
DATA DRIVEN PATIENT-SPECIALIZED NEURAL NETWORKS FOR BLOOD GLUCOSE
PREDICTION

Alessandro Aliberti1, Andrea Bagatin1, Andrea Acquaviva2, Enrico Macii1 and Edoardo Patti1

1Politecnico di Torino, Torino, Italy - 2University of Bologna, Bologna, Italy

ABSTRACT

Diabetes is an autoimmune disease characterized by glu-
cose levels dysfunctions. It involves continuous monitor-
ing combined with insulin treatment. Nowadays, continu-
ous glucose monitoring systems (CGMs) have led to a greater
availability of data. These can be effectively used by ma-
chine learning techniques to infer future values of the gly-
caemic concentration, allowing the early prevention of dan-
gerous states and a better optimisation of the diabetic treat-
ment. In this work, we investigate a patient-specialized pre-
diction model. Thus, we designed a specialized solution
based on Long Short-Term Memory (LSTM) neural network.
Our solution was experimentally compared with two litera-
ture approaches, respectively based on Feed-Forward (FNN)
and Recurrent (RNN) neural networks. The experimental re-
sults have highlighted that our LSTM solution obtained good
performance both for short- and long-term glucose level infer-
ence (60 min.), overcoming the other methods both in terms
of correlation between measured and predicted glucose signal
and in terms of clinical outcome.

Index Terms— CGM, Diabetes, Neural Networks, Time-
series Analysis, Machine Learning, LSTM.

1. INTRODUCTION

Diabetes is a chronic disease characterized by imbalances in
blood glucose levels due to dysfunctional insulin production.
This pathology is caused by antibodies that attack the β cells,
which are responsible for the production of insulin in the pan-
creas. Defects in either insulin secretion or insulin sensitiv-
ity (or both) can lead to an increase in blood glucose beyond
physiological levels. There are three main categories of dia-
betes. Type I diabetes, resulting in a loss of insulin, affects
about 10% of the diabetic patients since childhood. Type II
diabetes, related to an insulin insensitivity or inhibition, repre-
sents most common form of diabetes and usually develops in
adulthood. Then, the gestational diabetes that refers to a tem-
porary condition occurring in woman during pregnancy. In
this comparative analysis, we focus on Type I diabetes. This
disease, widespread worldwide, involves recurrent monitor-
ing of blood glucose levels together with insulin treatment.
There are mainly two types of monitoring systems i) the self-

monitoring, performed by combining a finger and a measur-
ing device, and ii) the continuous glucose monitoring system
(CGM). Thanks to the increasing availability of low-cost de-
vices the medical sector is moving towards the concept of
smart healthcare [1] leading to greater availability of data and
thus stimulating research to develop techniques for predicting
future values within different prediction time horizons. This
enables new and robust methodologies chasing two-fold ben-
efits: i) preventing potentially dangerous complications (i.e.
hyper- or hypoglycaemic states) and ii) optimizing the insulin
dose that needs to be injected. Therefore, the patient can be
subjected to continuous remote monitoring by the primary
care physicians, triggering automatic alert mechanisms and,
whenever needed, faster hospitalisation procedures [2].

Nowadays, sensor-based user behaviour and health status
monitoring are getting much attention [3]. In detail, since the
introduction of CGM devices, literature has proposed several
approaches for glucose level prediction. Generally, these are
divided into the two macro-categories: i) approaches based
physiological models, reproducing metabolic processes of a
patient by means of equations that mathematically describe
glucose kinetics [4] and ii) data-driven approaches, that in-
fer the future values of glucose concentration by applying
machine learning techniques [5]. However, machine learn-
ing techniques are generally preferred because they promise
higher flexibility and capability w.r.t. fixed physiological
model. Indeed, they are immune to unpredictable variabil-
ity of glucose kinetics due to either internal (e.g. different
device calibrations) or external factors (e.g. physical activi-
ties, sudden stress, etc.). Also they do not depend on fixed
parameters. In recent years, the most common approaches
use autoregressive models (AR) or artificial neural networks
(ANN) [6]. However, this method suffers from significant
prediction errors and a very limited forecasting window (i.e.
about 30 min.). Better accuracy values based on ANN or on
SVR techniques are shown by the most recent works [7, 8].
Further developments are presented by [9], using a model
based on feed-forward ANN, and by [10], using a recurrent
neural network (RNN). However the prediction time horizons
are still modest. While the most consolidated works are gen-
erally based on shallow neural networks, few recent studies
started proposing deep learning techniques [11, 12]. Never-
theless, these methods i) are very demanding, ii) need a huge



set of data for an effective training iii) are not easily inter-
preted.

In this work, we propose a patient-specialized blood glu-
cose prediction system exploiting a data-driven approach.
Thus, we designed and implemented our solution based on
Long Short-Term Memory (LSTM) neural network that is
generally acknowledged as one of the best architecture for
time-series predictions thanks to its versatility and flexibil-
ity [13]. Consequently, we tested and evaluated our solution
capabilities and performances to improve the prediction ac-
curacy, possibly on a much larger forecasting time horizon.
For a fair validation of our methodology, we exploited the
very same dataset for training and testing the two most sig-
nificant state-of-art neural networks in blood glucose predic-
tion (i.e. [9] and [10]). Then, to evaluate the performance of
the models, we exploited different quantitative and qualitative
performance indexes to identify the most promising. The so-
lution proposed in this work is part of a broader framework
introduced in our previous work [14]. That is the realization
of a glucose prediction algorithm that, equipped in a modern
CGM system, can be able to make direct predictions without
a long period of data collection and training on the patient
itself. In [14], we have demonstrated the possibility of de-
signing an effective multi-patient data-driven blood glucose
prediction model able to predict the future glucose level val-
ues of a new patient. This model allows the realization of a
robust and pre-trained system. In this manuscript, we want
to investigate how our LSTM solution works on the individ-
ual patient. Proved its potentialities on individual patients,
as future works, we plan to apply some techniques, such as
Transfer Learning [15], to personalize the multi-patients neu-
ral network according to glycaemia behaviours of each patient
to monitor.

The rest of the paper is organised as follows. Section 2
describes the proposed methodology used to forecast blood
glucose level in short- and medium-term. Section 3 debates
the experimental results. Finally, Section 4 provides conclud-
ing remarks.

2. METHODOLOGY

This section describes our methodology for the realization
of a data-driven patient-specialized solution based on LSTM
neural network to forecast blood glucose level in short- and
medium-term. Thus, we detail the dataset, and we introduce
the state-of-art neural architectures (i.e. [9] and [10]) that rep-
resent our benchmark to evaluate and compare the perfor-
mance of our solution. Consequently, starting from the lit-
erature structures, we design and discussing our characteriza-
tion processes. In detail, we describe how we selected and
optimised the final architecture and related parameters of the
prediction models to boost the performances and accuracy,
preventing the risk of overfitting.
In Figure 1, we show the main phases of our study. In the

so-called training phase, training samples first undergo a pre-
processing step. The unfiltered data are used as input to build
a prediction model. In the test phase, new unseen and unfil-
tered data are fed into the trained models to obtain the final
predictions.

Fig. 1. Methodology - Main phases of the study.

2.1. Dataset and data pre-processing

To evaluate performance and accuracy, all the mod-
els are trained and validated using the same dataset:
OhioT1DM [16]. This dataset consists of blood glucose level
values sampled every 5 minutes, for about two months of ob-
servation. Data refer to six Type-I diabetic patients (i.e. two
men and four women), with age ranging between 40 and 60
years. The sensor used to sample the blood glucose level is
the Medtronic Enlite CGM, combined with a Medtronic 530G
insulin pump. The dataset is divided into two parts: around
80% of the data for the training phase while the remaining
20% for the test and validation phase. However, following a
preliminary phase check of the dataset, we noticed that patient
measurements present some gaps. These faults may be due to
temporary malfunctions or to the maintenance activities of the
sensors. Such temporal lacks can lead to a wrong evaluation
by the algorithms with a consequent loss of accuracy of the
prediction. Consequently, we performed a pre-processing of
the data by interpolating and re-sampling linearly.

Finally, we organize the data as follows:

trainX =


G0 G1 G2 ... G27 G28 G29

G30 G31 G32 ... G57 G58 G59

. . . . . . .

. . . . . . .

 (1)

trainY =


G3 G4 G5 ... G30 G31 G32

G33 G34 G35 ... G60 G61 G62

. . . . . . .

. . . . . . .

 (2)

whereG represents a value of the dataset. The trainX matrix
contains the input values of the neural network. It is a ma-
trix composed of 30 columns, i.e. the current measurement
plus the 29 previous measurements. Instead, the trainY ma-
trix contains the output values. The two matrices have the
same size, however, trainY is shifted by as many values as
the prediction time horizon of interest. In the given example,
the trainY is shifted by a number of samples equal to the



forecast horizon, i.e. 15 minutes, then 3 samples, one every 5
minutes (sampling rate). Furthermore, to avoid over-training,
samples already used by the training network are no longer
used, which is why the measurements go fromG0 toG30 (see
trainX ). Test matrices have the same structure as those for
training. To avoid erroneous results, the values within these
files are never used for the training phase, but are given as
input to the network only when the performance of the final
architecture is to be evaluated.

2.2. Prediction models

In the following, we introduce our LSTM solution. More-
over, we present the identified and re-implemented state-of-
art models, a FNN [9] and a RNN [10], respectively, as re-
ported by authors. Indeed, starting from the original structure,
we try to optimize these models by modifying some hyperpa-
rameters, to obtain even more robust and high-performance
models according to our dataset. The original FNN was com-
posed of 30 inputs, two hidden layers of 10 and 5 units and an
output layer [9]. The structure of the RNN is similar but with
two hidden layers of 20 and 13 neurons, respectively [10]. For
all the models, we selected the best architecture with the best
configuration. Thus, starting from the literature, we evaluated
different architectures’ setups in terms of number of inputs,
number of units in the hidden layer and iterations through a
trial-and-error approach.

As far as FNN and RNN are concerned, our re-
implemented solutions always consist of a single hidden
layer. Indeed, we have managed to simplify the networks
structures from a computational point of view, achieving sim-
ilar or better performance.

2.2.1. Long Short-Term Memory Neural Network

LSTM represents the powerful evolution of the classic RNN.
This neural model, particularly suitable for time series, is de-
signed to overcome the limitations of the RNN. Indeed, RNN
architectures suffer the instability of long-term predictions
due to either vanishing or exploding gradient problems [17].
Often these problems arise during the training of deep struc-
tures, when the error gradients are propagated back in time
to the initial layer, going through continuous matrix multipli-
cations. To overcome this limitation, the LSTM is designed
as cells where specific gating functions manage the memory,
maintaining or erasing information at each time step. The
ability to remove or add information to the cell state is reg-
ulated by gates (i.e. input, output, and forget) consisting of
sigmoidal activation functions coupled with pointwise multi-
pliers. Each gate modulates how much of the corresponding
signal should be let through. In this way, LSTMs are able to
remember values that are passed through gates all in 1 state,
regardless of how deep the network is.

To find the best neural structure, we investigated differ-
ent structural combinations with a trial-and-error approach.

We found that the best structure consists of 30 inputs, a layer
composed of 50 cells and an output layer. The number of op-
timal iterations is 2000, and the learning rate is 0.001, with
the Adaptive Moment Estimation (Adam) as optimization al-
gorithm [18].

2.2.2. Feed-forward Neural Network

This type of models represents the simplest type of ANN in
which information propagation is mono-directional. In other
words, the information moves from the input nodes to the out-
put nodes, through the hidden layers [19]. Generally, this
model is characterized by a fully-connected structure. It is
also famous for its low computational costs [19]. Then, start-
ing from the model architecture presented in [9], we per-
formed different structure combinations. Then, we found the
best structure that is composed of 30 inputs, 100 neurons in
the hidden layer and only one neuron for the output layer.
We exploited the sigmoid as activation function and the back-
propagation as optimization, as generally recommended in lit-
erature [9]. Furthermore, we set the learning rate equal to
0.001, with an optimal number of iterations of 1500.

2.2.3. Recurrent Neural Network

The RNNs propagate the information in a bidirectional way.
Indeed, they are composed of recurrent units sharing the same
parameters, with loops allowing to propagate the information
back to the same computational units. In this way, each com-
putational step takes into account not only the current input
but also the previous ones. As in the FNN case, starting from
the model presented in [10], we re-implemented the structure
by investigating different configurations. The best structure
is configured as a follow: i) 30 input units, ii) 50 neurons in
the hidden layer and iii) a single output. We exploited the sig-
moid as activation function. As optimization method, we used
Adam with a learning rate of 0.001 and a number of iterations
set to 3000.

3. EXPERIMENTAL RESULTS

In this section, we discuss the experiments performed to as-
sess the prediction models described in Section 2. We split
our analysis in two main part for a thorough evaluation of the
applied methods: i) Analytical assessment: we exploit a set
of statistical indexes widely used in literature to validate the
predictions from a regression analysis point of view; ii) Clin-
ical assessment: we exploit metrics specifically designed to
validate the clinical outcome of blood glucose measurements
to validate the predictions from a clinical point of view. To
evaluate the performance of our LSTM, our results are com-
pared with the results obtained by literature techniques based
on a FNN [9] and a RNN [10], as described in Section 2.2.



3.1. Analytical assessment

To evaluate the prediction accuracy of the models, we ex-
ploited a set of metrics that are often used by blood glu-
cose level predictions literature [20]. These metrics allow
quantifying the similarities between predicted and observed
time-series trough descriptive statistics and regression anal-
ysis. The RMSE - Root Mean Square Error is the standard
deviation of the difference between the predicted and the ob-
served values. It represents the prediction error-index that is
the most used in literature. The R2 - Coefficient of Deter-
mination is defined as square of the correlation (R) between
predicted and observed values. Thus, it ranges from 0 (ab-
sence of correlation) to 1 (complete correlation).

Table 1. Prediction performance indicators for FNN.

Table 2. Prediction performance indicators for RNN.

Tables 1, 2 and 3 report all the experimental results ob-
tained by performing the re-implemented FNN and RNN ar-
chitectures and our proposed LSTM solution. In all three
scenarios, we used raw data in training, validation and infer-
ence phase for individual patients (marked with an identifica-
tion code 559, 563, 570 575, 588, 591 respectively). More-
over, the forecast time horizons of interest are 30, 45, 60 and
90 minutes, respectively. For each prediction time horizon,
we report values of RMSE and R2. As these networks are
patient-specialised, consequently, we carried out the analysis
of the results per patient.

Analyzing the analytical indices for all the patients, we
found that state-of-art RNN is more performant than the FNN
in terms of prediction accuracy. This translates into smaller

Table 3. Prediction performance indicators for our LSTM
solution.

values ofRMSE andR2, as described in Table 1 and Table 2
respectively. However, this happens for all time horizons with
the exception of the Patient 563. In this specific case, the
indices for each prediction time horizon are slightly higher.
This phenomenon occurs also for our proposed LSTM solu-
tion (see Table 3). Also, for the patient 591, we noted that,
with the exception of a few individual time horizons (i.e. 60
an 90 minutes), our LSTM solution achieve slightly worse re-
sults. In our opinion, this is because the dataset at our disposal
is extremely small for adequate training, especially for recur-
rent networks, which generally require a large enough amount
of data to better understand their trends and non-linear rela-
tionships [21]. However, even with this limitation due to the
dataset, our LSTM achieves better performance. For patients
559 and 588, the results are much better for each time horizon
analyzed (i.e. from 30 min. to 90 min.). Instead, Patient 570
is the best case found. In fact, for each time horizon, we lower
the RMSE value from 6mg/dl to 8mg/dl compared to RNN,
which in turn performs better than FNN. Generally, we can at-
test that our solution based on a neural network type LSTM
results the most promising architecture. In terms of prediction
accuracy, compared to all the investigated time horizons, we
found improvements at every time horizon under analysis.

Referring to the most recent literature, the maximum
acceptable RMSE value ranges from 19.32 mg/dl to
24.83 mg/dl in 30 min. predictions [22]. Using these state-
of-art limits as a benchmark, we can achieve good prediction
accuracy up to 60 min. in the future for Patients 563 and 570.
This limit can also be considered suitable for Patients 588 and
591, as the maximum deviation is about 0.6mg/dl.

Figure 2 shows a plot of the RSME values obtained by
all patients for our proposed LSTM solution. The horizontal
continuous black lines represent the best and the worst limit
for 30 min. predictions, as described in [22]. Taking as ref-
erence the most conservative limit (i.e. the lowest black line),
we can affirm that our model allows us to achieve good re-
sults up to 45 min. for all patients and up to 60 min. ahead
for Patients 588 and 591.



Fig. 2. LSTM predictions analysis.

3.2. Clinical assessment

The identified analytical metrics (see Section 3.1) are suitable
to understand the performances and the prediction accuracy
of models from a regression analysis point of view. How-
ever, these metrics are not appropriate to identify the most
significant outliers, and they do not provide any information
about the clinical impact of the prediction errors and their
consequences on medical treatment decisions. Therefore, to
give a more thorough picture of the models’ performance,
we integrated our assessment with Clarke Error Grid analysis
(EGA) [23]. EGA represents one of the most widely accepted
indexes for the analysis of clinical accuracy of blood glucose
estimations. Indeed, it provides a clinical interpretation of the
mapping between predicted and measured blood glucose lev-
els, that can be represented in a scatter plot with five regions:
A-B - values that, despite being outside 20% of the reference,
do not lead to inadequate treatment of the patient; C - val-
ues leading to inappropriate treatment, but without dangerous
consequences for the patient; D-E - values leading to poten-
tially dangerous failure to detect hypoglycaemic or hypergly-
caemic events. Zones A and B are fully clinical acceptable.
D and E refer to the zones where prediction errors are mostly
dangerous [24].

Figure 3 shows the EGA analysis performed for all time
horizons (i.e. from 30 to 90 min.) for Patient 575. This rep-
resents the worst case we found, in terms of prediction accu-
racy, especially for the 60 and 90 min. prediction horizons.
The EGA analysis confirms what was found analytically in
the Section 3.1. Up to 45 minutes in the future, all values
are concentrated in the zones fully clinical acceptable (i.e. A
and B). Differently, for longer time horizons some values are
placed in zone D, therefore already potentially dangerous for
the patient.

4. CONCLUSIONS

CGMs sensors represent a valid and more advantageous al-
ternative to self-monitoring for patients affected by Type-I

(a) 30 minutes (b) 45 minutes

(c) 60 minutes (d) 90 minutes

Fig. 3. Clarke Error Grids for specialized LSTM network for
Patient 575.

diabetes. Through the diffusion of such devices, nowadays,
a considerable amount of data are available. This asset al-
lows the study and implementation of different and innovative
models in the field, especially those based on neural networks
techniques.

In this work, we addressed the problem of automated
glucose level prediction leveraging patient-specialized CGMs
data. In detail, we have designed, implemented and compared
different specialized state-of-art models based on neural net-
works. Our specific aim is to find the best neural solution that
best fits the specialization on the individual patient. Thus,
starting with a deeply specialized dataset and some neural so-
lution in literature, we identify the best-optimized structure,
with the best prediction performance in terms of forecast ac-
curacy.

In our future work, we will combine our patient-
specialized data-driven system with our multi-patient data-
driven methodology [14] by integrating run-time information.
More specifically, we plan to perform a real-time fine-tuning
of the model, leveraging the glucose level measurements of
the patient that is currently using the system.
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