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Abstract: We applied a generalized SEIR epidemiological model to the recent SARS-CoV-2 outbreak
in the world, with a focus on Italy and its Lombardy, Piedmont, and Veneto regions. We focused
on the application of a stochastic approach in fitting the model parameters using a Particle Swarm
Optimization (PSO) solver, to improve the reliability of predictions in the medium term (30 days).
We analyzed the official data and the predicted evolution of the epidemic in the Italian regions, and we
compared the results with the data and predictions of Spain and South Korea. We linked the model
equations to the changes in people’s mobility, with reference to Google’s COVID-19 Community
Mobility Reports. We discussed the effectiveness of policies taken by different regions and countries
and how they have an impact on past and future infection scenarios.

Keywords: SARS-CoV-2; COVID-19; SEIR modeling; Italy; stochastic modeling; swarm intelligence

1. Introduction

We present an updated version of the predictive model of epidemic phenomena based on the
approach called SEIR (Susceptible-Exposed-Infective-Recovered), widely used to analyze infection
data during the different stages of an epidemic outbreak. The SEIR model represents one of the most
adopted mathematical models to characterize the epidemic dynamics and to predict possible contagion
scenarios. The SEIR model can be useful to assess the effectiveness of various measures, such as
lock-down, since the infectious disease outbreak. It is based on a series of dynamic ordinary differential
equations that consider the amount of the population subject to contagion, the trend over time of
individuals who recover after infection, and the individuals who unfortunately die [1].

This work was carried out during the crucial development phase of the epidemic in Italy
(mid-April 2020), with the operational difficulties linked to the impossibility of verifying and
validating the databases, and with the difficulty of comparing and calibrating the results with
other studies. The purpose, however, is to provide an easy-to-read and useful tool that can help the
policymakers, responsible for strategic choices, in assessing the social and economic scenarios related
to the development of the epidemic. We are conscious that it is a predictive model which, although
based on a scientific approach, is conditioned by a series of intrinsic and endogenous factors that
can affect its medium-term reliability. Nevertheless, we are also aware that any political decision
potentially lacking any rational and critical evaluations of all the available data risks being based on
mere sensations, often dictated by sentimental suggestions [2].

The generalized SEIR model is based on a system of differential equations, as discussed by
Peng et al. (2020) [3] in the analysis of the SARS-CoV-2 outbreak in China. The model, that adds
complexity to the classical SIR or SEIR models, represents the various conditions of susceptible
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and infected individuals during an epidemic outbreak (especially quarantined people, who are not
able to infect other people during their quarantine). The coefficients of the equations represent
the ratios of variation over time of the different categories of individuals, that is, infected, dead,
and recovered [4]. These coefficients have often been considered constant [5]. However, they are unable
to take into account external influences, such as the actions containing the spread of the infection that
may occur at different times during the development of the infection itself or the possible change
in health conditions of infected individuals due to pharmacological development. The approach
herein discussed introduces time-dependent model parameters. In particular, we assume the infection
rate time-dependent, considering that the number of contacts between people, during the lockdown,
decreases proportionally to the decrease of their overall mobility, calculated using a big data repository
available from Google [6].

The SEIR model is not a novelty in the modeling and forecasting of epidemic phenomena.
The main innovation we have introduced concerns the stochastic approach to solve the model and
to assess the propagation of the uncertainties of the model solution. This approach is based on a
metaheuristic method, the Particle Swarm Optimization (PSO) algorithm, belonging to the family
of computational swarm intelligence [7]. In fact, citing the overview made by Parham (2012) [1],
the analysis of temporally-forced non-linear epidemic models within stochastic frameworks has
received little attention to date due to the complexity of the problem, despite representing the most
realistic framework for capturing the behavior of many intrinsically or extrinsically forced infectious
diseases. With respect to the standard deterministic approach in solving the SEIR model, the advantage
of the PSO approach is that the adaptive exploration of the space domain of the solutions decreases
the risk of being trapped into a local minimum and iteratively searches for the global minimum as
the final solution. Moreover, the PSO method provides a set of model solutions as probable scenarios
calculated by means of a-posteriori probability density distribution.

The SEIR model is applied to the Italian situation at a national level, and at a regional scale,
focusing on the most impacted regions in Northern Italy. Like all models, the quality of the observed
data and their validation is a crucial node in assessing the reliability of the model results. The data
are derived from the official repositories and are composed of infective and recovered individuals,
and death cases. We test the approach on other situations such as Spain, which has shown many
similarities with the virus diffusion in Italy, and South Korea, which instead represents a completely
different scenario. We also explore the main drawbacks of the suggested method, mostly related to the
uncertainty of the input data and the complexity in the inclusion into the model of all the external
factors (population density and ages, previous diseases, efficiency of the public health system, etc.)
which have impacts on the virus diffusion, the recovery rate, and the number of deceases.

The main objective of the work is to improve the classical SEIR model by means of a stochastic
solver which identifies a set of possible solutions (or most probable scenarios) predicting the epidemic
evolution with the associated uncertainty assessment. Moreover, the mathematical model was modified
to adopt a time-dependent infection rate in order to appropriately describe a realistic situation where
people’s contacts are not constant in time due to the imposed rules of social distance. The final broad
objective is to provide a reliable approach that predicts the epidemic evolution so that the policy makers
could undertake both proper initiatives to reduce the contagion and selective actions considering the
peculiarity of each region.

2. Materials and Methods

2.1. Database

The analysis is based on the data collected and made available via a dashboard by the John Hopkins
University in the USA. They represent an official database as they collect the data from different official
organizations such as the World Health Organization (WHO), the European Centre for Disease Prevention
and Control (ECDC), the USA Centers for Disease Control and Prevention, and other organizations.
The Italian data are collected entirely through the bulletin of the Protezione Civile Italiana. The Italian
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National Institute of Statistics (ISTAT) was the source of the number of national and regional populations.
The number of people living in the studied regions is reported in Table 1.

Table 1. Population (approximated) for Italy and Italian regions and for other countries included in the
following analysis.

Countries/Regions Overall Population Database (Year)

Italy 60,359,546 Istituto Nazionale di Statistica—ISTAT (2019)
Lombardy 10,060,574 Istituto Nazionale di Statistica—ISTAT (2019)

Veneto 4,905,854 Istituto Nazionale di Statistica—ISTAT (2019)
Piedmont 4,356,406 Istituto Nazionale di Statistica—ISTAT (2019)

Spain 47,100,396 Istituto Nacional de Estadìstìca—INE (2019)
South Korea 51,629,512 Korean Statistical Information Service—KOSIS (November 2018)

2.2. Overview of the Generalized SEIR Model

The SEIR model simulates the time-histories of an epidemic phenomenon. In its classical
form, it models the mutual and dynamic interaction of people between four different conditions,
the susceptible (S), exposed (E), infective (I), and recovered (R).

The classical SEIR model can be described by a series of ordinary differential equations:

dS(t)
dt

= −βI(t)·
S(t)
N

(1)

dE(t)
dt

= βI(t)·
S(t)
N
− γE(t) (2)

dI(t)
dt

= γE(t) − (λ+ κ)I(t) (3)

dR(t)
dt

= (λ+ κ)I(t) (4)

The susceptible (S) is the part of the population that could be potentially subjected to the infection:
at the initial time, without further information, it is represented by the whole population. The exposed
(E) is the fraction of the population that has been infected but does not show symptoms yet: it can
be called a latent phase, and at this stage, a disease can be infectious, partially infectious or not
infectious [8]. The infective (I) represents the infective population after the latent period. The recovered
(R) are the people after healing, and they are generally not reintroduced into the susceptible category if
it is supposed that they became immune to the disease. This aspect is strongly debated, as in some
countries a second infection of recovered people has been recorded. At this stage of our study, we do
not have enough data to include this effect on the model; this would require the introduction of
another term in the previous system of equations, including another coefficient that takes into account
the re-population of the susceptible compartment. In the classical SEIR model, the R category also
comprehends the individuals who died of the disease. A characteristic of this model is that the sum of
the four categories is equal to the total population (N) at any time:

S(t) + E(t) + I(t) + R(t) = N (5)

As can be seen, it does not consider the natural births and deaths of the population during the
time span of the disease.

The equations of the classical SEIR model are governed by the parameters β, γ, λ and κ. We adopt
the symbols used in Peng et al. (2020) [3]. As usual in this field, the following parameters have day−1

as a unit of measurement.

• β is called infection rate. It is the number of people that an infective person infects each day.
It is equal to p, where b, or the contact rate, is the number of people an average person enters
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into contact with each day, and p is the probability that a contact provokes the transmission of
the disease. In the SEIR model, β is the vector which transports people from the S category to
the E category. It is multiplied by the ratio S/N to avoid counting contacts between two people
who cannot infect each other (e.g., because one of them has already recovered, or because both
are infective).

• γ is the inverse of the average latent time and governs the lag between having undergone an
infectious contact and showing symptoms: in the equations, it brings people from the E category
to the I category.

• λ and κ are the recovery rate and the death rate, respectively, and they are united together
in a single parameter in the classical SEIR model. They give information about how fast the
people may recover from the disease (1/λ is the average recovery time), and how many of them,
unfortunately, die.

Given the complexity of the disease, many authors have implemented different variations of the
classical SEIR model, regarding both the equations and the parameters, or managing different fitting
techniques to make the model representing the reality as close as possible.

We adopted a generalized SEIR model following the recent publication by Peng et al. (2020) [3],
who studied the COVID-19 infection in several Chinese provinces. We applied the model of Peng et al.
(2020) to the Italian situation, following this system of equations:

dS(t)
dt

= −β(t)I(t)·
S(t)
N
− αS(t) (6)

dP(t)
dt

= αS(t) (7)

dE(t)
dt

= β(t)I(t)·
S(t)
N
− γE(t) (8)

dI(t)
dt

= γE(t) − δI(t) (9)

dQ(t)
dt

= δI(t) − λ(t)Q(t) − κ(t)Q(t) (10)

dR(t)
dt

= λ(t)Q(t) (11)

dD(t)
dt

= κ(t)Q(t) (12)

This SEIR model adds some features to those of the classical SEIR model (Equations (1)–(4)):
It supposes that the susceptible population decreases thanks to lockdown policies and

improvements in public health behaviors, such as wearing face masks. Each day, several individuals
(S·α) passes from the susceptible category to the protected category (P), being α the protection rate.

It adds the category of quarantined people (Q). The passage from the infective to the quarantined
category is done through the parameter δ, which is the inverse of the average time required to
quarantine a person with symptoms: this happens usually after the person has been tested positive.
The quarantined people are hence excluded from the infective category (I) because they are supposed
not to have had any contact with others. The quarantined category matches the “active confirmed
cases” in Italian official datasheets, and, according to the common habit of quarantining positive people,
it is true also for data from most developed countries. This is a critical point for the system of equations,
that according to us should be better defined. In fact, an infected individual is not automatically
quarantined, because the authorities were often unable to test enough people while keeping pace
with the spread. This is especially difficult because many people do not develop symptoms at all,
but can transmit the infection to others. So, we think that δ also contains some information about
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the percentage of the detected infective people. A study from Calafiore et al. (2020) [5] proposed the
introduction of an additional parameter to better understand this issue.

It separates the categories of recovered (R) and dead (D) people, linked to the quarantined
category through the λ and κ parameters, the cure rate, and the mortality rate respectively. λ and κ are
time-dependent because the health system can improve its capability to treat people over time, e.g.,
with the introduction of a new therapy. Based on the data collected from Chinese reports in Peng et al.
(2020) [3], which suggested an exponential evolution of the two parameters, we constrained λ and κ to
fit an exponential trend. Similarly to Cheynet (2020) [9], the assumption is that the death rate should
become closer to zero as time increases, while the recovery rate converges toward a constant value:

λ(t) = λ0[1− exp(−λ1t)] (13)

κ(t) = κ0exp(−κ1t) (14)

The λ0 represents the final asymptotic value of the cure rate. It is related to the health system’s
ability to tackle the infection after adapting to the new outbreak and depends also on other factors like
the good health of the citizens. λ1 is related to how fast the adaptation to the emergency was. At the
beginning of April, South Korea was already in a post-peak phase of the disease spread. From our
initial tests, Equation (13) did not ideally match the data of South Korea, probably because of the more
complicated trend, compared to other countries. Therefore, only for the South Korean model, the λ

parameter was not constrained by an exponential law. We increased the degrees of freedom of its trend
by imposing a sinusoidal law:

λ(t) = a· sin(bt + c) + d· sin(et + f ) (15)

The fitting of the six parameters was performed by rearranging Equation (11):

λ(t) = dR/(dt·Q) (16)

where R and Q are the data series of recovered and quarantined people. This approach was successful
in providing a better fitting of the model prediction to the data.

The parameter κ0 represents the initial value of the mortality rate. The κ0 value is related to the
initial health system’s ability to tackle the infection and depends on the good health of the citizens.
The κ1 value measures how the rate has changed with time. The mortality rate is supposed to decrease
over time, and the higher κ1 is, the faster this decrease.

We introduced an improvement to the β parameter, compared to Peng’s model, that is, its time
dependency. Since the infection rate β is proportional to the contact rate b, as stated before, we estimated
the variation in the contact rate according to the recent publication of Google’s COVID-19 Community
Mobility Reports [6], a database built on GPS data collected from mobile devices with the “Location
History” option turned on. It provides data about the reduction in the mobility of people over the
recent few months. For each investigated region, we calculated the average mobility decrease over
time, and we fitted the curve with a second-order polynomial trend line. Then, we constrained β
to be proportional to that specific trend line. In a preliminary test on a simple data set, we noticed
how the introduction of this constraint allowed the model to obtain a better data fitting. Therefore,
we applied this approach to the SEIR model to ensure good data fitting for all the regions and countries
investigated. We noticed that the mobility data of South Korea did not show a significant decrease in
people’s mobility, because the Government adopted a different strong approach in lockdown policies
compared to most European countries. Strict lockdowns were not imposed, but efforts were addressed
to track the infection spread at the early stages, with tight controls and strict quarantine protocols for
infected individuals. For the 30 days of model prediction, the time-dependent β parameter had the
same value of the last observed day (i.e., mid-April) since we did not have reliable predictions about
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future mobility. This means that the lockdown policies will continue, or the reopening of business will
be made paying close attention to health protection procedures.

The generalized SEIR-model scheme is described in Figure 1. The expected evolution of the
equation terms is: the susceptible category decreases over time, feeding the exposed (E) category
through the beta parameter β and the protected (P) category through the α parameter; the latter
represents the part of the population who for various reasons becomes insusceptible to the disease.
The exposed (E) category is only a temporary category: its individuals pass into the infective (I) category
after a latent time (1/γ), on average. The infective category generates newly infected people over time,
removing them from the susceptible category. The detected infected individuals are quarantined (Q) to
avoid spread. Then, they evolve into recovered (R) or death (D) cases, according to various causes, like
health care system effectiveness, age, co-morbidity of other diseases. It is important to note that the
most reliable data series provided by national agencies are Q(t), R(t), and D(t). The fitting of these data
in the structure of the generalized SEIR model allows the trend of other categories to be estimated with
some degrees of uncertainty, as well as their prediction for the subsequent 30 days.

The main outputs of the model are the following data series:

• S, target time-histories of the susceptible cases,
• E, the target time-histories of the exposed cases,
• I the target time-histories of the infective cases,
• Q, the target time-histories of the quarantined cases,
• R, the target time-histories of the recovered cases,
• D, the target time-histories of the death cases,
• P, the target time-histories of the insusceptible cases.

The α, β, γ, δ, λ and κ parameters can be considered a major output of the model. In particular,
the evolution over time of λ and κ could provide information about the changes in the health system
response to the contagion. β is also time-dependent, and it is constrained to be proportional to the
people’s mobility trend extrapolated from Google’s big data. The α-value is also related to policies,
although it is not closely related to a precise aspect of the government strategies, as the β parameter.
The α-value was not forced to follow any particular law during the modeling since we tested no
significant improvement by modifying it from a constant to a time-dependent parameter.
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from [5]).

The various researches about SEIR-like models applied to the current SARS-CoV-2 epidemic have
introduced minor or major changes to the classical SEIR model. It can be useful to overview the values
of the main parameters, to define a realistic range of values, and to understand their meaning. We used
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the coefficient values found in literature to set the lower and upper boundaries of the parameters in our
modeling. The values of these parameters are related to different methods. Therefore, the bibliographic
research summarized in Table 2 should be only considered as a qualitative benchmark. We highlight
some peculiarities of the various studies.

Table 2. Values of α, β, γ, δ, λ, and κ describing SARS-CoV-2 outbreak in the recent literature.

Authors Country/Region Date α β γ δ λ κ

Peng et al.
(2020) [3]

China without
Hubei province

20
Jan–9
Feb

0.172 1 0.5 0.15 0.005–0.04 0.005–0.015

Peng et al.
(2020)

Hubei province
without Wuhan

city

20 Jan–
9 Feb 0.133 1 0.5 0.139 0.005–0.015 0.005–0.02

Peng et al.
(2020) Wuhan 20 Jan–

9 Feb 0.085 1 0.5 0.135 0.005–0.015 0.005–0.03

Peng et al.
(2020) Beijing 20 Jan–

9 Feb 0.175 0.99 0.5 0.175 0.005–0.04 0.002

Peng et al.
(2020) Shanghai 20 Jan–

9 Feb 0.183 1 0.5 0.179 0.005–0.04 0

Calafiore et al.
(2020) [5] Italy 23 Feb–

30 Mar 0.22 0.017 0.012

WHO report
[10] China 12 Feb 0.1–0.2

Dandekar
et al. (2020)

[11]
Wuhan 1 Mar–

1 Apr 1 0.023

Dandekar
et al. (2020) Italy 1 Mar–

1 Apr 0.74 0.032

Dandekar
et al. (2020) South Korea 1 Mar–

1 Apr 0.68 0.004

Dandekar
et al. (2020) US 1 Mar–

1 Apr 0.69 0.008

Shaikh et al.
(2020) [12] India 14– 26

Mar 0.59 0.1

Lin et al.
(2020) [13] Wuhan 15 Jan–

24 Feb 0.59–1.68 0.33 0.2

Iwata et al.
(2020) [14] General case 0.1–1 0.07–0.5 0.1–1

The study by Calafiore et al. [5] presents the values of the parameters also for each Italian region.
The peculiar SEIR model used here introduces two new parameters: α (with a meaning different
from ours) and ω. α represents how many times the real number of infected people is higher than
the number of detected infected people, and it is estimated to be about 63. The ω parameter defines
a fixed percentage of total people susceptible to the disease, and according to this model, it is about
0.124 (12%).

One of the WHO reports [10] shows a list of estimates of Serial Interval, which is the average time
between infection and subsequent transmission. We reported the latter since it is closely related to the
inverse of β. It ranges from 5 to 9 days, according to the various studies considered.

Dandekar et al. [11] calculates the change over time of a term, called quarantine strength (Q(t)),
fitted thanks to a neural network-based approach.

Shaikh et al. [12] considers as separated the asymptomatic and symptomatic categories.
The most interesting feature of the model proposed by Lin et al. [13] is the time-dependent β,

implemented with a different design compared to our model:

β(t) = β0(1− α)
(
1−

D
N

)k
(17)
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where α is a stepwise function that represents the governmental action, estimated to range from 0 to
0.85 according to the strength of lockdown policies. while k is the citizen response, estimated to be
about 1100.

Iwata et al. [14] proposes a model which does not fit real data but investigates possible
scenarios deriving from a different combination of parameters. Their range is reported as a credible
range reference.

2.3. Implementation of the SEIR Model with a Stochastic Approach

The model equations were implemented on the basis of the MATLAB code provided by [9],
available in Matlab File Exchange. The data are extracted from the official repository and are composed
of: confirmed, recovered, and death cases (Q, R, and D, respectively). These values represent the initial
assumptions, while the parameters α, β, γ, δ, λ, and κ are the problem unknowns. The differential
equations are numerically solved by means of the Runge–Kutta method.

The standard approach of the source code uses as default a least-square fitting solver to match the
observed data and the calculated response (of Q, R, and D). At the beginning of modeling, the initial
values of the six parameters are given as first esteem. Then, their values are calculated following a
least-square solver that considers the observed data (Q, R, D) with time.

We modified the standard release of the code by introducing a new solver, the PSO algorithm,
belonging to the family of computational swarm intelligence (population-based nature-inspired
metaheuristics) [15,16]. This optimization solver minimizes an objective function, which is set to
decrease the misfit between observed data and calculated responses of Q, R, and D by varying the
six parameters, i.e., the problem unknowns. The main advantages of the stochastic approach over
the deterministic method to solve the SEIR model are briefly discussed. The adaptive exploration
and exploitation of the search space of the model solutions avoids the risk of being trapped in some
local-minima solutions and also enhances the independence from the initial assumption of the six
parameters which could bias the final solution. The solution search-space is sampled by a set of
200 particles, representing the possible solutions, which are randomly initialized. The adaptive
behavior and the convergence and stability of the final solution are ensured by using a PSO variant,
the hierarchical PSO with time-varying acceleration coefficients (HPSO-TVAC) [17]. Convergence was
achieved in 150 iterations. Each run of 150 iterations was repeated for 50 trials to test the variability of
the solutions due to the random initialization of the parameters. Finally, the trial showing the minimum
normalized root mean square error (NRMSE) was selected as the best solution. The solutions from the
remaining trials were a-posteriori evaluated with their probability density distribution. The solutions
within 5% of the minimum NRMSE were chosen as representative of other probable scenarios.

Deploying a stochastic approach increased the computational cost of the modeling. Therefore,
the code was parallelized to be run on multiple cores. The simulations ran on the academic High
Performance Computing (HPC) cluster of Politecnico di Torino. The sustained performance of the
cluster is globally 20.13 TFLOPS and the CPU model of one node is 2x Intel Xeon E5-2680 v3 2.50 GHz
12 cores. We adopted 24 cores of a single node.

3. Results

Here we present the time series obtained by the standard deterministic approach and the data
series obtained by the stochastic approach, based on the Particle Swarm Optimization (PSO) algorithm.
First, we analyze the Italian framework at a national and regional scale. Then, we provide the results
of SEIR modeling for two other countries: Spain and South Korea. Spain was chosen because the
epidemic spread is similar to the Italian one, while South Korea represented a testing data set as the
epidemic peak had already been overcome. The final NMRSE of the modeling and the values of the
SEIR coefficients are supplied in Table 3.

The prediction of the Italian situation according to the deterministic solver shows the trends given
in Figure 2. The result of the PSO approach is shown in Figure 3. Observed data of quarantined,
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recovered, and death cases are marked in red, green, and black circles, respectively. The individuals
tested positive and placed in quarantine (at home, or hospitalized, or in intensive care) are plotted
in red color. The sum of quarantined, recovered, and deaths, at a certain date, represents the total
confirmed cases at that moment.
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Figure 3. Observed data (circles) of quarantined (red), recovered (green) and deaths (black) for Italy,
updated on 15 April 2020. The continuous lines refer to the predicted evolution in 30 days according to
the SEIR model solved with the stochastic approach. The solid line refers to the best Particle Swarm
Optimization (PSO) solution, the dashed lines refer to the most probable solutions (i.e., the solutions
within 5% of the minimum normalized root mean square error (NRMSE)).

The Italian data set starts from 1st March, because we start to model from the day when the
confirmed cases were 1% of the maximum counted cases. The predicted curves are plotted with solid
lines in Figures 2 and 3. The set of most probable PSO solutions (within 5% of the minimum NMRSE) is
plotted with dashed lines in Figure 3. The predicted peak in the red curve represents the status in which
the rate of recoveries becomes greater than the rate of infection. It reflects the most relevant impact
on the health system, because the numbers of quarantined people, both at home and in the hospitals,
are at their maximum. For the Italian situation, the maximum number of the predicted quarantined
cases is expected after 27th April according to the deterministic approach and some days before the
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day according to the best solution of the PSO approach. The curves of recovered and deceased cases in
Figures 2 and 3 are similar. The final NRMSE was 0.035 and 0.043 for PSO and deterministic modeling,
respectively (Table 3).

The analysis of the situation of Lombardy, Veneto, and Piedmont regions is depicted in Figures 4–6,
respectively. Lombardy was strongly impacted by SARS-CoV-2, as at the end of March, nearly 40,000
novel infected cases and more than 5000 deaths were recorded in a population of 10 million. On the
contrary, the Veneto region evidenced 7000 cases and about 300 deaths in a population of 5 million people.
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The prediction of the situation in Lombardy, according to the deterministic approach (Figure 4a),
appears rather optimistic, as the trend of the quarantined should start to decrease in a few days (red
solid line). This probably does not reflect the evolution of the true situation in that region, even if the
rate of the recovered generates positive feelings. If we look at the most probable scenarios predicted
according to the PSO analysis (dashed lines in Figure 4b), the wide spreading of the trend of the
quarantined indicates how any eventual less-restrictive policy must be evaluated with great care in the
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next days. The set of most probable solutions from PSO presents a wide range of solutions, wider than
that for Italy (Figure 3). The final NRMSE was 0.062 and 0.061 for PSO and deterministic modeling,
respectively (Table 3).

Int. J. Environ. Res. Public Health 2020, 17, x 11 of 19 

 

approach. In (b) the solid line refers to the best PSO solution, the dashed lines refer to the most 
probable solutions (i.e., the solutions within 5% of the minimum NRMSE). 

Figure 5a,b shows the SEIR model prediction for the Veneto region, according to the 
deterministic and PSO approaches, respectively. While the predicted recovered and death cases are 
in accordance, the curves of quarantined cases present a slightly different estimate of the predicted 
peak, which is comprised between 11th and 25th April. The final NRMSE was 0.035 and 0.04 for PSO 
and deterministic modeling, respectively (Table 3). 

 
(a) 

  
(b) 

Figure 5. Observed data (circles) of quarantined (red), recovered (green), and deaths (black) for 
Veneto region, updated on 15th April 2020. The continuous lines refer to the predicted evolution in 
30 days according to the SEIR model solved with (a) deterministic approach, (b) stochastic approach. 
In (b) the solid line refers to the best PSO solution, the dashed lines refer to the most probable solutions 
(i.e., the solutions within 5% of the minimum NRMSE). 

The SEIR modeling for the Piedmont region is shown in Figure 6a,b, where the solution using 
the deterministic and PSO prediction are reported, respectively. The scenarios predicted from PSO 
are a little worse than those of the deterministic solutions. However, the observed data of Piedmont 
yield a wide range of probable solutions (dashed lines), which can be overlapped to the deterministic 
solution in some cases. The final NRMSE was 0.056 and 0.05 for PSO and deterministic modeling, 
respectively (Table 3). 

Figure 5. Observed data (circles) of quarantined (red), recovered (green), and deaths (black) for Veneto
region, updated on 15 April 2020. The continuous lines refer to the predicted evolution in 30 days
according to the SEIR model solved with (a) deterministic approach, (b) stochastic approach. In (b)
the solid line refers to the best PSO solution, the dashed lines refer to the most probable solutions (i.e.,
the solutions within 5% of the minimum NRMSE).

Figure 5a,b shows the SEIR model prediction for the Veneto region, according to the deterministic
and PSO approaches, respectively. While the predicted recovered and death cases are in accordance,
the curves of quarantined cases present a slightly different estimate of the predicted peak, which is
comprised between 11th and 25th April. The final NRMSE was 0.035 and 0.04 for PSO and deterministic
modeling, respectively (Table 3).

The SEIR modeling for the Piedmont region is shown in Figure 6a,b, where the solution using the
deterministic and PSO prediction are reported, respectively. The scenarios predicted from PSO are a
little worse than those of the deterministic solutions. However, the observed data of Piedmont yield a
wide range of probable solutions (dashed lines), which can be overlapped to the deterministic solution
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in some cases. The final NRMSE was 0.056 and 0.05 for PSO and deterministic modeling, respectively
(Table 3).
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The epidemic situation in Spain is shown in Figure 7. The crisis exploded in a few days after the
Italian collapse, as the direct consequence of the delay in undertaking restrictions in business and
social activities to limit the spreading of the infection. At this stage of the evolution of the phenomenon
in Spain, after one month, the results obtained by the deterministic approach forecast a trend of the
recovered that seems very optimistic if compared with the Italian situation. We can assume that
the Spanish health system will react promptly to the last round of the infectious. The result of PSO
modeling is shown in Figure 7b. The final NRMSE was 0.046 and 0.052 for PSO and deterministic
modeling, respectively (Table 3).
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Figure 7. Observed data (circles) of quarantined (red), recovered (green), and deaths (black) for Spain,
updated on 15 April 2020. The continuous lines refer to the predicted evolution in 30 days according to
the SEIR model solved with (a) deterministic approach, (b) stochastic approach. In (b) the solid line
refers to the best PSO solution, the dashed lines refer to the most probable solutions (i.e., the solutions
within 5% of the minimum NRMSE).

The trend of the cases and the predicted response of South Korea’s situation is presented in
Figure 8. The analysis of the data about South Korea is useful to look at the Italian situation with
respect to a country where, for many reasons, the infection was limited, even if the crisis seemed very
dramatic at the early stage. The abrupt changes of the recovered and quarantined trend required a
careful analysis of the SEIR coefficients and their temporal variation. The final data fitting was indeed
not ideal because of the marked oscillations in both the time-series of quarantined and recovered cases.
The final NRMSE was 0.074 and 0.078 for PSO and deterministic modeling, respectively (Table 3).
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Figure 8. Observed data (circles) of quarantined (red), recovered (green), and deaths (black) for South
Korea, updated on 15 April 2020. The continuous lines refer to the predicted evolution in 30 days
according to the SEIR model solved with (a) deterministic approach, (b) stochastic approach. In (b)
the solid line refers to the best PSO solution, the dashed lines refer to the most probable solutions
(i.e., the solutions within 5% of the minimum NRMSE).

4. Discussion

We adopted a generalized SEIR model to offer a quantitative overview of the complex analysis of
the SARS-CoV-2 epidemic, meanwhile the disease is still running. The parameters were fitted in a
least-square sense with a deterministic approach, and then with a stochastic approach, using a Particle
Swarm Optimization (PSO) algorithm, a novelty in the field of epidemiological studies.

The analysis of the results from the stochastic approach gives an overview of the most probable
scenarios selected among the solutions within 5% of the normalized root mean square (NRMSE) of
the best solution. For each investigated area, we performed 50 trials of PSO simulations and from 5
to 15 trials belonged to the most probable set. It is noticeable that the predicted model responses led
to an approximately equivalent the data fitting (normalized with respect to the mean value within
an L2-norm < 0.05). The probable scenarios sometimes presented a wide range of possible solutions
because of the intrinsic setting of the stochastic approach. The different scenarios were achieved thanks
to a deeper investigation of the model-space domain where the solutions are not driven and influenced
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by the initial guess of the SEIR model coefficients. One of the main limits of the deterministic approach,
instead, is that the results are biased by the selection of the starting point of model parameters.

The data seem to confirm that while Lombardy and Piedmont applied similar approaches to
social distancing and retail closures, Veneto’s strategy applied a much more proactive effort to limit the
contagion, by means of extensive testing of symptomatic and asymptomatic cases early on, jointly with
an effective tracing of potential positives. The different actions undertaken by the Regions are well
depicted in the future trend of the model, with evident advantages in an earlier end of the infection
spreading in Veneto (compare Figures 4 and 6 with Figure 5). In fact, the peak of quarantined in Veneto
lies before those of Lombardy and Piedmont. The descending curve in Veneto has a sharper trend than
that of the other two regions. Moreover, in Veneto, the predicted fatalities are ten times lower and the
recovered are five times lower than those in Lombardy.

The behavior of Piedmont (Figure 6) deals with a peculiar trend, introducing a time-delay of
the recovered (green curve) with respect to the death cases (black curve), since the number of the
recovered in the month of March is always lower than the deaths. This is because the intersection
of the trends of recovered and death cases is reached later than the other regions herein analyzed,
i.e., 7th April. This probably resulted from the regional testing policy that tested (and counted as
confirmed) only patients with severe symptoms or at high risk. The high rate of fatalities that occurred
in March was also due to the unexpected stress on the health system and the scarcity of intensive-care
units. Differently, Lombardy and Veneto experienced a higher rate of recovered patients at the early
stage of the epidemic outbreak.

A recent analysis [18] has pointed out how, according to the guidance from public health authorities
in the central government, Lombardy’s actions involved a more conservative approach mainly focusing
on the symptomatic cases. They also suppose that the set of policies enacted in Veneto minimized the
burden on hospitals and minimized the risk of spreading in medical facilities. Veneto’s strategy tried
to prevent the diffusion by capillary actions at the local scale, to limit the contagious with additional
measures in the hot spots of the infection at the early stage of the epidemic.

The expected trend of these regions was controlled by many factors outside the control of
policymakers, including Lombardy’s greater population density and a higher number of cases at
the explosion of the crisis. Nevertheless, the different public health policies at the early stage of
the epidemic phenomena also had an impact, and it seems that tailored capillary actions, as in the
example of Veneto, obtained better results than applying only a regional lockdown. The difference
in the approaches can be underlined by observing that many municipalities or provinces declared
“red zones”, where, due to high transmission of the infection, additional restrictive measures were
introduced, compared to the rest of the regional territory. In the red zones, the different policies acted
in response to local epidemiological situations. Instead, in Piedmont and Lombardy, no red zone
was established, but restrictive individual distancing measures were regulated on a regional scale.
According to the evidenced results of different policies, in the next phase of governmental policies,
the reopening of business and activities should be tailored to the local situations, focusing on the
organization and integration of all figures of the health system. In particular, the central government
should require from the regions an effort to provide local epidemiological data in real-time, to lockdown
only limited areas, while the reopening of regional-scale business can be eased.

The estimated parameters that regulate the equations of the SEIR model are reported in Table 3.
For the parameters obtained with stochastic approach, the best-solution is shown in bold, while in
brackets the mean and the variance of the solutions within 5% of the minimum NRMSE in brackets.
In Table 3 we compare the parameters among different regions, and between the stochastic and
deterministic approach. Both approaches provided models that fitted the observed data with good
accuracy, although the stochastic approach has, in general, a slightly lower NRMSE.
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Table 3. Coefficients of the PSO best-solutions and deterministic solutions; bold refers to the best solution of the PSO approach (mean and variance on brackets),
italic-bold refers to the solution given by the deterministic approach.

Country α β * γ δ λ0 λ1 κ0 κ1 NRMSE

Italy

0.021
(0.086,
0.004)
0.012

0.510
(1.058,
0.200)
1.170

0.265 (0.859,
0.226)
1.065

0.103 (0.095,
0.01)
0.020

0.017 (0.017,
6.3 × 10−9)

0.017

2
(1.696,
0.180)
1.983

0.029 (0.030,
2.7 × 10−6)

0.033

0.038 (0.040,
3.8 × 10−6)

0.043

0.035
0.043

Spain
0.037 (0.087,

0.002)
0.026

1.777 (1.376,
0.082)

2

0.946
(0.954,
0.198)
0.154

0.238
(0.095,
0.004)
0.614

0.044
(0.044,

6.8 × 10−7)
0.043

0.156
(0.159,
0.0004)
0.160

0.030
(0.030,

1.6 × 10−6)
0.028

0.046
(0.047,

3.7 × 10−6)
0.044

0.046
0.052

South Korea
0.292 (0.270

0.0004)
0.1

2
(1.915, 0.009)

0.974

2
(1.846, 0.046)

1.902

0.123
(0.136,

7.8 × 10−5)
0.313

0.05 ** -

8.3 × 10−4

(8.3 × 10−4,
3.5 × 10−11)

0.007

7 × 10−6

(2.1 × 10−6,
2.1 × 10−11)

0.134

0.074
0.078

Lombardy

0
(0.132,
0.012)

8.9 × 10−4

0.460
(1.658,
0.188)
0.81

0.295
(1.093,
0.531)
0.302

0.145
(0.198,
0.065)
0.253

0.027
(0.026,

3 × 10−8)
0.027

0.981
(1.576,
0.247)
1.925

0.036
(0.036,

6.9 × 10−6)
0.045

0.031
(0.031,

6.9 × 10−6)
0.0405

0.062
0.061

Veneto

0.133
(0.102,
0.002)
0.049

1.704
(1.175,
0.190)
0.97

0.920
(0.698,
0.144)
0.246

0.032
(0.034,
0.0004)

0.09

0.049
(0.182,
0.093)
0.099

0.009
(0.008,
0.000)
0.004

0.008
(0.008,

6.4 × 10−8)
0.009

0.0215
(0.021,

1.3 × 10−6)
0.024

0.035
0.040

Piedmont

0.240
(0.163,
0.009)

0

1.990
(1.518,
0.232)
0.994

0.265
(1.191,
0.374)
0.195

0.012
(0.117,
0.052)
0.344

0.386
(0.309,
0.104)
0.069

0.001
(0.005,

2.5 × 10−5)
0.007

0.019
(0.018,

3.7 × 10−6)
0.019

0.034
(0.031,

1.9 × 10−5)
0.035

0.056
0.050

* The β parameter is time-dependent, as explained in the Methods section. The reported value is the initial value. It decreases by about 70% after mid-March, which is after 11 March
national lockdown, with slight differences between Italian regions. This decrease is much less accentuated in the South Korea equation (approximately 10%); ** For South Korea, λ’s six
model coefficients are not shown since they represent a different mathematical law from other countries, as explained in the Methods section. However, based on our fitting to the real data,
it can be observed that λ gradually increases up to 0.5 at the mid of March; Numbers in bold are to distinguish the best solution of PSO method; Numbers in italics are to distinguish the
deterministic approach solution.
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The parameters calculated with PSO are reported with the best-solution value, mean, and variance.
We can observe that α, β, γ and δ had a high variance due to the intrinsic variability due to the stochastic
approach. Sometimes the best solution is not aligned with the mean value. λ and κ values, instead,
are strictly gathered around the mean in almost all PSO solutions, hence the low variance. This is
explained by considering that, since the number of parameters is higher than the available data series
(Q, R, and D), the problem is underdetermined, so that the stochastic approach can find more than
one series of parameters which fits the data within an acceptable misfit. Then, λ and κ do not show
large variability among the most-probable scenarios because they govern the equations that correlate
Q with R and D, that is the official data series. Therefore, the estimated λ and κ were always found in
the same region of the search space of solutions. South Korea and Veneto show the highest recovery
rates (λ1) with values around 0.05, followed by Spain (0.044). This confirms the reports which praise
the Veneto model, because its administration had the capabilities of testing more quickly than other
Italian regions, and the family doctors worked in a stronger synergy with the health structures. It also
evidences a lower death rate (κ0), probably due to the better health system efficiency to treat patients,
but also to the greater number of tests. In both data and policies, the Veneto region is more like South
Korea than other parts of Italy. These aspects had an impact on the outbreak of the epidemic, as can be
seen comparing Figures 4–6: The Veneto region is more likely to reach the peak of active cases (Q)
before the other regions.

Even though the PSO results may seem to provide a wide range for the SEIR parameters, we stress
two important aspects:

• as we already stated, the problem is underdetermined, so it is preferable to have an acceptable
range of values than a unique point value, that could result in being uncertain, as could happen
considering only a deterministic approach solution;

• the set of possible predicted scenarios, although related to different solutions with different sets of
parameters, are quite similar, thus offering an acceptable level of variability of future predictions.

While it would be very useful to estimate a more narrow range of parameters like the infection
rate β or the latent time (1/γ), this is beyond the goals of our study, and the topic is being explored by
researchers who focus also on the clinical aspects of the disease.

The model has some limitations, as previously discussed. We summarize them to highlight
possible needs in the further development of the modeling.

• We have currently not sufficient information to say that, after recovery, an individual becomes
totally immune to the disease, but we made this assumption: the model did not allow the passage
from the recovered category to the susceptible category.

• The model does not consider that the exposed category may have a partial infection ability, as
described in Shi (2020) [8], nor distinguishes symptomatic from asymptomatic people, as studied
in Shaikh (2020) [12].

• The model does not consider the testing differences between different health system structures
and country policies.

• While Italian and Spanish data are well fitted, the South Korean data fitting presents some issues.
This evidences that different policies between countries can induce different trends in the spread of
the epidemic and that the models should be adapted to different situations, with the introduction
or removal of parameters. This would be especially valid in analyzing the situation of the least
developed countries, that are not able to afford strict lockdown policies like the developed countries.

• Except for the death rate parameter, the model does not have a strong link to the health resiliency
of citizens. The death rate parameter could also be related to external factors like air pollution,
which makes people more sensitive to respiratory diseases [19].

• The introduction of Google’s COVID-19 Community Mobility Report represents a constraint that
was easily implemented in the model. Further studies on the quality of those data and a rigorous
implementation could represent a novel and interesting research topic.



Int. J. Environ. Res. Public Health 2020, 17, 3535 18 of 19

We think that many of these issues could still remain open, but the critical point of the study is
not to determine exactly in which way each external factor influences the trend of infectious cases,
because we are analyzing a multifaceted problem from a global point of view. Moreover, the official
data we consider are suspected to be not enough accurate to be the basis of a very detailed study.

5. Conclusions

We applied two different approaches for solving the equations of the SEIR model to describe the
evolution of the epidemic phenomenon in Italy and in the most impacted regions of the North of Italy
(Lombardy, Veneto, and Piedmont). We considered all the possible available data on the 15 April 2020.
The main findings indicate that the deterministic approach is not appropriate to explore the possible
solutions of the space-domain because the mathematical problem is underdetermined. We recommend
fitting the data of this epidemic using a stochastic approach, such as the PSO method. Taking advantage
of the PSO approach, we estimated different scenarios for a 30-day epidemic evolution. Every scenario
refers to a different set of parameters estimated by the algorithm. The predicted scenarios are fairly similar
and suggest that every Italian region will reach the peak of the epidemic by mid-May. The influence of
the time-varying infection rate βon the model prediction may open interesting discussions about the
effect of lockdown policies on the evolution of the epidemic in the near and far future.

Because the model was provided rapidly and the study was performed during the international
emergency, we did not explore further the implications of different “reopening” scenarios. We can say
that, if the β parameter remains at current values, e.g., if the lockdown policies are maintained or, better,
the reopening of business is done with particular attention to health safety procedures, the prediction
of the trend of the recovered and deaths could be considered reliable, with the approximations and the
uncertainties that the PSO model has pointed out. At the Italian level, despite the great dispersion in
the prediction of the quarantined and recovered cases, the number of deaths will reach a number of
around 33,000–35,000 cases at the end of May and the number of active cases will gradually decrease.
This prediction cannot consider the impact of future decisions on social distancing.

The data and the model predictions confirm that some valuable lessons should be learned from
the approaches of South Korea, which was able to contain the contagion very soon before a wide
spread of the infection. The Veneto region was one of the best examples in Italy about how integrated
and synergic regional policies in social distance and the health system can tackle the epidemic, and its
epidemiological scenario is now more optimistic than those of Lombardy and Piedmont. We stress
that tailored actions provide much better epidemiological outcomes than wide lockdowns, keeping in
mind also the example of South Korea.

The main purpose of our work was to provide a fresh discussion and new tools able to support
the policymakers in their decision about the action to minimize the impact of the disease. The analysis
demonstrates that, because the Italian health care system is highly decentralized, different regions
managed different policies, which highly influenced the evolution of the epidemic in its first months:
the data and the model prediction well reflected the different approaches taken by Lombardy and
Veneto, two regions with similar socio-economic tissue. The overall lesson that could be learned from
this analysis goes beyond the mathematical modeling itself, and will require a wider evaluation on all
the possible socio-economic and political factors, even if the data analysis of the Veneto situation could
be used to revisit regional and central policies early on. If so, the regions are going to emulate the
virtuous approach of Veneto, including more demanding requests to improve their diagnostic capacity
that will weight on the central government.
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