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1. DESCRIPTION OF THE THESIS SUBJECT 
Global food demand has constantly increased over the last 50 years and a 100% increase in demand is 

forecasted by 2050 (Tilman et al. 2011) propelled by the expected increase of global population, per 

capita incomes and consequent changes of dietary habits (Hochman et al. 2013). Biofuels and 

biomaterials are also expected to cause a further increase in demand for agricultural products, 

especially if current policies remain in place. For example, the Renewable Energy Directive (European 

Commission 2009), aiming at substituting 10% of fossil fuels used for transport with biofuels by 2020, 

is acting as a driver in bioenergy production growth but is also highlighting the need to adopt more 

sustainable farming practices especially due to the sustainability criteria it is adopting (35% GHG 

reduction compared to equivalent fossil fuels). 

The required growth in agricultural production can be obtained by both clearing of new land and a 

more intensive use of existing croplands, but the potential to increase production by expanding 

farmed areas is limited due to the competition between forests, nature reserves and urban areas. 

Consequently, 90% of the growth in crop production will need to come from intensification, i.e. from 

higher yields per hectare and increased cropping intensity (Bruinsma 2009). 

Agricultural and farming systems are already perceived as contributors to the degradation of the 

environment and as important drivers of both global (climate change) and regional (e.g. 

eutrophication) impacts. Their expected intensification is more and more attracting the attention of 

policymakers. In fact, in 2005, agriculture accounted for 10-12% of total global anthropogenic 

emissions of greenhouse gases, 60% of global anthropogenic N2O and 50% of CH4. Globally, 

agricultural CH4 and N2O emissions have increased by nearly 17% from 1990 to 2005 (Smith et al. 

2007). It is also the most significant source of surface and ground water quality degradation (Moreau 

et al. 2012) as well as an important factor influencing soil degradation and freshwater reserve 

depletion. The European Union demonstrated attention especially towards water quality with the 

Water Framework Directive (European Commission 2000) committing all member states to achieve 

good qualitative and quantitative status of all water bodies by 2015. 

Solutions trying to mitigate these impacts, but disregarding the complex dependencies between 

processes are likely to fail, thus Life Cycle Assessment (LCA), providing a holistic approach that 

considers potential impacts of all stages of production, has been recommended by the European Union 

as a valuable environmental assessment tool.  

In the past years, LCA has been widely used to analyse agricultural systems at local (Blengini and 

Busto 2009), regional (Haas et al. 2001), national (Renouf et al. 2010) and supranational scales (Weiss 

and Leip 2012). Most studies generally aim at (i) estimating environmental impacts and resource 

consumptions, (ii) understanding where impacts are more concentrated (hot-spot analysis) and (iii) 

comparing different production alternatives (scenario analysis). LCA’s global approach is also used to 

analyse the outcome of policies and to assess if improvement scenarios are successful in reducing 

overall impacts.  

The development of more sustainable products and processes requires comprehensive and reliable 

decision support systems which are based on data. Life cycle assessment (LCA) is an established 

methodology for quantifying potential environmental impacts and can feed into decision support 

systems for improved environmental choices by manufacturers, policy makers and consumers. 

Studying only one specific aspect of a problem at a time, instead, does not lead to an understanding of 

the full picture. The result could be that improvement scenarios just shift impacts (temporally or 
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geographically) from one productive phase to another (burden shifting) or just move them from one 

impact to another (trade-offs). 

LCA has demonstrated its strength as an environmental assessment and management tool, but its 

application to agricultural systems also revealed some of its inherent weak points and is driving 

current methodological developments. 

For instance, the all too often used default assumption that emissions are proportional to inputs is 

often violated while dealing with direct emissions from agricultural fields (Bessou et al. 2012). For 

example, nitrous oxide (N2O) emissions to atmosphere are strongly influenced by the variability of 

local soils, weather conditions and management factors and therefore highly variable at field scale. 

Hence the use of emission factor approaches (e.g. IPCC tier 1), correlating N inputs with emissions and 

disregarding other influencing parameters, are associated to a high level of uncertainty. To overcome 

this, LCA has been coupled with dynamic simulation models such as DNDC (Li et al. 1992) or CERES 

(Gabrielle et al. 2006) capable of grasping temporal and spatial variability of emissions (Bessou et al. 

2012; Fukushima and Chen 2009). 

Another interesting weak point of LCA application to agriculture is related to pesticide use. Pesticides 

are widely used in agriculture and usually spread in large quantities often in a short period of time. 

This leads to elevated concentration of different chemical substances being released at the same time 

in environmental matrices. Pesticides are likely to have an effect on a broad range of organisms, no 

matter whether these organisms are the intended target for the applied plant protection chemical or 

not (Dijkman et al. 2012). That said, accounting for the inherent toxicity of these products is extremely 

complicated as the fate of pesticide products after their spread on the field can be heavily influenced 

by soil, weather and crop management conditions. Moreover to accurately measure their impacts, 

knowledge over timing and spatial distribution of pesticide applications should be available.  

Usually LCA of agricultural products either neglect the fate of pesticides after spreading or assume that 

the full dose of applied pesticide is emitted to one environmental compartment. For example, in 

Ecoinvent database (SwissCentre for LifeCycle Inventories 2011) it is assumed that the full pesticide 

dose is emitted to soil (Nemecek and Kägi 2007). To overcome this limitation specific models 

simulating pesticide fate have been recently developed. An example is PestLCI (Birkved and Hauschild 

2006; Dijkman et al. 2012), able to account for spatially and temporal variability of pesticide fate 

according to local parameters. 

The main objective of this PhD thesis is to contribute to LCA’s methodology development by improving 

its accuracy when modeling production processes dealing with or based on agricultural products.  

To proceed in this path, my PhD thesis developed in three main directions: 

1. LCA application to case studies; A first, focusing on determining life cycle impacts of alternative 

agri-food chain management systems to produce rice in North West Italy (Piedmont). A second, 

assessing environmental performances of a recycled foam glass (RFG) to be used in high efficiency 

thermally insulating and lightweight concrete. A third, about two extensive applications of LCA to 

the integrated municipal solid waste management systems of Torino and Cuneo Districts in 

northern Italy. 

2. DNDC application case studies; application and further development of DNDC, a dynamic model 

capable of estimating direct emissions of cultivated fields. As part of my job assignment at JRC, the 

model was setup to perform simulations at European-wide scale to predict emissions of GHG of EU 

crop productions. Model runs were performed in the framework of two FP projects (NitroEurope 
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and CCTAME) focusing on nitrogen based emissions (N2O in particular) at EU scale. In a first paper, 

the possibility to replace the so-called Tier 1 IPCC approach to estimate soil N2O emissions was 

investigated. Stratified emissions factors taking into account both N-input and the spatial 

variability of the environmental conditions within the countries of the European Union were 

calculated. In a second, bottom-up results from studies providing N2O fluxes at a regional/country 

or continental scale were compared with estimates from the process-based model DNDC-EUROPE 

and from the TM5-4DVAR inverse modeling system. 

3. Coupling LCA with dynamic models; coupling LCA with DNDC and other dynamic simulation 

models to account for temporal and spatial variability of emissions and to overcome the 

limitations of emission factor approaches. My work upon Italian rice was used as starting point. 

This time, instead of following an emission factor approach, dynamic models were used. Geo-

referenced soil, weather and crop management data were gathered collaborating with agronomy 

faculty and through a literature review. Piedmont rice area was divided in 2877 geographical units 

characterized by homogeneous soil and crop management parameters and, for each unit, data 

from the nearest weather station was used. This amount of data was then fed to DNDC and PestLCI 

models estimating field GHG emissions and pesticides fate respectively. 

2. LCA APPLICATION CASE STUDIES  

2.1. THE LIFE CYCLE OF RICE: LCA OF ALTERNATIVE AGRI-FOOD CHAIN MANAGEMENT SYSTEMS 

IN VERCELLI (ITALY). 
The Vercelli rice district in northern Italy plays a key role in the agri-food industry in a country which 

accounts for more than 50% of the EU rice production and exports roughly 70%. However, although 

wealth and jobs are created, the sector is said to be responsible for environmental impacts that are 

increasingly being perceived as topical. As a complex and comprehensive environmental evaluation is 

necessary to understand and manage the environmental impact of the agri-food chain, the Life Cycle 

Assessment (LCA) methodology has been applied to the rice production system: from the paddy field 

to the supermarket.  

Impact indicator Unit White milled rice (50 ha) 

GER MJ 15.61 
NRER MJ 14.63 
GWP100 kg CO2eq 3.18 
ODP mg CFC11eq 0.11 
AP mol H+ 0.26 

EP g O2eq 329 
POCP g C2H4eq 0.71 
WU l 4 978 
TABLE 1 CATEGORY INDICATOR FOR CONVENTIONAL RICE (50 HA FARM) 

As it can be seen in Table 1, the production and delivery of 1 kg of exported white milled rice from the 

50 ha rice farm requires 17.8 MJ of energy resources of which 16.6 MJ are non renewable. The GWP100 

indicator shows a carbon dioxide equivalent emission of 2.9 kg, which seems to be in contrast with the 

value of 1.1 kg CO2eq reported in the Italian Greenhouse Gas Inventory (APAT, 2005). However, the 

difference can be explained in terms of life cycle phases and system boundaries. In fact, the 

greenhouse emission of rice, according to APAT (2005), corresponds to direct methane emissions from 

the paddy field: 48 g of CH4 multiplied by a characterization factor of 23. However, when adding up 
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direct and indirect greenhouse emissions relevant to the subsequent life cycle steps and when 

considering the loss of weight after drying, as well as when allocating impacts between the refined rice 

and its by-products, the GWP indicator rises to almost 3 kg of CO2eq per kg of delivered white milled 

rice. 

The direct use of water for irrigation appears to be particularly intense: almost 5 m3 per 1 kg of 

delivered rice. However, if the indirect use of fresh water is also considered, the WUt indicator would 

rise to around 8 m3/kg. The result is not far away from that reported in Oki et al. (2003) which have 

estimated the “irrigation water requirement” of rice in Japan. 

In Table 6 contribution analysis for conventional rice is shown. Fertilizers production is the greatest 

contributor to the gross energy requirement (30%) and this is followed by refining and packing (25%) 

and transportation (17%). Global warming is mainly influenced by field emissions (68%) and then by 

fertilizers (9%) and transportation (6%). Paddy field emissions have the greatest impact on four 

indicators (GWP, AP, EP, POCP), thus emphasizing the need for further reliable and site specific data. 

As expected, direct water use is dominated by irrigation (97%), the remaining 3% being used for seed 

production. The total water use is also dominated by irrigation, but 18% is indirectly used for the 

production of packaging materials. 

The agricultural phase has generally shown the most important contributions to the final impacts, thus 

representing an environmental hot spot. Nevertheless, the post-harvest processing showed 

remarkable contributions, therefore identifying further areas of potential improvement, mainly in 

terms of energy saving and reduction of the ozone depletion and acidification potentials. 

As far as transportation is concerned, it should be noticed that there is a remarkable contribution for 

energy and ODP (17-18%), a contribution which is lower for GWP (6%) and negligible for the 

remaining indicators. 

As the contribution of capital goods was considered a meaningful issue, it should be mentioned that 

they have a noticeable weight (6%) on energy requirement and WUt, the contribution to ODP, AP and 

GWP being 3.9%, 2.4% and 1.6%, respectively. The contribution to EP and POCP is less than 1%. 

Production 
phase 

Subsystem GER 
(%) 

NRER 
(%) 

GWP 
(%) 

ODP 
(%) 

AP 
(%) 

EP 
(%) 

POCP 
(%) 

Agricultural Mechanical field operations 10.1 10.4 3.2 11.6 11.0 2.2 0.4 
Fertilizers  34.5 35.8 7.9 44.1 20.1 13.8 1.2 
Pesticides 2.3 2.4 0.4 2.0 0.9 0.1 0.1 
Field emissions 0.0 0.0 73.5 0.0 43.1 77.3 93.3 
Seeds 3.2 3.2 3.3 3.3 3.4 3.3 3.3 
Capital goods 6.4 6.2 1.4 4.2 2.6 0.4 0.2 

Phase total 56.4 58.0 89.5 65.1 81.2 97.1 98.5 
Post 
harvest 
processing 

Rice drying and storing 9.5 9.9 2.9 10.5 2.6 0.3 0.5 
Rice processing and 
packaging 

28.7 26.4 6.1 18.7 12.0 1.8 0.8 

Phase total 38.2 36.3 8.9 29.2 14.6 2.1 1.2 
Transport 
 

Field to farm 0.03 0.03 0.01 0.03 0.02 0.00 0.00 
Farm to processing plant 0.8 0.8 0.2 0.8 0.6 0.1 0.1 
Processing to local 
distribution 

1.0 1.0 0.3 1.2 0.7 0.2 0.1 

Local to national 
distribution 

3.6 3.8 1.0 3.7 2.9 0.6 0.2 

Phase total 5.4 5.7 1.5 5.7 4.2 0.8 0.3 

TABLE 2 CONTRIBUTION ANALYSIS OF CONVENTIONAL RICE (50 HA) 
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Improvement scenarios have been analyzed considering alternative rice farming and food processing 

methods, such as organic and upland farming, as well as parboiling Figure 1 Comparison between 

alternative rice farming and processing (Figure 1). The research has shown that organic and upland 

farming have the potential to decrease the impact per unit of cultivated area. However, due to the 

lower grain yields, the environmental benefits per kg of the final products are greatly reduced in the 

case of upland rice production and almost cancelled for organic rice.  

 

FIGURE 1 COMPARISON BETWEEN ALTERNATIVE RICE FARMING AND PROCESSING  

2.2. ECO-EFFICIENT WASTE GLASS RECYCLING: INTEGRATED WASTE MANAGEMENT AND GREEN 

PRODUCT DEVELOPMENT THROUGH LCA. 
As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to 

maximize resources and energy recovery from post-consumer waste glass, through integrated waste 

management and industrial production. Life cycle assessment (LCA) has been used to identify 

engineering solutions to sustainability during the development of green building products.  

The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally 

insulating and lightweight concrete. 

The new process and the related LCA are framed within a meaningful case of industrial symbiosis, 

where multiple waste streams are utilized in a multi-output industrial process. The input is a mix of 

rejected waste glass from conventional container glass recycling and waste special glass such as 

monitor glass, bulbs and glass fibers. System boundaries of RFG production are shown in Figure 2. 
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FIGURE 2 RFG SYSTEM BOUNDARIES 

Glass waste used in RFG production has different origins that can be grouped into two main 

categories: Sodium-calcium glass and special glass. The sodium-calcium to special glass ratio can vary 

depending on technical and economic considerations.  

The environmental gains have been contrasted against induced impacts and improvements have been 

proposed. RFG produced from Mix 1 (50% of sodium-calcium glass and 50% of special glass) was 

chosen as a baseline scenario. 

Table 3 displays indicator results relevant to both electric heating (EH) and natural gas heating (NGH). 

The differences between the environmental performances of the two alternatives are remarkable, 

accounting up to -51% in the case of Acidification (AP). This can be related to the high indirect 

environmental impacts related to the Italian energy mix, which is strongly dependent on fossil fuels. 

Indicator RFG-EH RFG-NGH 

EI-99 23 mPt/t (-35%) 

GER 7761 MJ/t (-34%) 

GWP 513 kg CO2eq/t (-32%) 

AP 77 mol H+/t (-51%) 

EP 7907 g O2eq/t (-45%) 

TABLE 3 ECO-PROFILE OF RFG FROM MIX USING EITHER ELECTRIC (EH) OR NATURAL GAS HEATING (NGH)  

Impacts are due to transportation, processing and firing, while savings come from avoided landfill and 

recovery of co-products (Figure 3). 

It can be observed that the environmental gains related to the avoided landfill are cancelled by the 

transport-related impacts. Thus, it is not sufficient to base environmental claims on the statement that 

RFG is sustainable because it avoids landfilling, as the related gains are lower than the induced 

impacts. 

An important contribution to improve the environmental profile of RFG is represented by recovered 

plastic, metals and glass fragments/powders, whose environmental gains are higher than those 
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corresponding to landfill avoidance. This suggests that, in order to improve the RFG eco-profile, the 

raw mix should preferably be made of soda-lime glass rather than special glass, which does not 

contain recoverable metals and plastics. This finding highlights that industrial symbiosis can play a key 

role in eco-efficient glass recycling and further supports the recommendation of Hurley (2003) 

according to which closed-loop container glass recycling remains a preferable option. 

Production of SiC and RFG firing represent the highest induced impacts. In spite of the small amount 

used, SiC is an important contributor to the overall impacts. Consequently, although SiC proved to be 

an excellent foaming agent (Bernardo et al., 2007), a more environmentally friendly additive is 

preferable.  

 

FIGURE 3 INDUCED AND AVOIDED IMPACTS IN THE RFG WASTE-TO-PRODUCTION CHAIN (MIX 1, ELECTRIC 

HEATING EH) 

In summary, recovered co-products, such as glass fragments/powders, plastics and metals, correspond 

to environmental gains that are higher than those related to landfill avoidance, whereas the latter is 

cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has 

been highlighted that recourse to highly energy intensive recycling should be limited to waste that 

cannot be closed-loop recycled. 

2.3. PARTICIPATORY APPROACH, ACCEPTABILITY AND TRANSPARENCY OF WASTE MANAGEMENT 

LCAS: CASE STUDIES OF TORINO AND CUNEO 
The paper summarizes the main results obtained from two extensive applications of Life Cycle 

Assessment (LCA) to the integrated municipal solid waste management systems of Torino and Cuneo 

Districts in northern Italy.  
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In both cases, the overall objective was identifying scenarios with best energy and environmental 

performance. A detailed energy and environmental analysis was carried out for the main components 

of the integrated waste management systems (I-WMS) and for the I-WMS as a whole in order to 

support public administrators towards sustainable waste management. 

Separate collection (SC) and its downstream recycling chains were investigated in terms of 

environmental benefits and impacts, in order to quantify advantages and drawbacks that can be 

ascribed to the new objectives of SC introduced by the law presently in force in Italy (Dlgs.152/06). At 

the same time, the role and environmental implications of energy recovery from residual waste were 

analysed, paying attention to the consequences of possible pre-treatment options of the residual 

waste, and considering both incineration and co-incineration. 

With reference to 1 ton of separately collected waste, Figure 4 shows the energy and carbon balances 

of SC and subsequent recycling/treatment in a life cycle perspective. The sequence of activities starts 

after collection (not included) and encompasses transportation, selection, recycling/treatment and 

substitution (avoided products/energy). Both the main waste flows and residues were included in the 

analysis, whereas residues are either landfilled of sent to energy recovery. Negative indicators mean 

that environmental gains are higher than induced impacts. Biowaste refers to a mix of composting and 

anaerobic digestion (AD), which reflects the current situation in Torino (33% AD and 67% 

composting), while metals refer to a mix of ferrous and non-ferrous metals (detailed data are reported 

as Supplementary content).  

 
FIGURE 4 ENERGY AND CARBON BALANCE OF SEPARATELY COLLECTED WASTE MATERIALS  

With reference to 1 ton of total waste, Table 2 shows the energy and carbon balances related to the 

four scenarios. According to both energy and climate change indicators, scenarios with 65.6% of 

separated collection appear to be more eco-efficient than those with 52.1%. Scenarios which include 

mechanical–biological treatment (MBT) (1B and 2B) show a more favourable carbon balance, but 

perform worse in terms of energy balance. 

Impact 
Category 

Unit Scenario 
1A 

Scenario 1B Scenario 
2A 

Scenario 2B 

GER MJ/t -13,898 -12,858 -17,362 -16,497 

NRE MJ/t -7,476 -6,499 -8,811 -8,001 

GWP100total kg 
CO2eq/t 

233 142 26 -46 

GWP100fossil kg -156 -160 -230 -241 
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CO2eq/t 
TABLE 4 ENERGY AND CARBON BALANCE OF THE FOUR SCENARIOS UNDER COMPARISON (TORINO DISTRICT)  

 

FIGURE 5 CONTRIBUTION OF SUBSYSTEMS TO THE CARBON BALANCE OF THE I -WMS (TORINO DISTRICT) 

3. DNDC APPLICATION CASE STUDIES 

3.1. DEVELOPING SPATIALLY STRATIFIED N2O EMISSION FACTORS FOR EUROPE 
We investigate the possibility to replace the so-called Tier 1 IPCC approach to estimate soil N2O 

emissions with stratified emissions factors that take into account both N-input and the spatial 

variability of the environmental conditions within the countries of the European Union, using the 

DNDC-Europe model. Spatial variability in model simulations is high and corresponds to the variability 

reported in literature for field data.  

1A 1B 2A 2B

GWPtotal [kg CO2 eq/t]

Collection 84 84 84 84

Biowaste treat. 5 5 6 6

Plastic recycling -37 -37 -52 -52

Paper recycling -110 -110 -153 -153

Wood recycling -9 -9 -9 -9

Glass recycling -18 -18 -20 -20

Metals recycling -49 -49 -63 -63

Others recycling -36 -36 -53 -53

Electricity (WTE) -204 -142 -154 -103

Heat (WTE) -42 -29 -32 -21

Incineration 649 483 472 339
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Results indicate that, average simulated N2O fluxes for EU25 over all years and crop types are log-

normally distributed (Figure 6) with a geometric mean of 1.8 kg N2O-N ha-1 yr-1 and a 68% confidence 

interval (CI; one standard deviation). The average N2O flux is 3.7 kg N2O-Nha-1 yr-1. 

 

FIGURE 6 HISTOGRAM OF SIMULATED N2O FLUXES ON MINERAL SOILS IN THE REFERENCE SCENARIO. THE 

SIMULATED FLUXES WERE GROUPED INTO 30 CLASSES ON A LOGARITHMIC SCALE. NUMBERS ARE IN 1000 

SIMULATIONS. 

For simplicity reasons we used the linear regression model to estimate the rate of fertilizer-induced 

N2O emissions (FIE) the change of N2O emissions as a consequence of change of fertilizer nitrogen 

application for the application of mineral fertilizer (FIEmin) and manure (FIEman) nitrogen. 

Figure 7 shows the FIEmin and FIEman for the 25 countries included in the simulation. According to the 

DNDC-EUROPE model, manure causes a slightly higher release of N2O than mineral fertilizer. At 

European level, the difference between FIEmin and FIEman is about 10% with higher FIE for applied 

manure than mineral fertilizer. FIEman/ FIEmin however increases with decreasing SOC content. For 

soils with low SOC content, FIEmin is only about 0.5%, but FIAman is about 0.8%; on soils with high SOC 

content, FIE is around 1.8% regardless of the nature of the applied nitrogen. This effect can be 

explained by lack of anaerobic conditions in soils under dry meteorological situations with low SOC 

content, since the microbial activity necessary to deplete the oxygen is constrained by the lack of 

carbon substrate. As manure application adds carbon as well as nitrogen to the soil system, it 

enhances the carbon turnover processes with a higher rate of oxygen consumption and thus increased 

probability of the existence of anaerobic micro-sites which favour the production of N2O. 
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FIGURE 7 MEAN FIE OF N2O FOR 25 COUNTRIES IN THE EUROPEAN UNION FOR THE REFERENCE SCENARIO 

FOR THE APPLICATION OF MINERAL FERTILIZER (AEC) AND MANURE NITROGEN (DEF). THE PANELS SHOW 

THE FIE ON SOILS WITH (A,D) LOW SOC CONTENT; (B,F) MEDIUM SOC CONTENT AND (C,G) HI GH SOC 

CONTENT. THE DIAGRAMS ARE SORTED BY THE MEAN FIE SHOWN ON TOP OF THE FIGURE. THE ERROR BARS 

INDICATE THE 70%-CI. 

It is interesting to note the differences between countries in Southern Europe vs. those of Northern 

Europe, with soils in Northern Europe generally exposed to more water, carbon content and lower 

temperature. Portugal, Slovenia, Romania and Italy have consistently high FIE on all soils and 

irrespective of the type of nitrogen. Countries like Denmark, Lithuania, Latvia and Ireland have low FIE 

throughout the considered cases. Notwithstanding, Denmark and Lithuania have N2O fluxes that are 

with 2.9 and 5.1 kg N2O-N (kg N ha-1)  yr-1, respectively, close or even above the European average 

indicating high back-ground fluxes. 

The differences observed in simulated FIEs point to a complex interaction of weather conditions, their 

impact on the soil-vegetation continuum and hence their impact on N2O emissions. As noted, for all 

countries considered, FIEman is on average about 10% higher than FIEmin, but for individual years the 

difference can be as large as 30%. This is the case of 1994, a year with the highest average mean 

temperature during the simulated years (11.4 °C) and average annual precipitation of 690mm. Yet in 

1996, which experienced about the same mean annual precipitation as 1994 but had an average mean 

temperature of only 9.9 °C (the lowest in our dataset), FIEmin is larger than FIEman by 23% (see Table 

5). Microbial activities are reduced in cold temperatures, reducing also the occurrence of anaerobic 

micro- sites in dry soils because of the lower mineralization rate of manure. Thus, the relative rate of 



16 
 

N2O formation from manure in dry soils with respect to N2O formation from mineral fertilizer is lower 

in cold than in warm years, as mineral fertilizers are assumed to be less affected. 

 

TABLE 5 AVERAGE FIEMIN AND FIEMAN FOR 25 COUNTRIES IN EUROPE FOR 11 DIFFERENT 

METEOROLOGICAL YEARS. 

Moreover, our results indicate that (a) much of the observed variability in N2O fluxes reflects the 

response of soils to external conditions, (b) it is likely that national inventories tend to overestimate 

the uncertainties in their estimated direct N2O emissions from arable soils; (c) on average over 

Europe, the fertilizer-induced emissions (FIE) coincide with the IPCC factors, but they display large 

spatial variations. Therefore, at scales of individual countries or smaller, a stratified approach 

considering fertilizer type, soil characteristics and climatic parameters is preferable. 

3.2. ESTIMATION OF N2O FLUXES AT THE REGIONAL SCALE: DATA, MODELS, CHALLENGES 
Empirical and process-based models simulating N2O fluxes from agricultural soils have the advantage 

that they can be applied at the scale at which mitigation measures can be designed and implemented. 

We compared bottom-up results from studies providing N2O fluxes at a regional/country or 

continental scale with estimates from the process-based model DNDC-EUROPE and from the TM5-

4DVAR inverse modeling system (Figure 8). While the agreement between different bottom-up models 

is generally satisfying, only in a few cases a thorough validation of the result was done. Complex 

empirical or process-based models do not appear to have a better agreement with inverse model 

results in estimating N2O emissions from agricultural soils for countries or country-groups than simple 

ones. Both bottom-up and inverse models are limited by the density and quality of observations. 

Research needs to focus on developing tools that inherit the advantages of both methods. 

The plot shows data for three individual countries (Germany, France, and Poland) and three country 

groups, that is, Belgium, Netherlands and Luxembourg (BENELUX), United Kingdom and Ireland 

(UKIRE), and Czech Republic, Slovakia and Hungary (CSH). The bottom- up models are IPCC [UNFCCC 

and EDGARv4.0, IPCC- approach using a factor for fertilizer-induced emissions from the Stehfest and 

Bouwman model (Sub-FIE-JRC), Stehfest and Bouwman as implemented by JRC (SuB- JRC), 

INTEGRATOR, FISE, DNDC- EUROPE [DNDC-EU], and IDEAg. 
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FIGURE 8 PLOT OF RELATIVE ESTIMATES OF DIRECT N2O FLUXES [GG N2O -N YEAR-1] FROM AGRICULTURAL 

SOILS FROM EIGHT BOTTOM-UP MODELS AS COMPARED WITH DATA FROM THE TM5-MODEL IN INVERSE 

MODE 

The paper presents also a review of available regional estimates of N2O fluxes in Europe using models 

or IPCC methodologies. A comparison of these literature data with results from the DNDC-EUROPE 

model is shown in Figure 9. The plot shows data as flux rates [kg N2O-N ha-1 year-1]. The shape of the 

point indicates whether default IPCC methodology (diamond) or another model (circle) has been used. 

Dark grey dots indicate that the model has been calibrated on regional data, while light grey dots 

indicate that no specific calibration for the study was undertaken. A black border around the dot 

indicates that some dedicated validation has been done. 
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FIGURE 9 COMPARISON OF REGIONAL ESTIMATES OF N2O FLUXES VERSUS THE AVERAGE N2O FLUX RATES 

FOR MINERAL SOILS SIMULATED WITH THE DNDC-EUROPE MODEL 

Despite the scatter in the data, there is a trend that DNDC-EUROPE tends to estimate lower N2O fluxes 

than the more specific studies, particularly for the United Kingdom and Belgium. Most of the studies 

use more detailed input data than are available for a EU-wide study. For example, Roelandt et al. 

provide data for the year 1996 and as average over five years. While simulations of DNDC-EUROPE 

match very well for the average value, it estimated much lower emissions using the meteo-data for 

1996. 

4. COUPLING LCA WITH DYNAMIC MODELS TO CALCULATE OVERALL 

LIFE CYCLE EMISSIONS OF RICE PRODUCTION IN PIEDMONT  
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4.1. INTRODUCTION 
Rice is grown on more than 140 million hectares worldwide and is the most heavily consumed staple 

food on earth. Among the rice producing countries, Italy only ranks 29th, with a national production 

rate for paddy rice (Rough Rice: threshed unmilled rice) of 1.52 million tons, an average grain yield of 

6.12 t/ha and a total harvested area of 247700 ha in the year 2010 (FAOSTAT, 2012).  

Italian rice represents the most important European Union producer both in mass and cultivated area 

terms. In fact, rice cultivation is occurring in five EU-15 countries: France, Greece, Italy, Portugal, and 

Spain, but Italy accounts for 49% of total production and 51% of rice-harvested area (2010). 

About one quarter of this total European surface is located in an area known as the “paddy area” of 

Piedmont (PPA), a wide, continuous and unconfined territory located in NW Italy, between 45°00’ and 

45°30’ N and 8°10’ and 8°30’ E. (Zavattaro et al. 2008). This important agricultural district comprises 

7 provinces (see Table 6) and occupies 174569 ha excluding the urban areas. The area is characterized 

by monocultures such as rice, maize and sorghum, but 68% of the area (118677 ha) is completely 

dedicated to rice cultivation (ISTAT, 2011). 

Piemonte Surface % 

Torino 211 0.18% 

Vercelli 74490 62.77% 

Novara 39788 33.53% 

Cuneo 216 0.18% 

Asti 0 0% 

Alessandria 0 0% 

Biella 3972 3.35% 

Verbano-Cusio-Ossola 0 0% 

Total in PPA 118677 
 

TABLE 6 RICE PRODUCTION IN PPA PROVINCES 

Rice production generates wealth and jobs, but also creates high environmental impacts that some 

believe to be unacceptably high (Tilman et al. 2001; Zhang et al. 2006). Apart from soil and water 

pollution and consumption of energy and raw materials, paddy fields (irrigated or flooded land used 

for growing rice) are in fact claimed to heavily contribute to global warming phenomenon. 

Rice systems are typically grown in flooded soils, with a usual depth of 15-25 cm and in a timeframe 

from April-May to August. In this particular soil condition, methane (CH4) is the dominant greenhouse 

gas (GHG) emitted due to anaerobic decomposition of organic material. The annual amount emitted is 

largely controlled by water and residue management practices, soil type, temperature and the amount 

of fertilizers and other organic and inorganic amendments (Yagi et al. 1997; Wassmann et al. 2000; 

Dan et al. 2001; Harada et al. 2007). However, rice systems also emit N2O fluxes, which are 

characterized by a very large spatial and temporal variability due to their strong dependence on 

environmental factors. The intensity of emissions is related to nitrogen additions, concentration of 

organic material in the soil, temperature and precipitation (Zou et al. 2007, 2009; Butterbach-Bahl et 

al. 2011). N20 and CH4 emissions follow opposite trends and are likely to be in a tradeoff: increasing 

submersion time triggers larger CH4 emissions while interrupting it through extended drainage 

periods generates more N2O while lowering CH4 production (Cai 2003). 

The Intergovernmental Panel on Climate Change (IPCC 1996) estimated CH4 global emission rate from 

paddy fields at 60 Tg/yr, with a range of 20 to 100 Tg/yr. This is about 5-20 per cent of the total 

emission from all anthropogenic sources. At EU 27 level, rice accounts for just 0.6% of total emitted 

anthropogenic CH4 (including land use, land use change and forestry), while, at Italian scale, it 
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accounts for 4.2% of total (European Environment Agency 2012). On the contrary, N2O emissions from 

rice are not specifically reported in EU GHG inventory, probably due to low N2O emission rates (the 

majority of EU and Italian rice fields are currently flooded) and high uncertainties correlated. 

However, N2O is a more potent GHG than CH4 and CO2 with a radiative forcing potential that is 

approximately 12 and 296 times larger respectively (IPCC, 2001). Moreover, in the near future water 

resource conservation practices might potentially reduce or abandon submersion, thus contributing to 

an N2O emission increase. 

Various kinds of models have been developed to estimate the fluxes of pollutants caused by agriculture 

(e.g. CH4 and N2O), including empirical models of different complexity (IPCC 1996; Mosier et al. 1998; 

Bouwman et al. 2002), process-based models (Li et al. 1992, 2006) and meta models based on 

applications of detailed process-based models. 

Empirical models are usually based on an emission factor approach, correlating GHG emissions to few 

controlling parameters. Model rationale is based on extrapolation of the results of plot scale 

experiments (measures of fluxes). They can usually consider differences in water regime and of types 

and amount of amendment applied only; they are hence not able to fully account for all determining 

parameters influencing emissions. The result of this simplification is that spatial and temporal 

differentiation of emissions according to specific local parameters is almost impossible, especially at 

small scales. Areas receiving the same amount and typology of fertilizer, in fact, can yield very different 

emissions according to soil, weather and other crop management parameters (e.g. fertilization timing, 

tillage typology and timing, etc.). More complicated empirical models can include more parameters 

and can partially reach some differentiation. However, their results will always be based on a set of 

physical measures. This is the strength (because they are referring to real measures), but also the 

weakness of this approaches. Fluxes measures are costly and require long timeframes to be significant; 

they can hardly be representative of all complex combinations between soils, climates and crop 

management techniques. Moreover this kind of models cannot be used when trying to assess the 

outcome of new scenarios that bring new, unprecedently tested, crop management practices. 

Process based models use biological, chemical and physical equations to describe the complex set of 

phenomena that are happening in cultivated soils. This capability allows a full spatial and temporal 

differentiation of emitted fluxes that is limited only by the elevated data requirement.  

Still, process based models cannot account for the whole impacts associable to rice production. 

Environmental sustainability, in fact, concerns not only climate change effect but also other 

environmental problems. For example, nitrates emissions are a considerable source of surface and 

ground water quality degradation (Moreau et al. 2012) greatly contributing to eutrophication effect. 

Moreover the abovementioned pollutant fluxes represent what is commonly regarded as direct 

emissions from the field. In a life cycle perspective, to direct GHG emissions from cultivated soils we 

have to complement direct and indirect emissions and the depletion of natural resources associable to 

each process related to agricultural activity. For example, the chemical pollution derived from toxic 

compounds associated to pesticide use or from nitrate and phosphorus leaching losses, or indirect 

emissions from fertilizer production. In fact, previous studies demonstrated that fertilizer production 

emissions (indirect) contribute for 9.2% of total GHG emissions associated to rice production (Blengini 

and Busto 2009). 

Adopting solution to mitigate impacts concentrating on GHG emissions only or disregarding the 

complex dependencies between the single processes in the agri-food chain and between agriculture 
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and other sectors, brings the risk of just shifting impacts (temporally or geographically) from one 

productive phase to another (burden shifting) or just move them from one impact category to another 

(trade-offs) (Breiling et al. 2005; Laurent et al. 2012). 

Life Cycle Assessment (LCA) methodology, aims at a comprehensive quantification of the 

environmental performances of products through a holistic approach. It considers potential impacts of 

all stages of productions and covers a broad range of impact categories, typically including climate 

change, stratospheric ozone depletion, acidification, photochemical ozone formation, aquatic and 

terrestrial eutrophication, impacts of toxic substances, land use impacts, water use, and depletion of 

both renewable and non-renewable resources. 

The great potential of LCA, is the ability to integrate knowledge e from different sources/fields (e.g., 

nitrogen chemistry, pollutant fate modelling) in order to understand the complex interaction that 

characterize agricultural processes and provide outputs that can help decision-making processes. 

4.2. METHODOLOGY 
Two environmental models were coupled and their outputs fed to a LCA model in order to calculate 

overall environmental impacts of rice production in Piedmont “paddy area” in northwest Italy. Crop 

management, climate and soil data were gathered from literature sources concerning the area under 

study, referenced to homogeneous soil and crop management geographic units and used as input for 

the dynamic simulation models. The hence obtained results were then fed as probability distribution 

to the LCA model (see Figure 10). 
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FIGURE 10 MODEL COUPLING SCHEME 

To predicts direct emissions from the field two models were used: 

• Denitrification–decomposition model (DNDC), a process-based model of carbon and nitrogen 

biogeochemistry in agro-ecosystems. First described in 1992 (Li et al. 1992), it can 

simultaneously model nitrate leaching, crop yield and agricultural trace gas emissions (N2O, 

NO, N2, NH3, CH4 and CO2).  

• PestLCI, a pesticide fate model capable of estimating how spread pesticides are distributed to 

environment compartments. It calculates the percentage of chemical active principle 

(contained in pesticide products) that is released to air, surface and groundwater waters as 

well as plant uptake and degradation. It is specifically designed to be used in life cycle 

inventories (LCI) of field applications. 
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4.3. DATA SOURCES  
Crop management data covers information about fertilization management, residues management, 

pesticide use, tillage, seeding, harvesting, irrigation and other field operations conduced to prepare the 

field.  

Fertilization and residue management data in the area was retrieved by agronomic literature 

(Zavattaro et al. 2008) that subdivided PPA into 67 spatial units with variable extension, characterized 

by homogeneous soil type, irrigation water source, agricultural system and farm type. For each unit a 

survey was performed encompassing a variable (according to unit size) number of farms.  

The quantity and typology of pesticide used were not surveyed in the study by Zavattaro et al.. In fact, 

data representative for the whole rice cultivation area are very difficult to obtain. Moreover the 

extreme variability of pesticides market (due to product obsolescence, legislative restrictions and 

market costs) makes time representativeness a very complex issue. As a proof for this assumption, 

literature data found, regarding the area under study, was very scarce: Ferrero and Tabacchi (Ferrero 

and Tabacchi 2000) report average pesticide use for year 2000 between 0.4 and 13.2 kg of active 

principle per hectare. Since specific data on pesticide use for each spatial unit were not retrieved, an 

expert estimate (personal communication from prof. Aldo Ferrero of agronomy faculty of Turin) was 

used in order to obtain a representative picture of the amount and typology of pesticides used in the 

area.  

Irrigation management and field operations data are also required by models to simulate the complex 

interaction between natural processes and human activities. Unfortunately no detailed regional 

database containing irrigation is available. In this study, data coming from direct measures on a 

particular study site were used. The field in object is situated in the Po Valley, in Northern Italy, in the 

municipality of Torre Beretti and Castellaro, (Meijide et al. 2011a).  

Climate data was retrieved from ARPA (Italian acronym standing for Regional Agency for Environment 

Protection - Agenzia Regionale per la Protezione dell'Ambiente) Piedmont website (ARPA Piemonte 

2012). Piedmont meteorological stations were geo-referenced and the nearest station to each spatial 

unit was calculated. ESRI ArcMap 10 software was used for the calculation.  

Soil data used as model input comes from two main sources: Piedmont regional database and data 

recorded in the previously cited site (Meijide et al. 2011b).  

In this study uncertainty was assessed according to the methodology proposed in Huijbregts et al. 

(Huijbregts et al. 2003). Parameter, scenario, and model uncertainty were estimated and the proposed 

iterative approach was followed: i.e. performing consecutive Monte Carlo simulations and Spearman 

Rank correlations to assess and improve the uncertainty of those parameters most influencing output 

uncertainty (Figure 11). 

Parameter uncertainty is introduced by measurement errors, expert estimations and assumptions and 

reflects our incomplete knowledge about the true value of parameters. 

Scenario uncertainty reflects results dependence over normative choices in the modeling procedure, 

for example about allocation procedure for multi-output and multi-waste processes, system 

boundaries or impact assessment.  
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4.4. UNCERTAINTY PROCEDURE 
Model uncertainty is introduced by simplification of real processes introduced by LCA modeling 

structure, by models used in our study to provide input for LCA and by models used to estimate impact 

assessment characterization factors.  

START

Probabilistic 
data available?

Fit to distribution Yes
Estimate 

uncertainty with 
pedigree matrix

No

Use lognormal 
distribution

LCA model setup 
with parameters

First sensitivity 
analysis

Is parameter 
important?

Improve data 
uncertainty  quality

Yes
Use estimated data 

distribution
No

Second sensitivity 
analysis

Is estimated 
data distribution 

important?

Yes

END

No

 

FIGURE 11 UNCERTAINTY PROCEDURE 

Specific probability distribution for individual parameters is generally not known in LCA, because 

parameter values are mostly based on few measurements or on estimates. Choosing the same 

probability distribution for all parameters is therefore reasonable to avoid bias among parameters 

(Geisler 2003). In order to estimate uncertainty of parameters having deterministic values the 

Pedigree Matrix approach (Bo P. Weidema 1998; Ciroth 2009; Weidema and Beaufort 2001) was 

followed. Figure 11 shows a set of questions regarding data source and representativeness. To each 

question regarding reliability, completeness, temporal correlation, geographic correlation, further 

technological correlation and sample size, a quality level is associated from 1 to 5. To each level a score 

value is attributed, expressed as a contribution to the square of the geometric standard deviation 

(Table 8). Equation 1 calculates the geometric standard deviation (SD95) where U1 to U6 are six 

characteristic’s contributions while Ub is basic uncertainty factor. 
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EQUATION 1  𝑺𝑫𝟗𝟓 = 𝒆𝒙𝒑√[𝐥𝐧(𝑼𝟏)]𝟐+[𝐥𝐧(𝑼𝟐)]𝟐+[𝐥𝐧(𝑼𝟑)]𝟐+[𝐥𝐧(𝑼𝟒)]𝟐+[𝐥𝐧(𝑼𝟓)]𝟐+[𝐥𝐧(𝑼𝟔)]𝟐+[𝐥𝐧(𝑼𝒃)]𝟐
 

By answering to questions this approach allows estimating a probability function for the input value. 

The methodology proposes to use a lognormal distribution because it remains always positive and fits 

skewed and highly variable experimental data well (Mattila et al. 2011).  

We hence assumed a lognormal using literature mean value and estimated geometric standard 

deviation (with pedigree matrix) to insert probability distributions for those parameters that had 

deterministic values only. 

Indicator score 1 2 3 4 5 

Reliability of 
source 

Verified data based 
on measurements 

Verified data partly 
based on 
assumptions or 
non-verified data 
based on 
measurements 

Non-verified 
data partly 
based on 
assumptions 

Qualified estimate 
(e.g. by industrial 
expert) 

Non-qualified 
estimate or 
unknown origin 

Completeness Representative 
data from a 
sufficient sample of 
sites over an 
adequate period to 
even out normal 
fluctuations 

Representative data 
from a smaller 
number of sites but 
for adequate 
periods 

Representative 
data from an 
adequate 
number of sites 
but from shorter 
periods 

Representative 
data but from a 
smaller number 
of sites and 
shorter periods 
or incomplete 
data from an 
adequate number 
of sites and 
periods 

Representativeness 
unknown or 
incomplete data 
from a smaller 
number of sites 
and/or from 
shorter periods 

Temporal 
differences 

Less than 0.5 years 
of difference to 
year of study 

Less than 2 years 
difference 

Less than 4 
years difference 

Less than 8 years 
difference 

Age of data 
unknown or more 
than 8 years of 
difference 

Geographical 
differences 

Data from area 
under study, same 
currency 

Average data from 
larger area in which 
the area under 
study is included, 
same currency 

Data from area 
with slightly 
similar cost 
conditions, same 
currency, or with 
similar cost 
conditions, and 
similar currency 

Data from area 
with slightly 
similar cost 
conditions, 
different currency 

Data from 
unknown area or 
area with very 
different cost 
conditions 

Further 
technological 
differences 

Data from 
enterprises, 
processes, and 
materials under 
study 

Data from 
processes and 
materials under 
study from 
different 
enterprises, similar 
accounting systems 

Data from 
processes and 
materials under 
study but from 
different 
technology, 
and/or different 
accounting 
systems 

Data on related 
processes or 
materials but 
same technology 

Data on related 
processes or 
materials but 
different 
technology 

TABLE 7 PEDIGREE MATRIX 

Indicator score 
 

1 2 3 4 5 

Reliability U1 1 1.05 1.1 1.2 1.5 

Completeness U2 1 1.02 1.05 1.1 1.2 

Temporal correlation U3 1 1.03 1.1 1.2 1.5 
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Geographical correlation U4 1 1.01 1.02 – 1.1 

Further technological 
correlation 

U5 1 – 1.2 1.5 2 

Sample size U6 1 1.02 1.05 1.1 1.2 

TABLE 8 DEFAULT UNCERTAINTY FACTORS APPLIED IN CONJUNCTION WITH THE PEDIGREE MATRIX.  

4.5. GOAL AND SCOPE DEFINITION 

4.5.1. GOAL OF THE STUDY 
The overall goal of the study is determining total life cycle environmental impacts of rice cultivated in 

Piedmont “paddy area” in Italy. 

4.5.2. SCOPE OF THE STUDY 
LCA reports impacts through the concept of Functional Unit (FU). The purpose of FU is to provide a 

reference unit to which the inventory data are normalized, results are reported and to provide a base 

for scenario comparisons. In agricultural products, commonly used functional units are area, mass of 

final products and energy or protein content in food products. 

Reporting impacts per area is common in national emissions inventories which usually report direct 

field emissions only using simplified methodologies (IPCC tier 1 and 2). Reporting impacts in this way 

shows an immediate comparison of direct with overall (direct + indirect) impacts. However, this 

approach shows its limitations when assessing the impacts of alternative cultural systems. Scenarios 

with alternative crop management techniques, for example, present very different per area impacts 

but potentially also grain yields. In this way they provide different services (grain production 

quantity), making their comparison impossible. 

A possible solution is reporting impacts as a function of mass of product (i.e. per kg of rice). Each 

cultivated hectare of land yields a certain amount of product to which a certain environmental impact 

can be associated. This approach can be useful when comparing different crop management 

techniques trying to identify which scenario presents lowest yield-scaled impacts (Linquist et al. 

2012). However, it could be said that different rice qualities present different nutrient or energy 

contents.  

Energy content based FU’s are often used, for example, when dealing with agricultural products used 

for energy production. Nutrient content based FU’s are more appropriate in this specific case given the 

fact that rice is cultivated as food. However two are the main reasons against this choice: first there are 

a very high number of rice qualities (cultivars) each with specific yield, nutrient content as well as crop 

management requirements (water, fertilization and weed management requirements). No separated 

data for the cultivation of different cultivar are available in PPA. Second, if it’s true that rice is 

produced as food, it is also true that different cultivars (with different nutrient contents) are chosen by 

consumers mainly for their organoleptic properties, whose preference is also highly subjective, and 

not for their nutrient value.  

This said, the selected FU is 1 kg of produced rice regardless of rice cultivar distinction and of 

any quality parameters. The study adopts a cradle to retailer approach;  

Nitrogen (N) Fertilizer input is a major driver of N2O emissions is often the limiting nutrient for crop 

production and hence a major driver of crop yield increases. Higher yields can often be obtained with 

greater N inputs, the question is whether the yield increase is large enough to offset the corresponding 

increase in N2O emissions and result in an overall lower yield-scaled impact. In rice systems, the 
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relationship between fertilizer rate and impacts is potentially more complex, as CH4 emissions are not 

as closely linked to N fertilizer inputs as N2O emissions. 

4.6. MODEL DATA  
This section describes input data used by the dynamic models. It is categorized in crop management, 

soil and climate properties. 

4.6.1. FERTILIZATION DATA 
Zavattaro et al. presented a well-documented analysis of fertilization management techniques 

practiced by farmers in PPA. The study represents a picture of the status in year 2000.  

The agricultural land of PPA was divided into homogeneous units through an examination of soil type, 

irrigation water, agricultural system, and farm type. Sixty-seven land units were outlined, 

representative farms were selected and interviewed on their adopted fertilization management 

technique, the supply of nitrogen, phosphorus, and potassium (NPK), the fate of straw (buried, burned 

or removed), and the average yield. 

Nitrogen fertilizers were divided into two main categories: Mineral and organic. 

• Mineral fertilizers are inorganic substances, primarily salts, containing nutrients required by 

plants.  Commercial products contain at least one of three primary nutrients: N, P or K. 

• Organic fertilizers are derived from animal or vegetable matter. They can be provided in an 

unprocessed form (e.g.  manure, slurry, peat, guano etc.) or processed (e.g. compost, 

bloodmeal, bone meal, etc.) 

On average, a total of 123 kg ha-1 of nitrogen (N) was spread on the rice crop. However, the variability 

of this value was remarkable as shown in Figure 12. 

 

FIGURE 12 HISTOGRAM OF TOTAL N SUPPLIED IN PPA 
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Further analyzing N supply, it can be noted that mineral N is, by far, more applied than organic N in 

PPA. Mineral N average supplied value is108 kg ha-1, while organic N is 15 kg ha-1 only (Figure 13). 

On average, a total amount of 67 kg ha-1 of P2O5 was supplied to rice, with a wide variability over the 

surface. Potassium fertilizers, on average, supplied 161 kg ha-1 of K2O. 

 

FIGURE 13 HISTOGRAM OF APPLIED N (MINERAL AND ORGANIC), P (AS P2O5) AND K (AS K2O). 

Figure 14 and Figure 15 show a map of mineral and organic fertilization in the PPA.  
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FIGURE 14 MAP OF MINERAL N USED IN PPA 
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FIGURE 15 MAP OF ORGANIC N USED IN PPA 
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4.6.2. RESIDUES MANAGEMENT 
Burning of crop residues on the field gives rise to emissions of various compounds, including aerosols 

and trace gases. Field burning of crop residues is forbidden in Europe. Most countries therefore do not 

report CH4 and N2O emissions from this source category. (European Environment Agency 2012). 

In PPA, however, Italian government still allows residue biomass burning, even if it is more and more 

encouraging the adoption of more sustainable practice. Rice straw is either removed from the field, 

burned in situ or incorporated in the soil. Each of these measures has a different effect on overall 

nutrient balance, long-term soil fertility and environmental impacts. 

Removal of straw removes most of the nutrients contained in straw and it’s not a widespread practice 

in PPA, accounting for just 7% of the total farm surveyed in Zavattaro et al. (data for year 2000). Few 

commercial viable markets exist for rice straw, hence their low market demand and consequent 

economic value.  

Incorporation of the remaining stubble and straw into the soil returns most of the nutrients and can 

help to conserve soil nutrient reserves in the long-term. For this reason and also to prevent emissions 

related to straw burning, this practice is currently strongly encouraged together with removal. 

However, farmers are concerned that rice straw incorporation is related to 1) crop effects that 

potentially reduce yield, 2) physical inability to consistently incorporate large acreage in a timely 

manner, and 3) added cost for the incorporation which does not generate additional income (yield). 

The result of this is that only 39% of farms adopt this practice. 

The cheapest, fastest, and most widespread (54%) method of straw disposal is burning. Burning 

causes atmospheric pollution and results in nutrient loss, but it is a cost-effective method of straw 

disposal and helps reduce pest and disease populations that may occur due to reinfection from 

inoculum in the straw biomass.  

Rice straw fate % of PPA area % of PPA farms 

Incorporated 30% 39% 

Removed 7% 7% 

Burnt 63% 54% 

TABLE 9 RICE STRAW MANAGEMENT IN PPA (YEAR 2000) 

4.6.3. PESTICIDE USE  
In the past, the European Union has mainly concentrated on pesticides’ start and end-of-life phases, for 

example on the authorisation for placing pesticides on the market and control of their residues in food 

and foodstuffs. Eurostat has produced statistics on pesticides that are based on sales data for the main 

types of pesticides. This high level of aggregation makes it very difficult to estimate in which areas and 

over which crops pesticides are used.  

Pesticide use in rice cultivation of PPA is not an exception to this. Detailed georeferenced data cannot 

be found in any literature source, published database or statistics. 

Pesticide use data for PPA was then obtained by interviews with pesticide resellers conducted by prof. 

Aldo Ferrero of agronomy university of Turin. In Table 10, the list of commercial products is presented 

together with the contained active principles, dosage range and estimated applied surface. 
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Product name Active principle Max dose Min dose Dose % Surface 

Gulliver Azimsulfuron 0.05 0.04 kg/ha 8% 

Londax 60 DF: Koron WDG Bensulfuron methyl 0.1 0.1 kg/ha 3% 

Pull 52 DF: Sigma 52 DF Bensulfuron+Metsulfuron 0.1 0.1 kg/ha 3% 

Sunrice Ethoxysulfuron 0.1 0.1 kg/ha 2% 

Permit Halosulfuron methyl 0.05 0.03 kg/ha 5% 

Kocis Imazosulfuron 0.8 0.7 l/ha 3% 

Kelion WG Orthosulfamuron 0.12 0.1 kg/ha 5% 

Cadou WG Flufenacet 0.7 0.7 kg/ha 8% 

Beam Tricyclazole 0.6 0.3 kg/ha 45% 

various (Roundup, Hopper blue) Glyphosate 12 0.8 l/ha 20% 

Nominee Bispyribac-Na 0.075 0.06 l/ha 8% 

Command 36 CS Clomazone 1 0.5 l/ha 5% 

Stratos Ultra Cycloxydim 4 4 l/ha 8% 

Clincher Cyhalofop butyl 1.5 1 l/ha 20% 

Beyond Imazamox 1.75 1.75 l/ha 20% 

Ronstar FL Oxadiazon 1.3 0.65 l/ha 70% 

Aura Profoxydim 0.8 0.4 l/ha 20% 

Stomp Aqua: Most Micro Pendimethalin 2.5 2 l/ha 20% 

Tripion Ee: U46M class MCPA 2 0.75 l/ha 30% 

Agil Propaquizafop 1 0.8 l/ha 2% 

Viper Penoxsulam 2 2 l/ha 25% 

Garlon Triclopyr 1.5 1 l/ha 7% 

Karate Zeon Lambda-cialotrina 0.125 0.175 l/ha 2% 

TABLE 10 DOSES AND RATES OF DISTRIBUTION OF PESTICIDE IN PPA IN 2012  

4.6.4. FIELD OPERATIONS 
Field operations include the following :  

1. Maintenance: cleaning and maintenance of watering canals with mechanical tools, remaking of 

land embankments; 

2. Ploughing: preparation of the earth breaking and turning over earth with a plow; 

3. Spreading of organic fertilizers; 

4. Land leveling: creating a slight surface gradient to facilitate the uniform distribution of 

irrigation water and to help water retention;  

5. Fertilizer application (first): mainly with KCl; 

6. Harrowing: to break and puddle clods of soil and incorporate organic materials into the soil; 

7. Flooding of rice chambers; 

8. Levelling of the clods outside chamber rice; 

9. Pesticide spraying (Pre-planting);  

10. Seeding: rice seed is sown and sprouted directly into the field; 

11. Fertilizer application (second): mainly using N and P fertilizers; 

12. Pesticide spraying (Post-emergence); 

13. Harvesting; is the process of collecting the mature rice crop from the field. Harvesting consists 

of cutting, threshing, cleaning, hauling and bagging. 
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Field operation timing and typology can potentially influence the timing and amount of direct field 

emissions calculated by DNDC model as well as the fate of pesticides calculated with PestLCI. However 

differentiated input data concerning these agricultural aspects was not found in any literature source. 

Data used by models was hence retrieved from a single case study concerned with an agricultural field 

located in the Po Valley, in Northern Italy, in the municipality of Torre Beretti and Castellaro (Pavia) 

(Meijide et al. 2011b). 

In Table 11 input data required by models is listed. 

Operation Date 

Harvest date 22/09/2010 

Planting date 30/05/2010 

Flooding date 14/04/2010 – 16/07/2010 

Flooding type Continuous flooding 

Tillage dates 15/4/2010 28/5/2010 

Tillage types 30 cm deep 5 cm deep 

TABLE 11 FIELD OPERATIONS 

4.6.5. SOIL DATA 
Soil properties are required by all models adopted. Fortunately, soil maps of the whole Piedmont 

region are obtainable online. Maps are available at two scales: 1:250000 (low-res) and 1:50000 (hi-

res).  

Information provided in low-res map encompass soil destination category (describing for which use 

soil typology is more suitable), soil organic matter content and other soil parameters. The whole 

piedmont area is divided in 1938 polygons. Hi-res map contains information about soil texture 

classification (according to USDA), pH, rock content, etc. It contains 5223 polygons but does not cover 

the whole Piedmont (Figure 16).  
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FIGURE 16 PIEDMONT SOIL MAP 

Both maps were intersected with the map of Piedmont Paddy Area (PPA) as can be seen in Figure 

17Figure 16. Since the hi-res map is currently covering only 80% of total PPA (159425 over 199193 ha) 

and since dynamic models require soil information input provided in hi-res map only, the remaining 

20% area has been left out of calculations. 
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FIGURE 17 PIEDMONT PADDY AREA SOIL INFORMATION MAP 

DNDC model requires the following soil information: 

• Longitude  

• Latitude  

• N-deposition  

• Soil organic carbon max and min value (SOCmax, SOCmin) 

• Clay content max and min (Claymax, Claymin)  

• pH (pHmax, pHmin)   

• Bulk density (Densmax, Densmin )  

• Slope  

Bulk density was not given in soil maps and was hence calculated using the equations of Saxton 

(Saxton et al. 1986) using USDA Texture Triangle values as input. 
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FIGURE 18 SOIL TEXTURAL TRIANGLE (USDA) 

SOC values where given in low-res map but not in hi-res. The values where hence downscaled. 

Clay content was obtained from texture class as maximum and minimum values allowed in the 

respective class. 

pH value was obtained by hi-res map.  

Slope was set as 0 (Meijide et al. 2011b). 

For N-deposition, a value obtained by a particular field was used (Meijide et al. 2011b). 

Parameters Value Source 

Longitude, latitude - Piedmont soil map 

N-deposition 2 mg N/l Meijide et al. 2011 

SOC_at_Surface 2.61÷0.63 kgC/kg soil Piedmont soil map 

Clay_fraction 55÷0.1% Calculated (Saxton et al. 1986) 

Soil_pH 8.5÷0.1 Calculated (Saxton et al. 1986) 

Density 1.65÷1.4 g/cm3 Calculated (Saxton et al. 1986) 

Slope 0 Meijide et al. 

TABLE 12 SOIL PARAMETERS AND THEIR SOURCES 
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4.6.6. CLIMATE DATA 
Piedmont is covered by a network of meteorological stations managed by ARPA (Figure 19). 

Meteorological data concerning rainfall, maximum and minimum temperature, wind speed, solar 

radiation and snow covering is recorded on a daily basis. Data is accessible in an online database 

(www. webgis.arpa.piemonte.it). 

 

FIGURE 19 ACTIVE METEREOLOGICAL STATIONS IN PIEDMONT (SOURCE: WWW. WEBGIS.ARPA.PIEMONTE.IT)  

In order to associate climate data to each map polygon and hence calculation unit, centroids 

(geometric center of the object's shape) of every polygon were first calculated. Then distances from 

centroids to each of the meteo station were calculated and the shortest ones selected.  

Table 13 shows the meteorological stations that are located in the PPA region or in the immediate 

surroundings, their geographical coordinates and the available recorded years. Since some years were 

incomplete, probably due to instrument failures or maintenance, a gap filling procedure was adopted. 

When major percentages (>15%) of daily data was missing, the full year was skipped. Otherwise, for 

temperature, missing daily values were covered by the last available data before the gap and, for 

rainfall, gaps were covered by 0 values (no rainfall). 

id long lat Station_name Province Start year last year 

3 8.2322 45.262 ALBANO VERCELLESE VC 1988 2012 

19 8.2326 45.1932 VERCELLI VC 1993 2012 

21 8.4141 45.3256 CAMERI NO 1988 2012 

22 8.4809 45.2455 CERANO NO 2002 2012 
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23 8.3301 45.3409 MOMO AGOGNA NO 2005 2012 

26 8.3803 45.2632 NOVARA NO 2005 2012 

34 8.1015 45.2826 MASSAZZA BI 1993 2012 

41 8.3019 45.0759 CASALE MONFERRATO AL 1988 2012 

TABLE 13 NEAREST METEREOLOGICAL STATION FROM PPA 

4.7. LIFE CYCLE INVENTORY ANALYSIS (LCI) 

4.7.1.1. DIRECT FIELD EMISSIONS 
To calculate direct field emissions, 2877 DNDC model runs were setup covering 159248 ha, 75% of 

PPA total extension. Soil properties, weather conditions and crop management practices were derived 

from data presented in paragraph 4.6. DNDC For each homogeneous unit model calculated CO2, CH4, 

N2O, NO, N2, NH3 and the amount of leached Nitrogen (Leached N). Table 14 presents a summary of 

DNDC results. 

 
CO2 CH4 N2O NO N2 NH3  LeachN 

 [kg C/ha] [kg C/ha] [kg N/ha] [kg N/ha] [kg N/ha] [kg 
N/ha] 

[kg 
N/ha] 

Minimum 377 23.62 0.0040 0.000000 0.089 1.138 0.440 
1st Quartile 650 72.90 0.1670 0.001000 0.616 2.647 1.250 
Median 891 112.51 0.4140 0.001000 0.762 4.217 3.140 
Mean 887.4 109.67 0.4594 0.001557 1.004 4.268 3.105 
3rd Quartile 1066 140.23 0.7490 0.002000 1.584 5.279 4.230 
Maximum 1882 240.76 1.8520 0.006000 1.812 11.553 9.890 

TABLE 14 DNDC SUMMARY OF DNDC RESULTS 

In order to represent an average plot situated in PPA calculated values were inserted into the LCA 

model as a probability distribution. Before fitting a distribution to a data set, it is generally necessary 

to choose good candidates among a predefined set of distributions.  

The CO2 emissions values were taken as an example of the fitting procedure. First a visual test was 

performed plotting the empirical distribution function and the histogram (or density plot). Figure 20 

shows at the left side the histogram on a density scale and at the right side the empirical cumulative 

distribution function (CDF). 
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FIGURE 20 HISTOGRAM AND CDF PLOTS OF CO2 EMISSIONS 

In addition to empirical plots, descriptive statistics such as skewness and kurtosis may help to choose 

candidates to describe a distribution among a set of parametric distributions. A non-zero skewness 

describes a lack of symmetry of the empirical distribution, while the kurtosis quantifies the weight of 

tails in comparison to the normal distribution. For CO2 emissions, summary statistics estimated 

standard deviation of 291.837, skewness of 0.4443286 and kurtosis of 3.033699. Skewness and 

Kurtosis were plotted in Figure 21 for a visual selection of most likely distributions. 
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FIGURE 21 SKEWNESS-KURTOSIS PLOT FOR CO2 EMISSIONS 

Gamma, lognormal and normal distributions were fitted with CO2 emissions dataset and four classical goodness-of-fit 

plots were presented in Figure 22: 

• a density plot 

• a CDF plot  

• a Q-Q plot representing the empirical quantiles (y-axis) against the theoretical quantiles (x-axis) 

• a P-P plot representing the empirical distribution function evaluated at each data point (y-axis) against the 
fitted distribution function (x-axis). 

 
In order to further compare fitted distributions, three goodness-of fit statistics were considered: Cramer-von Mises, 
Kolmogorov-Smirnov and Anderson-Darling statistics. 
 

Goodness-of-fit statistics 
 

norm gamma lnorm 

Kolmogorov-Smirnov 0.08052628 0.09194735 0.1121684 
Cramer-von Mises 2.12697575 3.77952585 5.8389716 
Anderson-Darling 18.41025474 24.95736632 35.4700223 

Goodness-of-fit criteria 
 

   

Akaike's Information Criterion 33279.18 33154.90 33197.33 
 

Bayesian Information Criterion 33290.70 33166.42 33208.85 
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FIGURE 22 GOODNESS-OF-FIT PLOTS FOR VARIOUS DISTRIBUTIONS FITTED TO CO2 EMISSIONS (GAMMA, 

NORMAL AND LOGNORMAL) 

Even if normal distribution appears to be the best fit, the lognormal was chosen because it has the 

advantage of not being defined in the negative domain, so credits do not accidentally happen during 

Monte Carlo simulation. 

Mean value and squared geometric standard deviation (GSD2) of the chosen distribution were 

calculated. Such values were then inserted into the LCA model. 

 
CO2 CH4 N2O NO N2 NH3 Leached N 

Mean 683.96 302.41 1.82 0.05 7.77 0.54 7.92 

GSD2 2.68 4.82 5.68 4.00 1.71 42.26 6.15 

TABLE 15 DNDC MODEL RESULTS 
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4.7.2. PESTICIDES  
Pesticides production were modeled trying to find a match between the products used in PPA (see 

Table 10) and pesticide production processes in the Ecoinvent database. In some cases (Glyphosate, 

MCPA and Pendimethalin) an exact match was found. In terms of share of the full amount of 

pesticides used in PPA, exact matches represent 49%. When an exact match with the pesticide name 

was not found the substance group of the active principle was used as proxy and a general substance-

group specific Ecoinvent process representative of the chemical compound was used. This second 

choice covers 20% of pesticides used in PPA. In case none of the previous choices was possible, a 

general pesticide production process was chosen covering 32% of pesticides used. 

Active principle Substance group Pesticide type Ecoinvent record Note in PestLCI 
database 

Azimsulfuron Sulfonylurea Herbicide [sulfonyl]urea-compounds Compound NO 

Bensulfuron methyl Sulfonylurea Herbicide [sulfonyl]urea-compounds Compound NO 

Bensulfuron + 
Metsulfuron 

Sulfonylurea Herbicide [sulfonyl]urea-compounds Compound 
NO 

Ethoxysulfuron Sulfonylurea Herbicide [sulfonyl]urea-compounds Compound NO 
Halosulfuron methyl Pyrazole Herbicide [sulfonyl]urea-compounds Compound NO 

Imazosulfuron Sulfonylurea Herbicide [sulfonyl]urea-compounds Compound NO 

Orthosulfamuron Pyrimidinylsulfonylurea Herbicide [sulfonyl]urea-compounds Compound NO 

Flufenacet Oxyacetamide Herbicide acetamide-anillide-
compounds 

Proxy 
NO 

Tricyclazole Triazolobenzothiazole Fungicide diazole-compounds Proxy NO 
Glyphosate Phosphonoglycine Herbicide glyphosate Exact 

match YES 
Bispyribac-Na Pyrimidinyl carboxy 

compound 
Herbicide herbicides General 

NO 

Clomazone Isoxazolidinone Herbicide herbicides General YES 

Cycloxydim Cyclohexanedione Herbicide herbicides General NO 

Cyhalofop butyl Cyclohexanedione Herbicide herbicides General NO 
Imazamox Imidazolinone Herbicide herbicides General NO 
Oxadiazon Oxadiazole Herbicide herbicides General NO 

Profoxydim Cyclohexanedione Herbicide herbicides General NO 

Pendimethalin Dinitroaniline Herbicide pendimethalin Exact 
match YES 

MCPA Aryloxyalkanoic acid Herbicide-
metabolite 

pesticides MCPA Exact 
match YES 

Propaquizafop Aryloxyphenoxypropionate Herbicide phenoxy-compounds Proxy YES 
Penoxsulam Triazopyrimidine Herbicide pyridine-compounds Proxy NO 
Triclopyr Pyridine Herbicide pyridine-compounds Compound NO 

Lambda-cialotrina Pyrethroid Insecticide pyridine-compounds Proxy 
NO 

TABLE 16 PESTICIDE USED IN PPA AND THE ECOINVENT PROCESS CHOSED TO MODEL THEIR PRODUCTION  

 

Ecoinvent process entry Average use [g ha-1] 

[Sulfonyl]urea-compounds, at regional storehouse 53,53 

Acetamide-anillide-compounds, at regional storehouse 56,00 

Diazole-compounds, at regional storehouse 202,50 

Glyphosate, at regional storehouse 2188,80 

Herbicides, at regional storehouse 2016,46 

Pesticides MCPA, at regional storehouse 412,50 

Phenoxy-compounds, at regional storehouse 17,28 

Pyridine-compounds, at regional storehouse 922,74 

Pendimethalin, at regional storage 526,50 

TABLE 17 PESTICIDE PRODUCTION IN THE LCA MODEL 
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In order to model pesticide fate the same data was fed into PestLCI model. Given the lack of site-

specific pesticide use data, the full PPA was modelled as a single plot where the full amount of 

pesticide was released. However, it was not possible to model the fate of all the active principles due to 

limitations in the model database; only 5 active principles (Glyphpsate, clomazone, Pendimethalin, 

MCPA and Propaquizafop) were available in PestLCI database accounting for 50% of the amount of 

pesticide used in PPA. For each product in database, a model run was set to calculate pesticide fate. 

The model calculated the degradation and uptake share (%) and dose (in g/ha) as well as emissions to 

air, surface water and groundwater. Results are shown in Table 18. 

Soil and climate data were inserted as average PPA values. 

 
Degradation and 

uptake 
Emissions to 

air 
Emissions to 

surface water 
Emissions to 

ground water 

 [%] [g ha-1] [%] [g ha-1] [%] [g ha-1] [%] [g ha-1] 
Glyphosate 88.08 1927.90 0.36 7.80 8.58 187.72 2.99 65.38 
Clomazone 69.89 1409.25 10.71 215.93 14.83 298.97 4.58 92.30 
MCPA 97.72 403.09 0.82 3.36 0.72 2.98 0.74 3.07 
Propaquizafop 99.86 17.26 0.14 0.02 0.00 0.00 0.00 0.00 
Pendimethalin 88.43 465.59 0.57 3.00 8.70 45.83 2.29 12.08 

TABLE 18 PESTICIDE FATE CALCULATED WITH PESTLCI MODEL.   

4.7.3. FERTILIZATION AND YIELD 
Area -specific mineral and organic fertilization data (see paragraph 4.6.1) were fed to DNDC model 

together with crop management and climate data to setup 2345 model runs. For each run yield. 

mineral nitrogen application (Nmin). organic nitrogen application (Norg). phosphate application 

(P2O5) and Potassium chloride (K2O) were calculated. Mean value and squared geometric standard 

deviation were then calculated with R and a match with fertilizer production datasets in Ecoinvent 

database was found. Table 19 shows the results that were fed to the LCA model. 

 
Yield Nmin Norg P2O5 K2O 

Unit kg ha-1 kg ha-1 kg ha-1 kg ha-1 kg ha-1 

Mean 6511.64 110.22 40.42 68.82 170.04 

GSD2 1.26 2.29 4.15 3.85 2.27 

Ecoinvent 
dataset 

 Urea. as 
N 

Compos
t 

Triple 
superphosphate. as 

P2O5 

Potassium chloride. 
as K2O 

TABLE 19 FERTILIZERS AND YIELD PROVIDED AS INPUT IN LCA MODEL  

4.7.4. SEEDS 
Agronomic literature indicates an average use of 180-240 kg of rice seed per hectare. Rice seeds can be 

produced in other Italian regions outside of PPA. Although rice seed is produced in a slightly different 

way. in the present case study the same dried rice produced in PPA in has been re-entered in the LCA 

model in a closed loop fashion. Differences between rice seed and edible rice have been considered 

negligible. Transport of seed. preservative products and use of storage facilities (including capital 

goods) have been considered as in the Ecoinvent dataset “rice seed. at regional storehouse”. Dataset 

includes seed transport to the processing centre. treatment (pre-cleaning. cleaning. eventually drying. 

chemical dressing and bag filling). storage and afterwards transport to the regional storage centre.  

4.7.5. FARM SIZE 
In Table 20 the distribution of farms in four size categories is shown: from 0 to more than 300 ha. 

Farm size probability distribution has been fitted over a lognormal distribution curve and mean and 
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geometric standard deviation (GSD) were calculated and inserted in the LCA model (Figure 23). The 

mean rice farms’ size in PPA was calculated as 49.57 ha. while GSD as 3.01. 

Province Number 
0-50 

Area 
[ha ] 
0-50 

Number 
50-150 

Area 
[ha ] 

50-150 

Number 
150-300 

Area 
[ha ] 
150-
300 

Number 
300+ 

Area 
[ha ] 
300+ 

Total 
Number 

Total 
area  

AL 137 2681 47 3839 3 657 0 0 187 7177 

BI 63 1325 24 2186 2 318 0 0 89 3829 

CN 14 177 1 51 0 0 0 0 15 228 

NO 444 9942 220 17530 23 4758 2 798 689 33027 

PV 2 50 2 137 1 173 0 0 5 360 

TO 7 65 2 143 0 0 0 0 9 208 

VC 929 20499 433 36297 48 8939 7 3335 1417 69070 

Total 1596 34738 729 60181 77 14845 9 4133 2411 113897 

TABLE 20 SIZE OF RICE FARMS IN PIEDMONT 

 

FIGURE 23 PROBABILITY DENSITY FUNCTION OF FARM SIZE AND LOGNORMAL FIT  

4.7.6. CAPITAL GOODS  
Many life cycle assessment case studies neglect the production of capital goods that are necessary to 

manufacture a good or to provide a service (Frischknecht et al. 2007). However in particular cases. 

such impacts cannot be neglected. Blengini & Busto (Blengini and Busto 2009) demonstrated that the 

contribution of capital goods has a noticeable weight (6%) on energy requirement and water 

consumptions. while the contribution to ozone depletion (ODP). acidification (AP) and global warming 

(GWP) is 3.9%. 2.4% and 1.6%. respectively. For this reason in this study capital goods were 

considered as much as data availability allowed it. In particular. only data upon rice cultivation 

machinery was retrieved (Berruto and Busato 2007). Tractors. harvesters and tools were associated to 
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three farm size categories to account for differences in mechanization intensity. The Functional unit is 

1 kg of agricultural machinery. As farm size is not given as a deterministic value but as a distribution. 

an internal parameter of the LCA model is set to automatically attribute the corresponding machinery 

to farm size. 

Ecoinvent process Machinery 
(kg per 50 ha 

farm) 

Machinery 
(kg per 150 ha 

farm) 

Machinery 
(kg per 300 ha 

farm) 

tractor 10600 27650 40550 

harvester 9000 12000 24000 

trailer 3900 5400 6900 

agricultural machinery. 
general 

600 800 1300 

agricultural machinery. 
tillage 

3850 6150 9950 

TABLE 21 MECHANIZATION INTENSITY FOR THREE DIFFERENT FARM SIZE CATEGORIES 

4.7.7. FIELD BURNING OF RESIDUES 
In order to determine the amount of air pollutants generated as a result of rice straw burning. an 

emission factors (EF) approach is used. EF’s are expressed in terms of mass of pollutant emitted per 

unit mass of dry fuel consumed.  

According to IPCC (Paustian et al. 2006) EF’s can be calculated using Equation 2 is used to quantify air 

pollutant emissions from rice straw open field burning: 

EQUATION 2 

Ea=QSSFB×EFa×fCo 

where a = Pollutant species; Ea = Emission of a in Mg/yr; EFa = Emission factor of a in g/kg of dry 

straw; fCo = Combustion factor. fraction of the mass combusted during the course of a fire. = 0.80 

(default value as per IPCC 2006 guidelines); QSSFB = Quantity of rice straw subject to open field burning 

in Gg/yr (Paustian et al. 2006; Gadde et al. 2009). 

However this methodology can only account for GHG emissions derived from straw burning and does 

not consider other important fluxes of pollutant. For example. the open burning of rice straw produces 

hazardous air pollutants. volatile organic compounds. polycyclic aromatic hydrocarbons. particulate 

matter (PM). organic carbon particles. elemental carbon particles and other air pollutants (Andreae 

and Merlet 2001). 

Emission factors reported in Yu et al. (Yu et al. 2012) were hence used. The study calculated EF’s for a 

specific emission episode in Taiwan in 2002. EF’s are reported in Table 22 and address emissions of 

CO. NMHCs (non-methane hydrocarbon). NOx. PM10 and SO2. 

Pollutant Mean emission [g kg-1] SD 

CO 30.3 1.45 

NMHCs 5.14 0.13 

VOC 2.13 0 

NOX 3.44 0.09 

PM10 6.28 0.34 

SO2 0.058 0.003 
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TABLE 22 EMISSION FACTORS FOR RICE STRAW BURNING 

A total production of 344787 tons of rice straw was calculated adopting an average yield of 5 tons per 

hectare (A.P.E.V.V. 2002) and calculating an overall burnt area of 68957 ha (63% of total calculated 

area). 

4.7.8. POST-HARVEST OPERATIONS 
Harvested paddy rice must be dried to reduce moisture in the grains in order to prevent mould 

formation during storage (Blengini and Busto 2009). Before drying. the typical water content of rice 

ranges between 20 and 30%. After drying. rice water content must be kept under 14%. This is also a 

normative requirement.  

To model rice drying process. “Grain drying. low temperature” of Ecoinvent database was modified. 

The process takes into account the energy demand (supplied by burning light fuel oil and consumption 

of electricity) for evaporating 1 kg of water. when drying grain at low temperature (80-90°C). Also 

included in the inventory is the infrastructure (building and machinery). Inventoried outputs are heat 

waste and air emissions from combustion. Not included are waste and other air emissions (like dust).  

The process was modified account for the lower temperatures used in rice drying (32-50°C).  

The functional unit is kg water evaporated which is calculated by Equation 3 (Wevap) according to an 

output water content (Wo) of 13%. To account for differences in input water content (Wi). a triangular 

distribution was entered in the model with an average value of 25% and 30% and 20% as maximum 

and minimum values respectively. 

Thermal energy is obtained from the combustion of light fuel oil with an average gross calorific value 

of 42.5 [MJ/kg]. Energy used for water evaporation was calculated as 4.448 [MJ/kg H2O evaporated] using 

literature data (Busto 2006). 

EQUATION 3 

Wevap =
(Wo –  Wi )

(Wi –  100)
 

4.7.9. IRRIGATION 
Irrigation was modeled according literature data (Blengini and Busto 2009) and a mean water 

consumption value of 27500 l/ha was used with a reuse factor or 28%. 

 

4.8. LCA IMPACT ASSESSMENT 
Life cycle impact assessment (LCIA) translates emissions and resource extractions into a limited 

number of environmental impact scores by means of so-called characterisation factors. To perform 

Life Cycle Assessment (LCA) studies, there is a variety of Life Cycle Impact Assessment (LCIA) methods 

available. The International Standard for LCA (ISO 14040-14044) does not specify which LCIA method 

should be used, which means the choice for LCIA method is up to the author of the study. 

There are two mainstream ways to derive characterisation factors, at midpoint level and at endpoint 

level. Midpoint indicators focus on single environmental problems, for example climate change or 

acidification. Endpoint indicators show the environmental impact on three higher aggregation levels, being 

the 1) effect on human health, 2) biodiversity and 3) resource scarcity. Converting midpoints to endpoints 
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simplifies the interpretation of the LCIA results. However, with each aggregation step, uncertainty in the 

results increases. In this study ReCiPe 2016 method was chosen using midpoint impact indicator were used 

in order to reduce uncertainty. 

The figure below provides an overview of the structure of ReCiPe. 

 

Figure 24 RELATIONSHIP BETWEEN LCI PARAMETERS (LEFT), MIDPOINT INDICATOR (MIDDLE) AND ENDPOINT 

INDICATOR (RIGHT) IN RECIPE 2016. 

Following the same strategy as in ReCiPe2008, different sources of uncertainty and different choices 

were grouped into a limited number of perspectives or scenarios, according to the “Cultural Theory” 

(Thompson et al., 1990). These perspectives do not claim to represent archetypes of human behaviour, 

they are merely used to group similar types of assumptions and choices.  

Three perspectives were included in ReCiPe2016:  

1. The individualistic perspective is based on the short-term interest, impact types that are 

undisputed, and technological optimism regarding human adaptation.  

2. The hierarchist perspective is based on scientific consensus regarding the time frame and 

plausibility of impact mechanisms.  

3. The egalitarian perspective is the most precautionary perspective, considering the longest time 

frame and all impact pathways for which data is available. 
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In this study the hierarchist perspective was chosen. 

4.9. RESULTS AND DISCUSSION 
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Categoria d'impatto Unità Total Rice drying Fertilizer 
production 

Field 
operations 

Direct field 
emissions 

Machinery Transport Rice straw 
burning 

Pesticide Irrigation 

Global warming kg CO2 eq 2.79E+00 9.15E-02 1.59E-01 1.26E-01 2.36E+00 4.64E-02 4.18E-04 0.00E+00 1.33E-02 0.00E+00 

Stratospheric ozone 
depletion 

kg CFC11 eq 4.35E-06 3.61E-08 8.24E-08 6.28E-08 4.10E-06 1.41E-08 1.80E-10 0.00E+00 5.32E-08 0.00E+00 

Ionizing radiation kBq Co-60 eq 1.62E-01 1.04E-01 2.61E-02 1.11E-02 0.00E+00 1.68E-02 6.93E-05 0.00E+00 4.36E-03 0.00E+00 

Ozone formation, 
Human health 

kg NOx eq 2.65E-03 1.30E-04 3.75E-04 1.37E-03 0.00E+00 9.94E-05 2.87E-06 6.45E-04 2.83E-05 0.00E+00 

Fine particulate matter 
formation 

kg PM2.5 eq 9.91E-04 7.65E-05 4.50E-04 3.35E-04 2.64E-05 6.42E-05 8.90E-07 1.17E-05 2.63E-05 0.00E+00 

Ozone formation, 
Terrestrial ecosystems 

kg NOx eq 3.09E-03 1.35E-04 3.82E-04 1.39E-03 0.00E+00 1.12E-04 2.94E-06 1.04E-03 2.93E-05 0.00E+00 

Terrestrial acidification kg SO2 eq 2.73E-03 2.22E-04 1.36E-03 6.55E-04 2.16E-04 1.50E-04 1.72E-06 4.04E-05 8.18E-05 0.00E+00 

Freshwater 
eutrophication 

kg P eq 1.83E-04 2.60E-05 1.00E-04 1.78E-05 0.00E+00 2.64E-05 9.91E-08 0.00E+00 1.19E-05 0.00E+00 

Marine eutrophication kg N eq 1.21E-04 1.62E-06 5.80E-06 9.12E-07 1.09E-04 1.17E-06 5.45E-09 0.00E+00 3.05E-06 0.00E+00 

Terrestrial ecotoxicity kg 1,4-DCB 2.13E+00 8.87E-01 5.12E-01 3.13E-01 0.00E+00 3.43E-01 1.11E-03 0.00E+00 7.18E-02 0.00E+00 
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Freshwater ecotoxicity kg 1,4-DCB 3.69E-03 7.28E-05 9.81E-05 6.95E-05 0.00E+00 8.53E-05 4.81E-07 0.00E+00 3.36E-03 0.00E+00 

Marine ecotoxicity kg 1,4-DCB 1.74E-03 5.05E-04 4.17E-04 2.48E-04 0.00E+00 2.92E-04 1.20E-06 0.00E+00 2.76E-04 0.00E+00 

Human carcinogenic 
toxicity 

kg 1,4-DCB 2.08E-02 4.94E-03 5.15E-03 4.08E-03 0.00E+00 5.98E-03 2.93E-05 0.00E+00 5.83E-04 0.00E+00 

Human non-carcinogenic 
toxicity 

kg 1,4-DCB 1.39E-01 9.41E-03 1.80E-02 9.86E-02 0.00E+00 1.08E-02 1.09E-03 0.00E+00 1.04E-03 0.00E+00 

Land use m2a crop eq 7.87E-02 7.30E-02 2.16E-03 2.99E-03 0.00E+00 4.64E-04 3.09E-05 0.00E+00 1.43E-04 0.00E+00 

Water consumption m3 6.45E+00 1.32E+00 3.65E-01 2.33E-01 0.00E+00 4.13E-01 2.44E-03 0.00E+00 5.25E-02 4.05E+00 

TABLE 23  RESULTS FOR 1 KG OF RICE CALCULATED WITH RECIPE 2016 MIDPOINT INDICATORS
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Figure 25 Contribution analysis for 1 kg of rice calculated with ReCiPe 2016 Midpoint  indicators  
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FIGURE 26 CONTRIBUTION ANALYSIS OF GLOBAL WARMING FOR 1 KG OF RICE 

 

FIGURE 27 CONTRIBUTION ANALYSIS OF FRESHWATER ECOTOXICITY FOR 1 KG OF RICE 
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5. CONCLUSIONS AND PERSPECTIVES FOR FUTURE RESEARCH 
The main goal of this PhD thesis was to put forward LCA methodology enhancing his suitability to 

model agricultural and agricultural based productions.  

The research first focused on LCA case studies. In particular LCA application to rice production in 

Piedmont highlined some of the limits of this methodology in particular related to the difficulty of 

estimating direct emissions from the field and to model pesticide impacts.  

Field emissions are extremely variable spatially and temporally and they heavily contribute to some 

impact categories and hence on the overall impacts of products. Our research over the LCA of rice 

demonstrated their important contribution in global warming (68%), acidification (41%), 

eutrophication (76%) and photochemical oxidants (92%) indicators.   

This said, when determining the impact of a generic product making use of agricultural processes (e.g. 

food or agro-energy products), this high variability reflects on overall life cycle impacts greatly 

increasing uncertainty. In fact, is it is quite common to analyze agricultural productions coming from 

different areas and (sometimes) cultivated in different periods. Even in surrounding areas, emissions 

can be subject to strong variations due to soil or crop management differences and even the same field 

can yield different emissions in different periods due to climatic differences.  

Simplified approaches, such as IPCC tier 1 or 2 methodology, correlate emissions to few parameters 

(mainly nitrogen input only) and disregard other important influencing aspects such as soil, climatic 

and other crop management practices. This approach is very helpful to give a rough estimate of 

emissions especially at national scale. At plot, landscape or regional scale, simplified approaches are 

associated to a very high degree of uncertainty.  

Initially LCA has been developed as a site and time independent tool. As a result, estimations of on-

farm pollutant emissions and pollutant fate models do not consider field scale and regional variability 

in soil, catchment, climate and farmer practices.  It is hence very difficult to estimate emissions which 

can be considered representative of a geographical area and of a particular year time representative 

emissions to improve impact assessment in LCA by better considering this variability by coupling LCA 

with a dynamic simulation model that considers soil, catchment, climate and farmer practices. This 

will allow the determination of total life cycle environmental impacts at the catchment/landscape 

spatial level. 

Another development in LCA driven by its application for agricultural systems is the improvement of 

impact assessment through a better description of the fate mechanisms following emissions. Initially 

LCA has been developed as a site and time independent tool. Impact values result from the integration 

across emission/impact locations (world) and over time (infinite horizon) in an assumed steady state 

(Guinée et al. 2002). This over simplification is considered acceptable for global scale impacts (climate 

change) but considered simplistic for more regional ones, such as aquatic eutrophication. In fact, both 

ISO standards (ISO 2006) and SETAC (Society of Environmental Toxicology and Chemistry) 

recommend adopting spatially differentiated characterization factors and, in the last few years, several 
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sets of country-specific factors have been proposed for eutrophication, as well as new methodologies 

(RECIPE, TRACI, EDIP2003, LUCAS). This research topic is currently being pursued on regional 

(Gallego et al. 2009) and national scales (Toffoletto et al. 2007), but also at catchment scale, 

considered appropriate to better model regional impacts such as eutrophication (Basset-mens et al. 

2006a; Hauschild and Potting 2005; Seppala, Knuuttila, and Silvo 2004), because it allows considering 

spatial variability of soils and climate as well as the complex interactions among farms at supra-farm 

spatial levels.  

In summary, improving our understanding of environmental impacts of farming systems requires 

coupling LCA with dynamic models, to consider spatial and temporal variability of emissions, as well 

as a better understanding of the complex fate mechanisms that link them to impacts. For 

eutrophication in particular, the fate factor of eutrophying pollutants in catchments (emission at the 

outlet of the catchment over emission from the catchment's soils) and particularly of nitrates, reflects 

one of these complex environmental mechanisms (Basset-Mens et al. 2006b). Establishing fate factors 

of nitrates in catchments can also identify trade-offs between impact categories. In fact, in riparian 

zones, nitrates can be transformed into N gases by heterotrophic denitrification (the anaerobic 

microbial conversion of nitrate to nitrous oxide and nitrogen gas) thus swapping eutrophying 

emissions with important greenhouse gases fluxes, N2O’s Global Warming Power at 100 years being 

310 times greater than that of CO2 (Guinée et al. 2002). 

In the short to medium term, this thesis project aims at contributing to methodological development in 

LCA by (i) comparing the estimation of pollutant emissions using dynamic models to the common 

practice of adopting emission factors and (ii) comparing the use of spatialized fate factors for nitrate to 

the common practice of assuming a fate factor equal to 1, i.e. assuming that all of the nitrate emitted 

from the catchment's soils contributes to eutrophication and that no transformation effects (e.g. 

denitrification or plant uptake) occur. The integration of dynamic models into LCA as pursued in this 

project will potentially present a major scientific achievement. 

In the medium to long term, it will develop the potential of LCA as a tool for the analysis of policies in 

different fields (e.g. renewable energy or sustainable agriculture), offering an integrated framework 

capable of grasping the complex interactions among farms at supra-farm spatial levels such as the 

catchment or agricultural landscape. This will help to strike a better balance between the 

environmental and economic impacts of agriculture and is thus very relevant to society. 

In the long term, it has the potential to contribute to a sustainable development of agriculture by 

pointing out the most appropriate policies aiming at this goal. 
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6. ANNEX A: THE LIFE CYCLE OF RICE: LCA OF ALTERNATIVE AGRI-

FOOD CHAIN MANAGEMENT SYSTEMS IN VERCELLI (ITALY). 
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7. ANNEX B: ECO-EFFICIENT WASTE GLASS RECYCLING: INTEGRATED 

WASTE MANAGEMENT AND GREEN PRODUCT DEVELOPMENT 

THROUGH LCA. 
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8. ANNEX C: PARTICIPATORY APPROACH, ACCEPTABILITY AND 

TRANSPARENCY OF WASTE MANAGEMENT LCAS: CASE STUDIES OF 

TORINO AND CUNEO. 
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9. ANNEX D: DEVELOPING SPATIALLY STRATIFIED N(2)O EMISSION 

FACTORS FOR EUROPE 
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10.  ANNEX E: ESTIMATION OF N2O FLUXES AT THE REGIONAL 

SCALE: DATA, MODELS, CHALLENGES 
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11. ANNEX D 
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