
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

In-field Functional Test of CAN Bus Controllers / Cantoro, Riccardo; Sartoni, Sandro; Reorda, Matteo Sonza. -
ELETTRONICO. - (2020), pp. 1-6. (Intervento presentato al convegno IEEE VLSI Test Symposium 2020)
[10.1109/VTS48691.2020.9107628].

Original

In-field Functional Test of CAN Bus Controllers

Publisher:

Published
DOI:10.1109/VTS48691.2020.9107628

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2835252 since: 2020-07-06T19:01:16Z

IEEE

In-field Functional Test of CAN Bus Controllers
Riccardo Cantoro, Sandro Sartoni, Matteo Sonza Reorda

Department of Computer and Control Engineering
Politecnico di Torino

Torino, Italy

Abstract—The Controller Area Network (CAN) bus is a serial
bus protocol widely used in the automotive domain to allow
communication between different Electronic Control Units in
the car. Being often part of safety-critical systems, the hardware
implementing the CAN network must be constantly tested along
the system lifetime, even during the operational phase. CAN
controllers are relatively complex modules in charge of managing
the sending and the receiving of packages through the CAN
bus and defects affecting them can easily compromise the whole
CAN network. In this work, the CAN controller is tested by test
programs to be executed by the CPU connected to the device
under test and by another unit connected to the same CAN
bus. A fault grading with respect to structural permanent faults
of a functional test based on the execution of a software test
library for the CAN bus is presented for the first time. Results
show how the approach can cover more than 90% of stuck-at
faults on an open-source implementation of the standard, which
is significantly more than what a usual functional test based on
some sample application can achieve.

Index Terms—software-based self-test, software test library,
on-line test, automotive electronics, safety

I. INTRODUCTION

Since its introduction in 1986, the Controller Area Network
(CAN) bus [1] has been widely used in many domains,
especially in automotive applications, whenever a robust con-
nection is required to work in a relatively harsh environment.
A major incentive to its usage is currently the availability of
a huge set of tools supporting it, as well as the integration
of standard CAN controllers in many microcontroller units
(MCUs). Due to its widespread adoption, CAN controller IP
cores are also frequently present in automotive System on Chip
(SoC) devices.

Since both MCUs and SoCs including CAN controller IP
cores may happen to be used in safety-critical applications,
it is important to devise solutions allowing to test them
both at the end of the manufacturing process, and during
the operational phase (in-field test). Standards such as ISO
26262 force the adoption of such solutions and require the
quantitative evaluation of the Fault Coverage (FC) that can be
achieved in this way, e.g., resorting to the well-known stuck-
at fault model, defining challenging targets to be achieved in
order to match the specified reliability level [2].

When considering the test of the CPU cores, solutions
based either on Design for Testability (DfT) or on Self-Test
Libraries (STLs) can be adopted. In the latter case, the device
manufacturer provides the user with some test programs, to
be integrated into the application code. By activating them
during the operational phase (e.g., at the power-on, or during

the application idle times), the user can check whether the
CPU core is still correctly working, or it is affected by some
defect. When developing such STLs, the device manufacturer
can precisely assess their effectiveness in terms of achieved
structural Fault Coverage (e.g., in terms of the stuck-at fault
model). The assessment is typically based on Fault Simulation
experiments relying on a new generation of tools, denoted
as Functional Fault Simulators. Several semiconductor and IP
companies are currently offering STLs to their customers [3]–
[9].

Since MCUs and SoCs are also composed of other IP cores
besides the CPU ones, such as memory and peripheral ones,
the same in-field test approach can be extended to them, as
well [10], [11]. In the case of peripheral cores, the idea is to
execute a program on the CPU, in charge first of configuring
them, and then of forcing them to execute some specific
transmission operations. If the test is performed when the
device is mounted on a board, and the board is part of the
final product, no support from any kind of tester is available.
Hence, the test is based either on loop-back solutions, where
the peripheral core both sends and receives data, and then the
test program checks whether they match, or the test relies on
another peripheral core of the same type, possibly hosted on
another device connected to the same network. During the test,
the CPU on the second device will also execute a suitable piece
of code, performing symmetrical operations. This scheme has
been investigated and successfully assessed in previous works,
such as [12].

When moving to the test of a CAN Controller, a similar ap-
proach can be adopted, although with some major differences.
The first one lies in its size and complexity. Hence, the test is
likely to be more complex and longer in terms of execution.
A second one is related to the fact that when in-field test
must be performed in order to achieve a given reliability or
safety level, only faults which can produce a critical failure in
the adopted configuration should be considered. Faults that
cannot produce any misbehavior are called Safe Faults or
Functionally Untestable Faults (FUFs) [13]. As an example, if
some Design for Testability structures have been introduced to
support end-of-manufacturing test, most of the faults affecting
them are not able to influence the device behavior during
the operational phase and can be labeled as FUFs. Previous
works on the subject proved that the amount of FUFs may
be relatively large, sometimes accounting for more than 20%
of the total number of faults. Unfortunately, there are no
mature techniques to identify all the FUFs in an automatic

and scalable manner, yet. This fact increases the cost for
developing the STLs and makes the computation of the FC
they achieve more complex. Finally, given the complexity
of the transmission and arbitration protocol it supports, fully
testing a CAN Controller may require special techniques
which are not required for the test of other peripheral modules.

In this work we selected an open-source model of a
CAN Controller, created a sample SoC combining it with
an OpenRISC CPU core [14], and developed an STL for
the CAN Controller under the assumption that another CAN
Controller exists on a second unit in the network and we
can run a coordinated test involving the two controllers.
The developed STL is composed of deterministic patterns
which can be reasonably applied to different CAN Controllers
with adjustments but not to other communication peripherals,
since the communication protocol may change significantly.
Moreover, experimental results gathered on the sample SoC
are reported, showing the effectiveness and limitations of the
proposed solution. To the best of our knowledge, this is the
first work describing a functional solution for the test of a CAN
Controller, and the first to report quantitative experimental
results about the achievable Fault Coverage. We also compared
the achieved FC with the one of a "normal" application using
the CAN Controller, showing that the former is significantly
higher than the latter. As this is a first step towards an on-
line test solution, the assumption is not to rely on any DfT
approach (e.g., Logic BIST). We are currently investigating
on various in-field scenarios in which some configurations are
not allowed, thus leading to untestable logic.

The paper is organized as follows. Section II illustrates a
description of CAN controllers, including the version used as
the case study of this work. Section III describes in details the
proposed approach. In Section IV we present the case study,
while in Section V we show experimental results. Finally,
Section VI concludes the paper and presents future works.

II. BACKGROUND

A. CAN Controller

The CAN BUS protocol, released in 1986, is a serial
communication standard designed with the specific aim of
making it robust with respect to noisy environments; it was
originally developed for the automotive industry.

The protocol consists of a multi-master bus; there is no
need for an arbiter since there can be no problems either
from an electrical and logical point of view as this is a 0
dominant bus and open drain technology is employed. In case
of simultaneous transmission, the node that is sending a lower
priority message (i.e., a collision arises due to the transmission
of a logic 1 while another node is transmitting a logic 0) is able
to recognize such discrepancy and suspend the transmission.

The CAN standard supports four different frames (i.e., types
of message), that are:

1) Data Frame: a message to transfer data from a sending
node to one or more receiving nodes.

2) Remote Frame: a node requests data from a source node.
A remote frame is followed by a data frame containing
the requested data.

3) Error Frame: any bus participant may signal an error
condition at any time during a transmission.

4) Overload Frame: a node can request a delay between
two data or remote frames.

As for Data Frame, messages are divided into different fields
like the ID (the identifier of the recipient of the message),
DLC or Data Length Code (the number of bytes to be sent),
DB or Data Bytes (the actual message), and CRC for error
detection. The recipient notifies the transmitter of the correct
reception by means of an Acknowledge bit. Data Frames come
in two formats, with respect to the ID size: 11 bits for the Base
format, and 29 bits for the Extended format.

Each node generally consists of a controller which elab-
orates commands sent from another module (e.g., a micro-
processor) and sets everything to correctly send/receive a
message. It handles the error conditions as well, providing the
outer world a register-based interface in which any information
can be found.

The actual implementation depends on the producer, here
are some of them: SJA1000 by NXP, bxCAN by STMicroelec-
tronics, TI TMS230, and Infineon MultiCan. The following
subsection illustrates the case study used in this work.

B. The SJA1000 Implementation

The SJA1000 [15] is a stand-alone controller for the CAN
developed by Philips Semiconductors (now NXP Semiconduc-
tors) in early 2000s.

It is the successor of the PCA82C200 CAN controller
(BasiCAN) from Philips Semiconductors. Additionally, a new
mode of operation is implemented (PeliCAN) which supports
the CAN 2.0B protocol specification with several new features.

The peripheral can be described by means of few blocks:
1) Interface Management Logic: this block contains a set

of registers that implements the peripheral interface plus
the logic necessary to interpret the received commands
and drive the whole Controller.

2) Message Buffer: this block is in charge of providing an
interface between the external CPU and other internal
modules of the CAN Controller: the Transmit Buffer
(TXB) stores the message ready to be sent assembled by
the Bit Stream Processor (BSP), the receive buffer stores
the received message that comes from the Acceptance
Filter. The Receive Buffer (RXB) belongs to the Receive
FIFO, that is a FIFO capable of storing up to 64 bytes of
messages: from this point of view, the RXB is a window
that shifts through the whole FIFO.

3) Bit Stream Processor (BSP): this block consists of a
sequencer which controls the data stream between the
transmit buffer and the CAN-bus. It also performs the
error detection, arbitration, stuffing and error handling
on the CAN bus.

4) Acceptance Filter (ACF): this block is in charge of
checking whether the message currently on the BUS has

to be received by the peripheral or not. This is assessed
by means of an acceptance filter that usually works on
the ID, Remote Transfer Request (RTR) bits and DB
fields of the message. If the frame passes the filter it
goes into the RXFIFO, otherwise it is discarded.

5) Bit Timing Logic (BTL): the BTL block monitors the
serial CAN-bus line and handles the bus line-related bit
timing. It is synchronized to the bit stream on the CAN-
bus on a recessive-to-dominant (i.e., 1 → 0) transition at
the beginning of a message (hard synchronization) and
re-synchronized on further transitions during the recep-
tion of a message (soft synchronization). The BTL also
provides programmable time segments to compensate
for the propagation delay times and phase shifts and
to define the sample point and the number of samples
to be taken within a bit time.

6) Error Management Logic (EML): the EML is respon-
sible for the error confinement of the transfer-layer
modules. It receives error announcements from the BSP
and then informs the BSP and IML about error statistics.

III. PROPOSED APPROACH

The approach proposed in this work relies on a distributed
software running on at least two devices connected to the
same CAN bus. The main reason for this choice relies on
the fact that testing the CAN controller of a given node not
only requires sending messages on the bus, but also reading
messages coming from other devices attached to the same bus.
The approach is purely functional and does not add hardware
overhead to the system. To the best of our knowledge, this
is the first work that deals with the functional test of CAN
controllers by means of a distributed software solution.

The test is based on a hardware abstraction layer consisting
of ad-hoc drivers that control the bus by means of the low-
level operations supported by the CAN Controller. Since nodes
can have different architectures, we deal with device-specific
drivers. Moreover, drivers do not require additional operations
with respect to the standard ones; hence, third party CAN
device drivers can be used to implement the approach. Being
purely functional and relying on the usage of device drivers,
the proposed test solution only stimulates functionally testable
faults. This means that precise error conditions on the bus
cannot be easily reproduced and this represents a limitation
that can be overcome when ad-hoc hardware is available.

In our approach, each node is classified according to three
categories:

1) Neutral nodes: nodes not involved in the test.
2) Active nodes: nodes under test, which are executing a

test program and are the main controllers of the bus.
Such nodes send messages or receive messages from
passive nodes.

3) Passive nodes: nodes that are executing a test program
to support the test of active nodes. Such nodes ignore
or react to messages received from active nodes, and
send messages according to the specifications of the test
program.

The test program is installed both in the active and passive
nodes. Each program thus comes in two fashions: depending
on whether a node is active or passive it will transmit first or
receive first the messages.

The main test program has been developed with the goal of
testing every possible functional configuration and it is divided
into sub-programs (or parts), each targeting a specific sub-
module or functional feature of the CAN controller. They can
be executed together as a whole, grouped in sub-modules or
by themselves one after the other: the idea is that, when the
CAN bus is idle, the test can occur and depending on the
duration of the idle time one could decide on the test length.

In the rest of the Section the reader can find a description
of the sub-programs that compose the STL.

A. Bit Rate test

One of the key parameters in the CAN bus is the trans-
mission bit rate. In this sub-program, the active node sends
a message using multiple bit rates, without varying the other
configuration parameters. In our experiments, we set the CAN
controllers to work in BasicCAN mode and we fixed the other
parameters, e.g., the ID and the data length (DLC) fields. For
each message sent, the active node expects an acknowledgment
from the passive node, which changes the transmission bit
rate coherently. Once tested the ability of the node to work
at various bit rates, the nodes are configured to the fastest
possible bit rate for all the remaining phases of the test.

B. Normal Mode test

This sub-program is intended to test the basic transmis-
sion/reception of messages while changing the configuration
parameters. Clearly, active and passive nodes change parame-
ters coherently during the test.

The other parameters are changed, such as the CAN oper-
ating mode (i.e., BasiCAN and PeliCAN), the Frame Format
when in PeliCAN mode, the DLC and ID and the enabled
interrupts. One or more messages are exchanged in each of
the available configurations. In our experiments, data payload
for messages have been filled with pseudo-random values.
Additionally, we included some deterministic patterns (e.g.,
0101..., 1010..., 0011..., 1100...). After each transmission, the
results are retrieved by reading the appropriate registers (i.e.,
data and status registers) and compared with the expected
ones (or compacted in a test signature). Finally, configuration
registers are read back after each change in the configuration
to detect faults in the configuration flip-flops.

C. Self-Test Mode test

In the Self Test Mode configuration, the CAN controller
sends messages without the need of an acknowledge by
other nodes and uses a loop-back to check their correctness
autonomously. The test consists of a transmission and concur-
rent reception of a certain amount of messages (100 in our
experiments), all of this in PeliCAN Mode.

D. Listen Only Mode test

In the Listen Only Mode configuration, the CAN controller
is only capable of receiving and, more specifically, it does not
generate the acknowledge bit even if the message has been
correctly received. The test aims at checking the ability of
the node to receive and process a message and consists in the
reception and check of a certain amount of messages (100 in
our experiments) sent by the passive node.

E. FIFO test

The basic principle of the sub-program for the FIFO consists
of filling and then emptying it and working on the overrun
generation bit. The overrun occurs when the FIFO is already
full and the CAN controller tries to write another message.
In order to implement such a principle, the passive node has
to send enough messages to fill the FIFO (64 messages in
our case study). A further message sent by the passive node
produces an overrun, which can be detected by the active
node by reading a proper status register (or by means of an
interrupt). In a second phase, while the second node is sending
messages, the first one keeps reading them, in order to test the
remaining logic of the FIFO. In our case study, the FIFO is
implemented as a circular buffer, thus we sent a first packet
of 64 messages and then we repeated this with 128 messages.

F. Errors test

This sub-program aims at testing the logic devoted to detect
some error conditions. Since in a functional test environment
not assisted by ad-hoc hardware it is not possible to precisely
work on external (i.e., coming from the physical BUS) errors,
the program mainly focuses on testing the situation in which
the two nodes do not have the same bit rate.

The proposed sub-program configures the active and the
passive nodes to different bit rates. Then, the passive node
sends a message to the active node, which is incapable of
receiving it due to the different bit rates. After a certain amount
of trials, the active node disables itself and goes into BUS Off
Mode. Finally, the active node becomes the transmitter and the
passive node the one who is subject to the error.

G. Arbitration test

This program tests the arbitration between nodes. In order
to test this condition in a deterministic way, the approach
consists of a series of messages being sent one after the
other. The two messages should be exactly equal in an initial
portion and then differ only by one bit, which triggers the loss
of arbitration. Reproducing such deterministic behavior in a
functional environment is not straightforward and requires to
synchronize the end-to-end communication, e.g., using timers
to compute the latency due to physical characteristics of the
CAN network

H. Acceptance Filter test

Every message received by the CAN controller is filtered
by comparing its ID against some programmable bit-masks.
In order to test the comparators in the acceptance filters,

deterministic patterns can be used [16]. Alternatively, patterns
can be easily derived by launching an Automatic Test Patterns
Generation tool on the combinational logic existing inside
this hardware block. Each pattern is then transformed into a
message sent by the passive node and filtered by the active
node accordingly.

In case of no available passive node, the active node will
have to rely on the Self-Test mode, only. As a consequence, a
new list of untestable faults due to the constraints of the test
configuration should be identified.

IV. CASE STUDY

The CAN controller used as the case study is freely available
on OpenCores [17] and implements the SJA1000 Controller
[15]. The author of the design claims the CAN Controller has
been tested in hardware and verified with the Bosch VHDL
Reference System [18]. The RT-level design was synthesized
with the Synopsys Design Compiler using a 65nm technology
library. The final netlist accounts for 12,953 NAND2 equiva-
lent gates, including 1,460 flip-flops and 38,490 stuck-at faults.

For the purposes of this work, we inserted the CAN
controller into a SoC also composed of an OpenRISC core
OR1200, available on OpenCores [14]. The controller in hand
officially supports the internal Wishbone Bus, thus it was
attached besides the other available peripherals without the
need of any bridging circuitry. Moreover, the internal registers
have been memory-mapped to a portion of the available
memory space, thus allowing the SoC to access the CAN
interface by means of load and store instructions.

Since the CAN controller from OpenCores comes with no
drivers, we implemented a CAN driver written in C language.
In order to give an idea of the kind of operations required
by the test, in the following we report the main functions
implemented by the driver:

• canPeriphInit: it initializes the CAN peripheral by
setting the correct mode between BasiCAN and PeliCAN,
it configures the registers BUSTIMING0/1, which control
the timing behaviour of the peripheral, and Acceptance
Code/Mask, used to decide which IDs are accepted or not
when receiving a message.

• irqEnable: it enables/disables the interrupts supported
by the CAN peripheral.

• transmitMsg: it sets the registers needed to send a
message - namely, TXDATA0 to TXDATA12 - and then
it starts the transmission in polling mode, with a timeout
which aborts the transmission if the message was not sent
after a certain number of cycles.

• receiveMsg: it checks the register Receive Buffer Status
(i.e., it tells whether there is an available message or
not) in polling mode and, if the timeout is reached and
there is still no message, it exits. In the other situation,
the functions extracts the message and saves it in a data
structure, which contains all the fields necessary to the
user.

• selfTxRx: it is used when in Self-Test Mode. It tells the
peripheral to send a message receiving it at the same time
without the need of an external acknowledge.

In the test-bench used in our experiments, two instances of
the OR1200-based SoC are connected through a CAN bus.
The whole system was simulated at the RT level, with the
exception of the CAN controller of the target SoC which is
simulated at the gate level. Since the test-bench implements
an end-to-end communication between two devices, the two
SoCs own distinct IDs. For simplicity, test programs are loaded
after the boot of the system and are configured in active and
passive mode accordingly. A simple scheduling approach is
implemented, which iterates on all the available sub-programs.

V. EXPERIMENTAL RESULTS

The fault grading has been conducted by means of a com-
mercial fault simulator. Functional patterns have been derived
by logic simulation and dumped in a VCD file. The VCD file
has then been applied to the top-level of the SoC that embeds
the CAN controller in a full sequential fault simulation. We
periodically checked the output values produced by the SoC
on the bus as observation points.

The details about the fault simulation experiments are re-
ported in Table I. The table reports, for the main sub-modules
in the CAN controller, the number of stuck-at faults and the
fault coverage. Since many smaller modules and glue logic
are not reported in the table, the number of faults of a given
module is higher than the sum of the faults in the reported
sub-modules. On the top-level module of the CAN controller,
we covered 90.22% of faults.

Details about the parts that compose the test program
described in Section III are reported in the upper part of
Table II. The table reports, for each part, its test application
time in clock cycles (column 2), the number of messages
exchanged by the nodes (column 3), and the amount of bytes
sent by the active node (column 4) and passive node (column
5). The clock signal period adopted in the testbench is 10
ns; as a consequence, by grouping together all the parts, the
total amount of time required by the whole test program to
run is about 555 ms. The remaining columns report the fault
coverage on the main sub-modules (the last column refers
to the full fault list) reached by running the parts separately.
Finally, the last row of the upper part reports the cumulative
fault coverage values.

The results highlight how for some modules the contribution
to the cumulative fault coverage is given by a specific part

TABLE I: Faults Report of the CAN Controller

Instance Name #Stuck-at
Faults

Fault
Coverage %

i_can_registers 5, 352 84.91
i_can_btl 1, 472 83.24
i_can_bsp 31, 236 91.43

i_can_acf 1, 418 85.40
i_can_fifo 17, 382 96.26

TOTAL 38, 490 90.22

(e.g., registers are mainly tested by the Normal Mode part, as
well as the Acceptance Filter is mainly tested by the related
part), while for some others, the contribution is spread among
the parts (i.e., the BTL and BSP modules, mainly). The reader
can also notice that the FIFO is well tested, as a side effect,
by parts written for other purposes, thus some tests could be
potentially shortened.

To gain some insight on the validity of the proposed method,
we compared it to alternative test programs, mimicking what
a "normal" application using the CAN Controller does, and
reported the results in the lower part of Table II. Such test
programs consist in random messages sent and received in
Normal Mode. In the first two cases in the table, we send
variable size messages while keeping all the configuration
parameters fixed. In the last two cases, we also vary the
configuration. The table also reports the cumulative results
of such alternative test programs. Additionally, since they
only work in Normal Mode, in the last row we added the
contribution of the parts developed for Self-Test Mode (STM)
and Listen Only Mode (LOM).

The results show that a significant increase in the amount
of messages is not an effective strategy for modules such
as Registers, BTL, and ACF, while it works well for BSP
and FIFO. On the contrary, Registers and BTL are more
susceptible to the configuration changes. The ACF resulted
to be random resistant. The proposed approach outperforms
the cumulative results of 71.08% reached by the alternative
solutions by nearly 20 percentile points (16 if we include the
Self-Test Mode and Listen Only Mode parts).

A careful analysis of the faults not detected by the proposed
approach has shown that part of them (e.g., inside the ACF
or the FIFO) can be covered by ad-hoc messages. However,
a significant amount of faults were hard to test due to the
hardware configuration, such as those in the logic related to
error and arbitration lost conditions (e.g., in the BSP).

Errors such as those due to electromagnetic interference or
physical problems on the bus cannot be emulated by means
of two nodes connected with an ideal wire and thus the test
of the related logic would require an external module capable
of sensing the line and pulling it down at a given time. If
this approach was adopted in the system (with the related
complexity and additional hardware and design cost), the error
conditions and the logic in charge of detecting errors could be
tested more thoroughly.

Concerning arbitration lost, since the CAN protocol does not
provide an arbiter and the CAN Bus is 0 dominant, arbitration
is achieved by means of checking the Rx wire while sending
the message: for each bit, if the bit sent is different than the
one on the bus it means that a higher priority message is being
sent at the same time and so the node with the lowest priority
aborts the transmission. The arbitration lost could occur in
any part of the message. The main problem here is trying
to synchronize the transmission of the two peripherals and
dedicated hardware should be implemented to precisely break
messages sent by the active node.

Finally, there are limitations due to the sampling precision,

TABLE II: Comparison between the proposed sub-programs and alternative solutions

Test program Duration
[clock cycles] #Messages Bits

sent
Bits

received
Registers

FC%
BTL
FC%

BSP
FC%

ACF
FC%

FIFO
FC%

TOTAL
FC%

Pr
op

os
ed

ap
pr

oa
ch

su
b-

pr
og

ra
m

s

Bitrate part 1,577,790 8 864 864 39.16 68.84 42.59 3.74 39.60 43.66
Normal Mode part 248,652 8 1,144 1,144 70.98 51.03 38.40 17.49 24.09 44.03
Self-Test Mode part 10,237,885 100 3,536 3,536 46.29 67.95 28.93 10.16 10.35 33.48
Listen Only Mode part 10,237,885 100 0 3,536 26.47 67.60 60.84 13.82 77.30 56.63
FIFO part 3,157,031 328 0 28,000 25.37 51.64 60.46 6.77 81.47 55.58
Errors part 410,452 1 72 72 30.93 69.45 14.93 0.42 0.35 19.96
Arbitration part 815,000 30 2,160 2,160 40.00 52.12 17.44 3.95 0.77 22.56
Acceptance Filter part 28,856,547 592 44,176 44,176 48.18 51.71 69.45 81.95 80.26 66.05
ALL 55,541,242 1,167 51,952 83,488 84.91 83.24 91.43 85.40 96.26 90.22

A
lte

rn
at

iv
e

so
lu

tio
ns

20 random messages 442,063 20 640 640 37.83 51.58 47.13 3.10 48.56 46.48
200 random messages 4,399,865 200 6,400 6,400 37.17 51.58 61.95 3.10 75.11 58.42
20 random configurations 2,841,090 20 312 312 44.60 70.96 42.95 4.58 37.90 44.80
200 random configurations 20,046,684 200 3,536 3,536 45.59 74.38 65.26 4.58 77.53 63.17
ALL 27,729,702 440 10,888 10,888 52.63 74.38 73.80 4.58 86.66 71.08
ALL + STM and LOM parts 48,205,472 640 14,424 17,960 62.32 77.05 75.99 17.91 87.72 74.31

which impact on the coverage of the BTL. Even thought it
is possible to act on the programmable time segments in the
BTL, some values cannot be actually used in functional mode.

To summarize, most of the faults left untested by the
proposed method cannot be physically detected resorting to
a test based on simply connecting two CAN Controllers and
forcing them to communicate.

VI. CONCLUSIONS

We presented the first work that specifically targets the
structural test of CAN controllers by means of test programs
installed on two devices connected to the same CAN bus.
Using this approach, one can test at speed and in the field the
CAN Controller without adding special DfT features (hence,
without area overhead). Moreover, the proposed test approach,
being functional, avoids any overtesting. The paper gives
guidelines about the messages to transmit on the CAN bus
to cover the functional blocks in the controller. Experiments
on a system composed of two open-source SoCs connected
to the same CAN bus show that 90.22% of the stuck-at
faults in the CAN controller can be covered by the proposed
approach. We believe that there is a significant fraction of
the untested faults which are functionally untestable, and are
working to identify them in a provable manner. Given its
flexibility and high reusability, the proposed software-based
approach is very well suited to be used for in-field test of
CAN controller modules embedded in safety-critical systems.
Future activities are planned to cover hard-to-test faults by
exploiting more complex configurations (e.g., using more than
two nodes). Moreover, timing faults will be targeted by future
works, as well as faults affecting the CAN bus due to electrical
problems. Finally, the handling and the scheduling of the end-
to-end test programs in production will be studied. One further
improvement could be done in terms of application time, since
this was not the main concern of the work.

ACKNOWLEDGMENTS

The work has been supported by the Center for Automotive
Research and Sustainable mobility@PoliTO (CARS).

REFERENCES

[1] Robert Bosch GmbH., “CAN Specification, Version 2.0,” 1991. [Online].
Available: http://www.semiconductors.bosch.de/pdf/can2spec.pdf

[2] Ross, Functional Safety for Road Vehicles: New Challenges and Solu-
tions for E-mobility and Automated Driving. Springer International
Publishing, 2016.

[3] Hitex, “Microcontroller self-test libraries.” [Online]. Avail-
able: https://www.hitex.com/tools-components/software-components/
selftest-libraries-safety-libs/

[4] STMicroelectronics, “Guidelines for obtaining IEC 60335 Class B
certification for any STM32 application,” Mar 2016. [Online]. Available:
http://www.st.com/content/ccc/resource/technical/document/application_
note/02/1a/91/78/e4/15/4d/35/CD00290100.pdf/files/CD00290100.pdf/
jcr:content/translations/en.CD00290100.pdf

[5] Cypress Semiconductor, “FM3 and FM4 Family, IEC61508 SIL2
Self-Test Library.” [Online]. Available: https://www.cypress.com/file/
249196/download

[6] Renesas Electronics, “SSP Supplemental Add-Ons.” [Online]. Available:
https://www.renesas.com/en-eu/products/synergy/software/add-ons.html

[7] Microchip Technology Inc., “16-bit CPU Self-Test Library
User’s Guide,” 2012. [Online]. Available: http://ww1.microchip.com/
downloads/en/DeviceDoc/52076a.pdf

[8] ARM, “Enabling Our Partnership to Bring Safer Solutions to
the Market Faster.” [Online]. Available: https://developer.arm.com/
technologies/functional-safety

[9] NXP Semiconductors, “S32 SDK for S32K1 microcontrollers.”
[Online]. Available: https://www.nxp.com/support/developer-resources/
run-time-software/s32-sdk/s32-sdk-for-s32k1-microcontrollers:
S32SDK-ARMK1

[10] Apostolakis et al., “Test program generation for communication periph-
erals in processor-based soc devices,” IEEE Design & Test of Computers,
vol. 26, no. 2, pp. 52–63, March 2009.

[11] van de Goor et al., “Memory testing with a risc microcontroller,” in
2010 Design, Automation Test in Europe Conference Exhibition (DATE
2010), March 2010, pp. 214–219.

[12] Bolzani et al., “An automated methodology for cogeneration of test
blocks for peripheral cores,” in 13th IEEE International On-Line Testing
Symposium (IOLTS 2007), July 2007, pp. 265–270.

[13] Cantoro et al., “An analysis of test solutions for COTS-based systems
in space applications,” in 2018 IFIP/IEEE International Conference on
Very Large Scale Integration (VLSI-SoC), Oct 2018, pp. 59–64.

[14] “OpenRISC Project Overview.” [Online]. Available: https://openrisc.io/
[15] Philips Semiconductors, “Stand-alone CAN controller,” 2000. [Online].

Available: https://www.nxp.com/docs/en/data-sheet/SJA1000.pdf
[16] Grigoryan et al., “Generic bist architecture for testing of content ad-

dressable memories,” in 2011 IEEE 17th International On-Line Testing
Symposium, July 2011, pp. 86–91.

[17] “CAN Protocol Controller Overview.” [Online]. Available: https:
//opencores.org/projects/can

[18] GmbH., “Automotive Electronics VHDL Reference CAN.” [Online].
Available: http://www.bosch-semiconductors.com/media/ip_modules/
pdf_2/vhdl_reference_can/bosch_ip_info_vhdl_reference_can.pdf

http://www.semiconductors.bosch.de/pdf/can2spec.pdf
https://www.hitex.com/tools-components/software-components/selftest-libraries-safety-libs/
https://www.hitex.com/tools-components/software-components/selftest-libraries-safety-libs/
http://www.st.com/content/ccc/resource/technical/document/application_note/02/1a/91/78/e4/15/4d/35/CD00290100.pdf/files/CD00290100.pdf/jcr:content/translations/en.CD00290100.pdf
http://www.st.com/content/ccc/resource/technical/document/application_note/02/1a/91/78/e4/15/4d/35/CD00290100.pdf/files/CD00290100.pdf/jcr:content/translations/en.CD00290100.pdf
http://www.st.com/content/ccc/resource/technical/document/application_note/02/1a/91/78/e4/15/4d/35/CD00290100.pdf/files/CD00290100.pdf/jcr:content/translations/en.CD00290100.pdf
https://www.cypress.com/file/249196/download
https://www.cypress.com/file/249196/download
https://www.renesas.com/en-eu/products/synergy/software/add-ons.html
http://ww1.microchip.com/downloads/en/DeviceDoc/52076a.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/52076a.pdf
https://developer.arm.com/technologies/functional-safety
https://developer.arm.com/technologies/functional-safety
https://www.nxp.com/support/developer-resources/run-time-software/s32-sdk/s32-sdk-for-s32k1-microcontrollers:S32SDK-ARMK1
https://www.nxp.com/support/developer-resources/run-time-software/s32-sdk/s32-sdk-for-s32k1-microcontrollers:S32SDK-ARMK1
https://www.nxp.com/support/developer-resources/run-time-software/s32-sdk/s32-sdk-for-s32k1-microcontrollers:S32SDK-ARMK1
https://openrisc.io/
https://www.nxp.com/docs/en/data-sheet/SJA1000.pdf
https://opencores.org/projects/can
https://opencores.org/projects/can
http://www.bosch-semiconductors.com/media/ip_modules/pdf_2/vhdl_reference_can/bosch_ip_info_vhdl_reference_can.pdf
http://www.bosch-semiconductors.com/media/ip_modules/pdf_2/vhdl_reference_can/bosch_ip_info_vhdl_reference_can.pdf

