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Design of a Multi-Wavelength Fiber Laser Based on
Tm:Er:Yb:Ho Co-Doped Germanate Glass

Mario Christian Falconi, Student Member, IEEE, Dario Laneve , Vincenza Portosi , Stefano Taccheo ,
and Francesco Prudenzano

Abstract—In this article, for the first time, an efficient multi-
wavelength fiber laser based on a Tm:Er:Yb:Ho co-doped ger-
manate glass, optically pumped at 980 nm wavelength and simulta-
neously emitting at 1550 nm, 1800 nm and 2050 nm wavelengths, is
designed and optimized. An exhaustive model, taking into account
the energy transfer phenomena between different rare earths, is
developed. The device behavior is investigated by means of several
parametric sweeps with respect to the input pump power, the fiber
length, the dopant concentrations and the output mirrors reflectiv-
ities. Four optimal concentrations have been found by means of a
home-made computer code based on particle swarm optimization
(PSO) approach, allowing a global solution search. These concen-
trations allow levels of output powers very close to each other,
equal to 20 mW ± 0.1% at 1550 nm, 1800 nm and 2050 nm,
respectively. These results predict the possibility of tailoring the
dopant concentrations in order to construct broadband optical
sources with similar emission powers at multiple wavelengths and
broadband amplifiers.

Index Terms—Erbium, fiber laser, germanate glass, holmium,
multi-wavelength lasing, thulium, ytterbium.

I. INTRODUCTION

IN RECENT years, novel optical fiber amplifiers and lasers
providing multi-wavelength laser emission and broadband

signal amplification in the wavelength range λ = 1.5μm to
2.2μm have attracted a lot of interest. This is due to the
wide range of potential applications which include, but are not
limited to, optical communications systems, remote sensing,
spectroscopy, environmental monitoring and medicine [1]–[12].
There are several glasses which can be exploited for making
lasers and amplified spontaneous emission (ASE) sources op-
erating at these wavelengths, such as silicate, chalcogenide,
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Fig. 1. Schematic of the device.

antimony, fluorophosphate and germanate glasses. In particular,
germanate glass exhibits a number of interesting properties: i)
higher refractive index than fused silica (n ≈ 1.9), ii) broad
optical transmission window up to about λ = 5μm, iii) rela-
tively high glass transition temperature (Tg ≈ 400 ◦C), iv) high
physicochemical stability (especially with respect to fluoride
glass), v) high rare-earth-ion solubility (with respect to chalco-
genide glass), vi) low phonon energy, vii) rather low probability
of non-radiative relaxation [4], [11]. However, glasses doped
with several rare earths exhibit a high number of spectroscopic
parameters, due to the presence of energy transfer phenomena
among different rare earth ions. Moreover, the nonlinear nature
of such phenomena, which vary with the dopant concentration
levels, makes the design of optical devices doped with multiple
rare earths not trivial.

In this paper, for the first time to the best of our knowledge,
a multi-wavelength fiber laser exploiting an Tm:Er:Yb:Ho co-
doped germanate glass fiber pumped at λp = 980 nm is designed
and refined via a global search approach. Experimental data
reported in literature are employed in the simulations, in partic-
ular for the spectroscopic and optical parameters. Fig. 1 shows
the schematic of the device. The optical cavity is composed of
three couples of high reflective (HR) fiber Bragg gratings, i.e.
three input mirrors and three output mirrors, which allow simul-
taneous laser emission at λs1 = 1550 nm, λs2 = 1800 nm and
λs3 = 2050 nm. This configuration exhibits both low cost (only
one laser diode is needed for pumping) and high compactness
(only one active medium is needed). Moreover it shows that,
in principle, wideband amplification and multi-wavelengh laser
emission can be finely tailored in a single fiber via a proper
choice of the different dopant concentrations. This suggest, as a
consequence, the feasibility of ultrashort pulse emission which
is of interest in many fields of application.

II. TM:ER:YB:HO LASER MODEL

The model of the Tm:Er:Yb:Ho rare earth system, optically
pumped at λp = 980 nm, includes a total of 11 energy levels [9],
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Fig. 2. Energy levels diagram.

as follows: i) 4I15/2, 4I13/2 and 4I11/2 for the erbium ions; ii)
2F7/2 and 2F5/2 for the ytterbium ions; iii) 3H6, 3F4 and 3H5 for
the thulium ions; iv) 5I8, 5I7 and 5I6 for the holmium ions. All
indicated levels are manifolds and the spectral overlapping of
the manifolds is considered in the model via cumulative energy
transfer constants. Higher energy levels are not considered here,
since the interactions with the considered set of levels are
negligible. This is due to energy mismatch and/or extremely
low excited-state transition probability due to low populations
of starting levels. The energy levels scheme is shown in Fig. 2.

Due to the presence of several rare earth ions, in addition to the
typical phenomena of absorption and stimulated/spontaneous
emission, it is mandatory to consider the energy transfer phe-
nomena occurring between different pairs of ions. The mech-
anism of energy transfer among the four rare earths is very
complex, involving several transitions. As an example, the
population inversion for 1800 nm emission, with reference to
Yb3+-Tm3+ interaction, is obtained as follows: i) at first, Yb3+

ions are excited to the 2F5/2 level under 980 nm optical pumping,
ii) these ions can relax radiatively to the 2F7/2 ground level
or partially transfer energy to the 3H5 level of Tm3+ ions by
a phonon-assisted energy transfer (PAET); iii) the energy gap
between 3H5 and 3F4 multiplets of Tm3+ ions leads to fast
population of 3F4 metastable level by multi-phonon relaxation
(MPR) [5]. In the model, this is taken into account via the energy
transfer parameter KYbTm and the decay rate A3,2. Similarly, all
the other interactions are considered.

By using a rate equations approach [13]–[19] and neglecting
amplified spontaneous emission (ASE), the following system
for the energy level populations N1, N2, . . . , N11 is written:

∂N11

∂t
= −A11,10N11 −A11,9N11 +KYbHoN8N9 (1a)

∂N10

∂t
= W9,10N9 −W10,9N10 −A10,9N10

+A11,10N11 +KErHoN5N9 +KTmHoN2N9 (1b)

∂N9

∂t
= −W9,10N9 +W10,9N10 +A10,9N10

+A11,9N11 −KYbHoN8N9 −KErHoN5N9

−KTmHoN2N9 (1c)

∂N8

∂t
= W7,8N7 −W8,7N8 −A8,7N8 −KYbErN4N8

−KYbHoN8N9 −KYbTmN1N8 (1d)

∂N7

∂t
= −W7,8N7 +W8,7N8 +A8,7N8 +KYbErN4N8

+KYbHoN8N9 +KYbTmN1N8 (1e)

∂N6

∂t
= W4,6N4 −W6,4N6 −A6,5N6 −A6,4N6

+KYbErN4N8 −KErTm31N1N6 (1f)

∂N5

∂t
= W4,5N4 −W5,4N5 +A6,5N6 −A5,4N5

−KErHoN5N9 −KErTm21N1N5 (1g)

∂N4

∂t
= −W4,6N4 +W6,4N6 −W4,5N4 +W5,4N5

+A6,4N6 +A5,4N5 −KYbErN4N8

+KErHoN5N9 +KErTm31N1N6 +KErTm21N1N5

(1h)

∂N3

∂t
= −A3,2N3 −A3,1N3 +KYbTmN1N8

+KErTm31N1N6 (1i)

∂N2

∂t
= W1,2N1 −W2,1N2 +A3,2N3 −A2,1N2

−KTmHoN2N9 +KErTm21N1N5 (1j)

∂N1

∂t
= −W1,2N1 +W2,1N2 +A2,1N2 +A3,1N3

−KYbTmN1N8 +KTmHoN2N9 −KErTm31N1N6

−KErTm21N1N5 (1k)

The transition rates are given by Wi,j(z) =
σi,j(λp/s)

h
c0
λp/s

Pp/s
Γp/s

Ad
,

where σi,j(λp/s) is the cross section at the wavelength λp/s

pertaining to the i → j transition, h is the Planck constant,
c0 is the speed of light in vacuum, λp/s is the pump/signal
wavelength, Pp/s is the pump/signal power, Γp/s is the overlap
factor between the doped region and the pump/signal beam
profile, and Ad is the doped area. The radiative decay rates are
given byAi,j =

βi,j

τi
, whereβi,j is the branching ratio pertaining

to the i → j transition, and τi is the lifetime of the i-th energy
level. The seven parameters KErHo, KErTm12, KErTm13, KTmHo,
KYbEr, KYbHo, KYbTm describe the energy transfers between the
different rare earth ions. In order to solve the system (1a)–(1k),
steady-state conditions are assumed, i.e. ∂N1

∂t = ∂N2

∂t = · · · =
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∂N11

∂t = 0, and the following conditions are imposed:

N1 +N2 +N3 = NTm

N4 +N5 +N6 = NEr

N7 +N8 = NYb

N9 +N10 +N11 = NHo

where NTm, NEr, NYb and NHo are the thulium, erbium, ytter-
bium and holmium dopant concentrations, respectively.

The evolution of the pump and signals powers along the fiber
is governed by the power propagation equations. In particular,
one equation for the pump and six equations for the laser signals
(three for each propagation direction) are considered, as follows:

dPp

dz
= [gp(z)− α(λp)]Pp(z) (2a)

dP±
s1

dz
= ± [gs1(z)− α(λs1)]P

±
s1(z) (2b)

dP±
s2

dz
= ± [gs2(z)− α(λs2)]P

±
s2(z) (2c)

dP±
s3

dz
= ± [gs3(z)− α(λs3)]P

±
s3(z) (2d)

where α(λp/s) is the optical loss of the glass at the wavelength
λp/s, and the gain coefficients are given by:

gp(z) = [−σ4,6(λp)N4(z) + σ6,4(λp)N6(z)]Γp

+ [−σ7,8(λp)N7(z) + σ8,7(λp)N8(z)]Γp,

gs1(z) = [−σ4,5(λs1)N4(z) + σ5,4(λs1)N5(z)]Γs1,

gs2(z) = [−σ1,2(λs2)N1(z) + σ2,1(λs2)N2(z)]Γs2,

gs3(z) = [−σ9,10(λs3)N9(z) + σ10,9(λs3)N10(z)]Γs3.

The pump gain coefficient gp(z) takes into account the interac-
tion of the pump beam with both erbium and ytterbium ions, as
both of them exhibit absorption bands around λp = 980 nm.

The differential equations (2a)–(2d) are solved with the
boundary conditions imposed by the input pump and the optical
cavity mirrors (see Fig. 1):

Pp(0) = Pp0

P+
s1 (0) = Rin

s1P
−
s1(0)

P−
s1(L) = Rout

s1 P+
s1 (L)

P+
s2 (0) = Rin

s2P
−
s2(0)

P−
s2(L) = Rout

s2 P+
s2 (L)

P+
s3 (0) = Rin

s3P
−
s3(0)

P−
s3(L) = Rout

s3 P+
s3 (L)

where L is the fiber length, Pp0 is the input pump power, Rin
s1,

Rin
s2 and Rin

s3 are the reflectivities of the three input mirrors at
z = 0, and Rout

s1 , Rout
s2 and Rout

s3 are the reflectivities of the three
output mirrors at z = L.

TABLE I
SPECTROSCOPIC PARAMETERS FOR THE Tm:Er:Yb:Ho CO-DOPED

GERMANATE GLASS

The output powers of the three laser signals and the related
efficiencies are calculated as follows:

P out
s1 = (1−Rout

s1 )P+
s1 (L)

P out
s2 = (1−Rout

s2 )P+
s2 (L)

P out
s3 = (1−Rout

s3 )P+
s3 (L)

ηs1 =
P out

s1

Pp0

ηs2 =
P out

s2

Pp0

ηs3 =
P out

s3

Pp0

III. NUMERICAL RESULTS

A step-index fiber, which allows single-mode light propaga-
tion for the pump and the three laser signals, is designed. It
has a core diameter of dco = 4μm and a numerical aperture of
NA = 0.17, with a V-number equal to V = 2π

λp

dco
2 NA = 2.18

at λp = 980 nm. The Tm:Er:Yb:Ho co-doped germanate glass
allows a good light confinement along with low optical losses,
which are assumed close to α(λ) = 2 dB m−1 as the worst
case in the considered pump and signals wavelength range.
Its refractive index dispersion is modeled through a Sellmeier
equation [20], while Table I reports its spectroscopic parameters.
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Fig. 3. Output signal power P out
s of the Tm:Er:Yb:Ho fiber laser as a function

of the input pump power Pp0 for the three output wavelengths, λs1 = 1550 nm
(dotted curve), λs2 = 1800 nm (dashed curve), λs3 = 2050 nm (solid curve).

Values reported in Table I are taken from multiple sources
which authors expect to provide a reliable set of parameters.
Simulations provide an initial educated guess of optimal condi-
tion, a following fine tuning of the optimal laser design could
be required and an experimental evaluation of the four-fold
doped system [9] is planned in the near future. Nevertheless,
the illustrated optimization methodology is based on a general
and feasible approach which can be applied to other multi-
doped glass systems. The core is uniformly doped with the
rare earths. In the simulation, perfectly matched layers (PMLs)
are used to avoid reflections of the outgoing waves into the
computational domain. Since obtaining laser emission at λs1 =
1550 nm, λs2 = 1800 nm and λs3 = 2050 nm simultaneously
with similar power levels is not trivial, preliminary simulations
are carried out to determine suitable nominal values for the
input parameters, which are the following:Pp0 = 200 mW,L =
30 cm, NTm = 4 × 1025 ions/m3, NEr = 3.5 × 1025 ions/m3,
NYb = 1 × 1025 ions/m3, NHo = 4.5 × 1025 ions/m3, Rin

s1 =
Rin

s2 = Rin
s3 = 99% and Rout

s1 = Rout
s2 = Rout

s3 = 50%. A reason-
ably low input pump power Pp0 = 200 mW is considered in
order to avoid detrimental thermal effects. Several parametric
sweeps are performed in order to study the behavior of the
device. In particular, the laser characteristics are investigated
as a function of: i) input pump power Pp0, see Fig. 3; ii) fiber
lengthL, see Fig. 4; iii) thulium, erbium, ytterbium and holmium
concentrations (NTm, NEr, NYb, NHo), see Figs. 5–8; iv) output
mirrors reflectivities (Rout

s1 , Rout
s2 , Rout

s3 ), see Figs. 9–11. For each
parametric sweep, only one parameter is varied, while all the
others are kept constant, i.e. equal to the nominal values.

Fig. 3 shows the dependence of the three output signals
with respect to the input pump power. For pump powers up to
Pp0 = 60 mW, there is no laser emission at λs1 = 1550 nm and
λs2 = 1800 nm, but only the signal at λs3 = 2050 nm is emitted
with a slope efficiency equal to SEs3 = 25.6%. For pump powers
Pp0 > 65 mW, there is also emission at λs2 = 1800 nm, with
a slope efficiency of about SEs2 = 19%. The laser threshold
to obtain emission also at λs1 = 1550 nm is equal to P th

s1 =

Fig. 4. Output signal power P out
s of the Tm:Er:Yb:Ho fiber laser as a function

of the fiber length L for the three output wavelengths, λs1 = 1550 nm (dotted
curve), λs2 = 1800 nm (dashed curve), λs3 = 2050 nm (solid curve). Input
pump power Pp0 = 200 mW.

Fig. 5. Output signal power P out
s of the Tm:Er:Yb:Ho fiber laser as a function

of the thulium concentration NTm for the three output wavelengths, λs1 =
1550 nm (dotted curve), λs2 = 1800 nm (dashed curve), λs3 = 2050 nm (solid
curve). Input pump power Pp0 = 200 mW.

90 mW. It is worth noting the change of slope efficiency for
the λs2 = 1800 nm and λs3 = 2050 nm signals due to erbium
ions activation.

Fig. 4 shows the dependence of the three output signals
with respect to the fiber length L. It can be observed that,
for L > 45 cm, the power emitted at λs1 = 1550 nm decreases
rapidly, i.e. the curve shows a high negative slope. Conversely,
the power emitted at λs3 = 2050 nm continues to increase. It
can be deduced that, as the fiber length is increased beyond L =
45 cm, only the emission by the Ho3+ ions at λs3 = 2050 nm is
advantaged compared to the other two wavelengths.

Fig. 5 shows the three output signals as functions of the
thulium concentration. For low concentrations of thulium, the
emission at λs1 = 1550 nm dominates. The decreasing trend of
the power indicates that there is an energy transfer between
erbium and thulium ions, even if it is not enough to obtain laser
emission at λs2 = 1800 nm. Laser emission at λs2 = 1800 nm
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Fig. 6. Output signal power P out
s of the Tm:Er:Yb:Ho fiber laser as a

function of the erbium concentration NEr for the three output wavelengths,
λs1 = 1550 nm (dotted curve), λs2 = 1800 nm (dashed curve), λs3 = 2050 nm
(solid curve). Input pump power Pp0 = 200 mW.

Fig. 7. Output signal power P out
s of the Tm:Er:Yb:Ho fiber laser as a function

of the ytterbium concentration NYb for the three output wavelengths, λs1 =
1550 nm (dotted curve), λs2 = 1800 nm (dashed curve), λs3 = 2050 nm (solid
curve). Input pump power Pp0 = 200 mW.

starts at the concentration NTm = 2.5 × 1025ions/m3, at which
the other two signals, i.e. λs1 = 1550 nm and λs3 = 2050 nm,
have a negative variation in the slope of their respective curves.

Fig. 6 shows the three output signals as functions of the erbium
concentration. For low concentrations of erbium, laser emission
occurs only at λs3 = 2050 nm. It is observed that the slope of
the λs3 = 2050 nm signal changes atNEr = 1.1 × 1025ions/m3,
for which concentration value laser emission at λs2 = 1800 nm
starts with a linear increase. By increasing the erbium concen-
tration, only the output powers at λs2 = 1800 nm and λs3 =
2050 nm increase, while the emission at λs1 = 1550 nm, typical
of erbium, rapidly drops to few milliwatts. This is due to the
energy transfer from the erbium ions to the other rare earths.

Fig. 7 shows the three output signals as functions of the yt-
terbium concentration. For low ytterbium concentrations, there
is a great variability in all the three output signals: the curve

Fig. 8. Output signal power P out
s of the Tm:Er:Yb:Ho fiber laser as a function

of the holmium concentration NHo for the three output wavelengths, λs1 =
1550 nm (dotted curve), λs2 = 1800 nm (dashed curve), λs3 = 2050 nm (solid
curve). Input pump power Pp0 = 200 mW.

Fig. 9. Output signal power P out
s of the Tm:Er:Yb:Ho fiber laser as a function

of the output mirror 1 reflectivity Rout
s1 for the three output wavelengths, λs1 =

1550 nm (dotted curve), λs2 = 1800 nm (dashed curve), λs3 = 2050 nm (solid
curve). Input pump power Pp0 = 200 mW.

at λs1 = 1550 nm has an increasing behavior, the curve at
λs2 = 1800 nm has a maximum of P out

s2 = 8.04 mW for NYb =
6 × 1024 ions/m3, and the curve at λs3 = 2050 nm has a de-
creasing behavior. It can be deduced that, with the same pump
power at λp = 980 nm, a higher concentration of Yb3+ ions
produces a greater excitation of Er3+ ions, which confirms the
strong interaction between the two rare earths.

Fig. 8 shows the three output signals as functions of the
holmium concentration. For concentrations less than NHo =
1.7 × 1025 ions/m3, no laser emission at λs3 = 2050 nm occurs
and the pump excites only the Tm3+ and Er3+ ions, imply-
ing that the system is not affected by the presence of small
concentrations of holmium in the glass. Once the holmium
concentration ofNHo = 1.7 × 1025 ions/m3 has been exceeded,
for each further increase the output powers at λs1 = 1550 nm and
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Fig. 10. Output signal powerP out
s of the Tm:Er:Yb:Ho fiber laser as a function

of the output mirror 2 reflectivity Rout
s2 for the three output wavelengths, λs1 =

1550 nm (dotted curve), λs2 = 1800 nm (dashed curve), λs3 = 2050 nm (solid
curve). Input pump power Pp0 = 200 mW.

Fig. 11. Output signal powerP out
s of the Tm:Er:Yb:Ho fiber laser as a function

of the output mirror 3 reflectivity Rout
s3 for the three output wavelengths, λs1 =

1550 nm (dotted curve), λs2 = 1800 nm (dashed curve), λs3 = 2050 nm (solid
curve). Input pump power Pp0 = 200 mW.

λs2 = 1800 nm progressively decrease until they reach negligi-
ble values.

Fig. 9 shows the three output signals as functions of the output
mirror 1 reflectivity Rout

s1 . As expected, for small values of Rout
s1 ,

laser emission at λs1 = 1550 nm cannot occur. The increase of
reflectivity beyondRout

s1 = 7% results in a reduction of the output
power at λs2 = 1800 nm and a very small variation of the output
power at λs3 = 2050 nm. Therefore, the emission by holmium
ions is advantaged with respect to the emission by thulium ions.
The curves intersect around Rout

s1 = 11%, for which all the three
output signals are close to about P out

s1 = P out
s2 = P out

s3 = 15 mW.
Fig. 10 shows the three output signals as functions of the out-

put mirror 2 reflectivity Rout
s2 . As in the previous case, for small

values of Rout
s2 there is no laser emission at λs2 = 1800 nm. As

the reflectivity is increased beyond Rout
s2 = 27%, laser emission

at λs2 = 1800 nm occurs, and consequently the output powers

TABLE II
INPUT PARAMETERS FOR THE PARTICLE SWARM OPTIMIZATION

at λs1 = 1550 nm and at λs3 = 2050 nm begin to progressively
decrease. It can be observed that, unlike the previous case, an
increase of Rout

s2 no longer corresponds to an improvement of the
power emitted at λs3 = 2050 nm.

Fig. 11 shows the three output signals as functions of the
output mirror 3 reflectivity Rout

s3 . The λs3 = 2050 nm signal has
a low reflectivity threshold equal to Rout

s3 = 9%, for which the
power emitted by holmium ions is equal to P out

s3 = 0.21 mW.
The signals at λs1 = 1550 nm and λs2 = 1800 nm are almost
constant forRout

s3 < 9%, with output powers ofP out
s1 = 55.1 mW

and P out
s2 = 14.1 mW, respectively. It is apparent that it not

possible to obtain three similar output powers.

IV. REFINEMENT OF TM:ER:YB:HO LASER VIA PARTICLE

SWARM OPTIMIZATION

The results reported in Section III are useful for understand-
ing the behavior of the device with respect to the change of
the operating conditions and design parameters. However, they
show that achieving three output powers as close as possible is
not trivial. To this aim, the particle swarm optimization (PSO)
algorithm is exploited. It is a global search technique inspired by
the social behavior of a school of fish during the food-searching
activity. It is derivative-free and can be adapted for multi-core
processing [14], [26]–[28]. A special fitness function F is con-
sidered since simply maximizing the sum of the output powers
would not yield a unique solution:

F = P out
s1 + P out

s2 + P out
s3 − μ1|P out

s1 − P out
s2 | − μ2|P out

s1 − P out
s3 |

Two penalty parameters, μ1 and μ2, are provided in order to
force the optimization algorithm to discard solutions which
exhibit a large distance between the three output powers. Table II
reports the values of all the input parameters employed in the
PSO optimization. The solution space, which has a dimension
D = 4, is constituted by the four dopant concentrations. They
are varied in the range 1 × 1024 to 1 × 1026 ions/m3. A set
of N = 40 particles is considered. Each particle represents a
tentative global solution to be updated in the multidimensional
solution space. In particular, a particle is a position vector in
the four-dimensional space of the dopant concentrations. The
fitness function is evaluated in the changing position vector of
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Fig. 12. Dopant concentrations of the Tm:Er:Yb:Ho fiber laser for the 34th
particle as a function of the PSO iteration number.

Fig. 13. Output signal power P out
s of the PSO-optimized Tm:Er:Yb:Ho fiber

laser as a function of the input pump powerPp0 for the three output wavelengths,
λs1 = 1550 nm (dotted curve), λs2 = 1800 nm (dashed curve), λs3 = 2050 nm
(solid curve).

the particles. The algorithm varies the position and the velocity
of the particles at each iteration with the aim of maximizing the
value of the fitness function. Fig. 12 shows the evolution of the
four dopant concentrations for the 34th particle, which corre-
sponds to the best obtained solution, as a function of the PSO
iteration number. The optimal Tm:Er:Yb:Ho concentration ratio
is found to be 1.58 : 2.01 : 1.75 : 1, the holmium concentration
beingNHo = 3.87× 1025 ions/m3. The dependence of the three
output signals with respect to the input pump power after the
PSO optimization is shown in Fig. 13. The intersection point
for Pp0 = 200 mW is apparent, with three output powers equal
to P out

s1 = 20.01 mW, P out
s2 = 19.99 mW and P out

s3 = 20.02 mW
at λs1 = 1550 nm, λs2 = 1800 nm and λs3 = 2050 nm, respec-
tively. The standard deviation is only σ = 0.008 mW.

V. CONCLUSION

For the first time, a novel compact and high efficiency multi-
wavelength Tm:Er:Yb:Ho fiber laser is accurately designed and
optimized. Simultaneous emission for three different signal

wavelengths, λs1 = 1550 nm, λs2 = 1800 nm, λs3 = 2050 nm,
can be achieved by pumping at λp = 980 nm. By employing
an input pump power of Pp0 = 200 mW with a Tm:Er:Yb:Ho
concentration ratio of 1.58 : 2.01 : 1.75 : 1, the holmium con-
centration being NHo = 3.87 × 1025 ions/m3, output powers of
P out

s1 = 20.01 mW, P out
s2 = 19.99 mW and P out

s3 = 20.02 mW at
λs1 = 1550 nm, λs2 = 1800 nm, λs3 = 2050 nm, respectively,
can be obtained. The three output powers are very close to
each other, this confirms that the dopant concentrations can be
properly chosen in order to optimize multi-wavelength optical
sources or broadband amplifiers which pave the way towards
ultrashort pulse emission.

REFERENCES

[1] M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid
infrared based on trivalent rare earth ions,” Appl. Phys. B, vol. 93, no. 2,
pp. 269–316, Sep. 2008.

[2] A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster,
“High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-
doped aluminosilicate glass fibre laser,” Electron. Lett., vol. 46, no. 24,
pp. 1617–1618, Nov. 2010.

[3] Y. Tian, L. Zhang, S. Feng, R. Xu, L. Hu, and J. Zhang, “2 µm emission
of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater.,
vol. 32, no. 11, pp. 1508–1513, Sep. 2010.

[4] M. Kochanowicz et al., “Analysis of upconversion luminescence in ger-
manate glass and optical fiber codoped with Yb3+/Tb3+,” Appl. Opt.,
vol. 55, no. 9, pp. 2370–2374, Mar. 2016.

[5] J. Zmojda et al., “Investigation of upconversion luminescence in
antimony–germanate double-clad two cores optical fiber co-doped with
Yb3+/Tm3+ and Yb3+/Ho3+ ions,” J. Lumin., vol. 170, pp. 795–800,
Feb. 2016.

[6] J. Zmojda, M. Kochanowicz, P. Miluski, G. C. Righini, M. Fer-
rari, and D. Dorosz, “Investigation of upconversion luminescence in
Yb3+/Tm3+/Ho3+ triply doped antimony-germanate glass and double-
clad optical fiber,” Opt. Mater., vol. 58, pp. 279–284, Aug. 2016.

[7] M. Kochanowicz et al., “Structural and luminescent properties of ger-
manate glasses and double-clad optical fiber co-doped with Yb3+/Ho3+,”
J. Alloys Compd., vol. 727, pp. 1221–1226, Dec. 2017.

[8] T. Ragin et al., “Enhanced mid-infrared 2.7 µm luminescence in low
hydroxide bismuth-germanate glass and optical fiber co-doped with
Er3+/Yb3+ ions,” J. Non-Cryst. Solids, vol. 457, pp. 169–174, Feb. 2017.

[9] A. Albalawi, M. Kochanowicz, J. Zmojda, P. Miluski, D. Dorosz, and S.
Taccheo, “Fluorescence spectrum of an Yb:Er:Tm:Ho doped germanate
glass,” in Proc. Laser Congr. (ASSL), Nov. 2018, Art. no. ATu2A.4.

[10] F. Enrichi et al., “Visible to NIR downconversion process in Tb3+-Yb3+

codoped silica-hafnia glass and glass-ceramic sol-gel waveguides for solar
cells,” J. Lumin., vol. 193, pp. 44–50, Jan. 2018.

[11] M. Kochanowicz et al., “Tm3+/Ho3+ co-doped germanate glass and
double-clad optical fiber for broadband emission and lasing above 2 µm,”
Opt. Mater. Express, vol. 9, no. 3, pp. 1450–1458, Mar. 2019.

[12] L. Sojka et al., “Ultra-broadband mid-infrared emission from a Pr3+/Dy3+

co-doped selenide-chalcogenide glass fiber spectrally shaped by varying
the pumping arrangement,” Opt. Mater. Express, vol. 9, no. 5, pp. 2291–
2306, May 2019.

[13] M. C. Falconi et al., “Design of an efficient pumping scheme for mid-IR
Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photon. Technol. Lett.,
vol. 28, no. 18, pp. 1984–1987, Sep. 2016.

[14] M. C. Falconi et al., “Dysprosium-doped chalcogenide master oscillator
power amplifier (MOPA) for mid-IR emission,” J. Lightw. Technol., vol. 35,
no. 2, pp. 265–273, Jan. 2017.

[15] G. Palma et al., “Design of praseodymium-doped chalcogenide micro-disk
emitting at 4.7µm,” Opt. Express, vol. 25, no. 6, pp. 7014–7030, Mar. 2017.

[16] M. C. Falconi, D. Laneve, M. Bozzetti, T. T. Fernandez, G. Galzerano, and
F. Prudenzano, “Design of an efficient pulsed Dy3+:ZBLAN fiber laser
operating in gain switching regime,” J. Lightw. Technol., vol. 36, no. 23,
pp. 5327–5333, Dec. 2018.

[17] M. Shen et al., “Modeling of resonantly pumped mid-infrared Pr3+-doped
chalcogenide fiber amplifier with different pumping schemes,” Opt. Ex-
press, vol. 26, no. 18, pp. 23 641–23 660, Sep. 2018.



FALCONI et al.: DESIGN OF A MULTI-WAVELENGTH FIBER LASER BASED ON Tm:Er:Yb:Ho CO-DOPED GERMANATE GLASS 2413

[18] S. Sujecki et al., “Experimental and numerical investigation to rationalize
both near-infrared and mid-infrared spontaneous emission in Pr3+ doped
selenide-chalcogenide fiber,” J. Lumin., vol. 209, pp. 14–20, May 2019.

[19] S. Sujecki et al., “Spatiotemporal modeling of mid-infrared photolumi-
nescence from terbium(III) ion doped chalcogenide-selenide multimode
fibers,” J. Rare Earths, vol. 37, no. 11, pp. 1157–1163, Nov. 2019.

[20] H. T. Munasinghe et al., “Lead-germanate glasses and fibers: A practi-
cal alternative to tellurite for nonlinear fiber applications,” Opt. Mater.
Express, vol. 3, no. 9, pp. 1488–1503, Sep. 2013.

[21] Q. Lin, H. Xia, Y. Zhang, J. Wang, J. Zhang, and S. He, “Gain properties
of germanate glasses singly doped with Tm3+ and Ho3+ ions,” J. Rare
Earths, vol. 27, no. 1, pp. 76–82, Feb. 2009.

[22] T. Wei et al., “Mid-infrared fluorescence, energy transfer process and
rate equation analysis in Er3+ doped germanate glass,” Sci. Rep., vol. 4,
Aug. 2014, Art. no. 6060.

[23] S. Taccheo, G. Sorbello, S. Longhi, and P. Laporta, “Measurement of the
energy transfer and upconversion constants in Er–Yb-doped phosphate
glass,” Opt. Quant. Electron., vol. 31, no. 3, pp. 249–262, Mar. 1999.

[24] C. A. Evans, Z. Ikonic, B. Richards, P. Harrison, and A. Jha, “Numerical
rate equation modeling of a ∼2.1–µm–Tm3+/Ho3+ co-doped tellurite
fiber laser,” J. Lightw. Technol., vol. 27, no. 19, pp. 4280–4288, Oct. 2009.

[25] C. Jiang and W. Xu, “Theoretical model of Yb3+-Er3+-Tm3+-codoped
system for white light generation,” IEEE/OSA J. Display Technol., vol. 5,
no. 8, pp. 312–318, Aug. 2009.

[26] G. Palma et al., “Modeling of whispering gallery modes for rare earth
spectroscopic characterization,” IEEE Photon. Technol. Lett., vol. 27,
no. 17, pp. 1861–1863, Sep. 2015.

[27] G. Palma et al., “Novel double step approach for optical sensing via micro-
sphere WGM resonance,” Opt. Express, vol. 24, no. 23, pp. 26 956–26 971,
Nov. 2016.

[28] D. Laneve et al., “Electromagnetic design of microwave cavities for
side-coupled linear accelerators: A hybrid numerical/analytical approach,”
IEEE Trans. Nucl. Sci., vol. 65, no. 8, pp. 2233–2239, Aug. 2018.

Mario Christian Falconi (Student Member, IEEE) received the M.Sc. degree
in electronic engineering (cum laude) and the Ph.D. degree in electrical and
information engineering, both from the Polytechnic University of Bari, Bari,
Italy, in 2015 and 2019, respectively. He is currently a Research Fellow with the
Polytechnic University of Bari. His research interests include fiber lasers and
amplifiers, photonic crystal fibers, and nonlinear effects in optical fibers.

Dario Laneve received the M.Sc. degree in information engineering (cum laude)
in 2014 from the Polytechnic University of Bari, Bari, Italy, where he is currently
working toward the Ph.D. degree in electrical and information engineering.
His research interests include microwave resonators for linear accelerators and
optical resonators for sensing applications.

Vincenza Portosi received the M.Sc. degree in electronic engineering (cum
laude) from the Polytechnic University of Bari, Bari, Italy, in 2018. She is cur-
rently a Research Fellow with the Polytechnic University of Bari. Her research
interests include microwave applicators for medical applications, metamaterials,
SIW antennas, and optical fiber sensors.

Stefano Taccheo received the Ph.D. degree in optics-material physics from
Politecnico di Milano, Milano, Italy, in 1994. He is currently an Associate
Professor with Swansea University, Swansea, U.K. From 2003 to 2007, he was
with Politecnico di Milano, Italy. He has authored or coauthored more than 100
journals and conference papers. His research interests include lasers, nonlinear
optics, and supercontinuum spectrum generation.

Francesco Prudenzano received the Ph.D. degree in electronic engineering
from the Polytechnic University of Bari, Bari, Italy, in November 1996. Since
2018, he has been a Full Professor in Electromagnetic Fields with the Department
of Electrical and Information Engineering, Polytechnic University of Bari, Bari,
Italy. His research activity regards the design and characterization of microwave
devices, integrated optics and optical fiber-based devices. He is the Head
of Microwave and Optical Engineering group, Department of Electrical and
Information Engineering, Polytechnic University of Bari. From 2017 to 2018,
he was the Chair of SIOF, the Italian Society of Optics and Photonics (Italian
branch of EOS - European Optical Society). He is involved in several national
and international research projects and cooperations. He has coauthored more
than 400 publications, 295 of which got published in journals and international
conferences, lectures, and invited papers.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


