to reorder the entire 2D matrix of n2 bits,
but only to identify the two least reliable bits of each row
(an operation that can be done in parallel for each row,
which is a short vector of n bits).

• We do not need to swap the columns and reduce the gen-
erator matrix: by construction the SRB is automatically
an information set because the surviving positions are
enough to determine the erased ones.

Even if the SRB is not exactly the best MRB, when we apply
the OSD we obtain pretty good performance. In Fig. 4 and
Fig. 5 we consider the (5, 4)2 and (7, 6)2 2D SPC codes and
we show the CER curves for:

• The truncated union bound, computed by equation (5).
• For the first code (216 codewords), the ML exhaustive

minimum distance algorithm.
• The original OSD algorithm with order I = 1.
• The OSD algorithm with order I = 1 applied on the

Reliable Basis built with Algorithm A.
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Fig. 4. Single Parity Check Product Code (5, 4)2. Truncated union bound,
minimum distance decoding, original OSD (I = 1), OSD (I = 1) with
Algorithm A, OSD (I = 1) with Algorithm B.

Fig. 5. Single Parity Check Product Code (7, 6)2. Truncated union bound,
original OSD (I = 1), OSD (I = 1) with Algorithm A, OSD (I = 1) with
Algorithm B.

• The OSD algorithm with order I = 1 applied on the
Reliable Basis built with Algorithm B.

By looking at the figures we can observe that: the original
OSD coincides with ML decoding; as expected, the basis
generated by Algorithm A is optimal; the basis generated by
Algorithm B is slightly sub-optimal but still achieves very
good performance, despite the simplicity of its construction.

VI. OSD FOR 3D SPC PRODUCT CODES: SIMPLIFIED
BASIS CONSTRUCTION

If we consider the application of the OSD algorithm to the
entire 3D SPC product code, its minimum distance is dmin =
8, then we have Imin = 2, which still looks reasonable. As
done in the previous section, our first goal is to simplify the
preparatory Phase A of OSD.

Fig. 6. Single Parity Check Product Code (3, 2)3. Truncated union bound,
minimum distance decoding, original OSD (I = 2), OSD (I = 2) with
Algorithm C, iterative OSD (I = 1) with Algorithm D.

Fig. 7. Single Parity Check Product Code (5, 4)3. Truncated union bound,
original OSD (I = 2), OSD (I = 2) with Algorithm C, iterative OSD (I = 1)
with Algorithm D.

Also in this case we would like to delete a number of bits
that will certainly not be part of the Most Reliable Basis. For
a 3D product code, all rows, all columns, all vectors along
the third dimension are parity check equations. Then we can
analyze them in parallel and cancel their least reliable bit. This
suggests the following algorithm.
Algorithm C. Given a 3D (n, k)3 code:

• Consider all 3n2 n-bit vectors in the three dimensions.
Process them in parallel and delete the least reliable bit of
each n-bit vector (we may have collisions, i.e., some of
the deleted bits can be the least reliable for 2 or 3 vectors
they belong). Let us denote by n ≤ α ≤ 3n3 − 3n + 1
the number of deleted bits.

• Build the Most Reliable Basis working on the survived
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n3 − α bits.
• Apply the order 2 OSD on this Most Reliable Basis.
Results for the application of Algorithm C are shown in

Fig. 7, where we compare
• The truncated union bound, computed by equation (5).
• The original OSD algorithm with order I = 2 applied on

the optimal Most Reliable Basis.
• The OSD algorithm with order I = 2 applied on the

Reliable Basis obtained with Algorithm C.
(The last curve will be explained in the next section.) By
looking at Fig.7 we can see that both the original OSD
and the OSD working with Algorithm C achieve nearly-ML
performance.

VII. ITERATIVE OSD FOR 3D SPC PRODUCT CODES

In this section, as a further idea to reduce OSD complexity,
we focus on 2D subcodes of 3D product codes. For these
subcodes we have dmin ≤ 4, then order Imin = 1 is enough
and the number of codewords to be tested is very small.
Moreover, we can implement multiple simple SISO OSD
copies working in parallel, iteratively exchanging their soft
information.

The starting point is to have an efficient, simple SISO OSD
algorithm for 2D product codes. To this purpose, we have
adapted the original version of [2] by exploiting SPC product
code structure and the SRB construction of Algorithm B. This
simplified algorithm follows.
Algorithm D. Given a 2D codeword:

• Identify the Simplified Reliable Basis by using Alg. B.
• Apply order-1 OSD by testing 1 + k2 candidate code-

words.
• For each of the n2 bits cj , when the 1 + k2 candidate

codewords are evaluated, keep memory of the most
probable one for the two values cj = 1 and cj = 0.

• Release the LLR for each of the n2 bits by using (8).
Note that this approach does not require any order I repro-
cessing: an order-1 OSD application is sufficient.

Now, we can apply Algorithm D to any of the n 2D faces
of a 3D product code, and iteratively exchange the LLR infor-
mation. The results of the iterative application of Algorithm
D to (3, 2)3 and (5, 4)3 3D product codes have been reported
in Fig. 6 and Fig. 7. We can see that there is a penalty with
respect to ideal ML decoding, with a larger gap for the second
code. Even if sub-optimal, the performance are still quite
good despite its simplicity (as an example, if we compare the
iterative curve of Fig. 7 with that obtained in [11] for the same
code by applying successive cancellation, an improvement of
about 0.5 dB is achieved). This suggests that this approach
merging low-order (iterative 2D sub-code processing) and low-
complexity (simplified reliable basis construction) OSD can be
considered for other more powerful codes, too.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented some preliminary results
aiming to simplify Ordered Statistics Decoding, based on

two ideas: (i) by exploiting the code structure it is possible
to simplify the preliminary phase of OSD (that cannot be
parallelized), i.e., the construction of reliable basis and a
systematic generator matrix for it, and (ii) if we identify
subcodes with distance dmin ≤ 4, OSD order can be limited to
Imin = 1 with very few patterns and apply iterative decoding.
Some simplified algorithms have been presented, working on
both 2D and 3D SPC product codes, able to approach ideal
Maximum Likelihood decoding. Future work includes the
extension of these techniques to more complex codes, obtained
by combining more powerful codes.
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