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Abstract—Greenhouse gas emission is an important issue 
and the largest source of it is from human activities and from 
building sectors. Therefore, the building stocks play a key role 
in the reduction of GHG emissions through the analysis of the 
energy performance of buildings, in order to understand their 
behavior and to identify effective models that will allow 
expanding investigations in vast areas as districts or cities. 

This work analyses space heating energy performance of 
buildings with a multi-scale approach using the main energy-
related variables at building, block of buildings and district 
scale. The purpose of this study is to identify a simple regression 
model in order to evaluate the space heating energy 
consumption of a large part of residential buildings in Turin 
(IT). A cluster analysis was applied in order to find groups of 
buildings with similar energy consumptions and to identify the 
main energy-related characteristics of each group. The analysis 
was developed with the support of a GIS tool to evaluate the 
buildings characteristics and a statistical software to identify a 
stable model at urban scale.  The identified models evidenced 
that the space heating energy consumption not only depends on 
the characteristics of the building itself, but also on the urban 
characteristics. At urban scale, the most influential variables 
were: the heating degree days, positively correlated with the 
space heating consumption, and the albedo that was negatively 
correlated. Also, socio-economic variables were utilized: the 
percentage of working people with a positive correlation and the 
percentage of young inhabitants with a negative correlation. The 
statistical GIS-based methodology proposed in this study is 
simple and then replicable to other urban contexts. This kind of 
analysis can be useful for policy makers in defining specific 
energy efficiency measures for each group of buildings to 
identify new more effective energy performance variables and 
benchmarks for the different groups of buildings and then to 
improve the energy performance of a city reducing energy 
consumptions and the relative GHG emissions. 

Keywords—space heating model, residential buildings, linear 
regression, statistical model, urban scale 

I. INTRODUCTION 
Even if more than half of the global population now live 

in cities, the area occupied by them in 2010 only represent 
0.5% of the world's surface area and, incredibly, the 
consumption of this occupied area is 75% of the world’s 
energy consumption [1]. It is estimated that the 68% of the 
world population will live in cities by 2050, in Italy this 
percentage will exceed 81% [2]. This assumption with the 
dawn of environmentalism and concerns regarding resource 
depletion, the oil crises from 1970s and global climate change 
brought a discussion on energy consumption especially in 
high-density urban environments. Consequently, an 
increasing attention for energy performance of buildings has 
been given in recent years. As a reaction to climate change, 
nowadays improving the energy performances of cities has 
become an important topic in the agenda of governments and 
decisions makers. In order to build sustainable cities, 
considerations in urban planning have to be made. The 

analysis presented in this work had the objective of evaluating 
the buildings heating energy consumption with a multi-scale 
approach through the evaluation of the main energy-related 
variables at different scale. The purpose of this study is to 
identify a replicable methodology based on multiple linear 
regression model in order to evaluate the heating energy 
consumption of buildings with variables at building, block of 
buildings and urban scale. The analysis was developed using 
a GIS tool and a statistical software. The GIS tool was used 
for the association of different databases and the buildings 
with their energy consumption data, while the statistical 
software allowed the implementation of different statistical 
techniques as principal components analysis, multiple linear 
regression, and cluster analysis in order to evaluate the main 
energy-related variables and the energy performance models 
for buildings. 

II. LITERATURE REVIEW 
Nowadays improving the energy performances of cities 

has become an important topic in the agenda of governments 
and decisions makers. During the last years, studies have been 
implemented trying to understand the main features that 
influence the energy consumptions at different scales. In 2009, 
Olofsson et al. [3] analysed the effect of building-specific 
parameter on energy consumption using ANOVA analysis 
and PLS-simulation. The PLS model resulted with a better 
accuracy and it pointed out that the important variables of the 
buildings were the geometrical characteristics and the 
construction period. In 2012, Howard et al. [4] studied a model 
to estimate the building energy end-use intensity for New 
York city using a robust multiple linear regression. The model 
was applied to 9 different types of building and it pointed out 
that the end-use energy depends on building function and not 
on construction type or building age. In 2014, Mastrucci et al. 
characterized the building stock of Rotterdam with seven 
types of dwellings and a bottom-up statistical model was 
applied to estimate the energy consumption [5]. The model 
used a multiple linear regression analysis and it pointed out 
that for electricity consumption number of occupants, floor 
surface and type of dwelling are the significant variables, 
while natural gas consumption depends on the floor surface 
and the type of dwellings. Also in Rotterdam, a study applied 
a multiple linear regression model on an engineering method 
to calculate natural gas and electricity consumptions [6]. For 
this study were considered the average floor area of dwellings, 
the average number of occupants and the share of dwellings 
as the main influencing parameters. The energy consumption 
of only one neighborhood was calculated with an engineering 
method, while the multiple linear regression model was 
applied to the entire building stock of the city. The energy 
consumption derived from the models was compared with real 
energy consumption, showing a smaller total deviation for the 
statistical model (5%) and higher for the engineering model 
(25%). In New York, a study to estimate the building energy-



use intensity was performed by integrating GIS and big data 
technology at urban scale [7]. Different feature selection 
strategies and commonly used regression algorithms were 
included for comparison. Filter, wrapper and embedded 
methods were performed for the feature selection section and 
elastic Net, Artificial Neural Network and Support Vector 
Regression were used for the model. The study concluded that 
the model built by the Support Vector Regression algorithm 
on the features selected by Elastic Net had the least cross-
validation mean squared error. Normally, researches on 
buildings energy consumption at urban scale focus on 
understanding the effect of a single feature on the energy 
consumption, evidencing the lack of studies that incorporate 
all the possible features. Therefore, the aim of this study is to 
identify the most influential variables on building energy 
consumption at building and urban scale together. 

III. THE CASE STUDY OF TURIN (IT) 
The case study analysed in this work is the city of Turin, 

located in the North-West part of Italy. The city has temperate 
climate, influenced also by the surrounding Alps, with cold-
dry winters, warm-humid summers and low wind velocities. 
Seven weather stations (WS) record the climate variables in 
different areas of Turin from the city centre to the periphery. 
Previous studies [8-12] pointed out the main energy-related 
variables according to weather conditions recorded by the 
meteorological stations in Turin and its surroundings from the 
building to the territorial scale. According to the Municipal 
Technical Map (2015), Turin is characterized by a dense and 
compact city centre composed by building with similar 
heights, while the periphery can be represented by more 
buildings sprawl with irregular urban form and various 
heights. The major part of the building stock is residential with 
a mean height of about 14 m, a surface to volume ratio (S/V) 
between 0.35 to 0.73 and predominant periods of construction 
1918-45 and 1961-70 [8-10]. Turin is characterized mainly by 
residential buildings with central heating systems supplied by 
the district heating network and natural gas, with an 
occupation rate higher than 85% and with buildings in a good 
maintenance condition [13, 14]. In this work, the annual space 
heating consumptions for space heating of 1,621 residential 
buildings in Turin for 2/3 heating seasons were analysed in 
order to understand which are the main influencing variables 
at building and block of buildings scale. The microclimate 
variations in the buildings surrounding was analyzed 
considering the same building typologies located in different 
areas with different urban morphology, solar exposition and 
with various outdoor surface materials. Considering buildings 
with complete information, 1,278 residential buildings were 
selected with energy consumption data for different heating 
seasons (from 2009-10 to 2015-16) and for at least 2/3 
consecutive heating seasons. The energy consumptions were 
georeferenced with a GIS tool using data from the Municipal 
Technical Map of Torino; WSs; socio-economics, urban and 
buildings characteristics. The energy consumption data of 
buildings were also normalized on a typical heating season 
according to the heating degree days registered by the nearest 
WS. The energy consumption data of residential buildings 
were normalized. This normalization was on the heating 
season, which was closer to the average HDD at 20°C of the 
last 10 years (the 2011-12 heating season was chosen). 

In Tables 1 and 2 the analyzed residential buildings in 
Turin were classified in homogeneous groups considering the 
period of construction, the surface to volume ratio (S/V) and 
the number of buildings (the buildings of Turin are mainly old 

and compact and therefore for the more recent periods of 
construction it was not possible to complete the classes of S/V 
and EPh; see the cells "-"). The greatest part of the analyzed 
residential buildings was built before the first law on energy 
savings for buildings L. 373/76. In particular, the 33% of 
buildings was built in 1961-70, the 25% in 1918-45, the 23% 
in 1946-60 and the 15% in 1971-80; only the 4% was built 
after 1981 with some energy efficiency measures. Moreover, 
many buildings have a low value of surface to volume ratio, 
so there are principally compact condominiums. In Table 2, 
the energy consumption for space heating EPH is reported for 
Turin; the average values of EPH increase with the S/V and 
increase up to 1971-80 and decrease as in accordance with 
literature [10, 14]. 

TABLE I.  SURFACE TO VOLUME RATIO (S/V) ANALYSIS FOR THE 
HOMOGENEOUS GROUPS OF BUILDINGS. 

TABLE II.  SURFACE TO VOLUME RATIO (S/V) ANALYSIS FOR THE 
HOMOGENEOUS GROUPS OF BUILDINGS. 

IV. MATERIAL AND METHODS 
A GIS-based methodology to characterize the energy 

performance (EP) of Turin’s buildings heritage has been 
developed with a bottom-up approach. The accuracy of the 
models depends on the reliability of the data. For a big city as 
Turin, the large amount of data missing at urban scale, as the 
level of renovation of buildings and the renewable energy 
technologies connected, could cause errors and, in some 
studies, a correction coefficient could be used to improve the 
precision of the results [8, 10]. The energy consumption of 
buildings can be analyzed through different statistical 
techniques and procedures. The software used was SAS 
Enterprise Guide version 7.1 with a database composed by 
2,230 observations and 80 variables. The following steps 
summarize the methodological framework of this study: 

1. Describe the statistical distribution of energy consumption 
data. 

2. Specify the geometrical, thermos-physical characteristics 
and systems efficiencies of the buildings and determine 
and associate the urban characteristics of the surroundings 
to the buildings using a GIS tool. 

3. Use univariate and multivariate analysis techniques 
(principal component analysis) to improve data quality. 

4. Identify a multiple linear regression models.  

Period of 
construct

ion 

Classes of S/V [m2/m3] 

A B C D

avg max min n. avg max min n. avg max min n. avg max min n.

< 1945 0.30 0.32 0.25 64 0.36 0.41 0.32 214 0.45 0.59 0.41 108 0.98 1.95 0.59 23

1946-60 0.34 0.38 0.25 227 0.42 0.50 0.38 128 0.81 1.28 0.59 11 - - - -

1961-70 0.29 0.32 0.24 141 0.35 0.38 0.32 217 0.42 0.50 0.38 167 0.80 1.07 0.51 28

1971-80 0.32 0.37 0.24 140 0.41 0.51 0.37 91 0.81 1.19 0.61 7 - - - -

1981-90 0.36 0.50 0.28 41 - - - - - - - - - - - -

1991-01 0.40 1.05 0.29 12 - - - - - - - - - - - -

>2001 0.40 0.44 0.36 2 - - - - - - - - - - - -

buildings 627 659 312 51

Period

Classes of EPh [kWh/m3/y] 

A B C D

avg max min n. avg max min n. avg max min n. avg max min n.

< 45 36.6 86.9 16.4 64 38.9 77.2 17.3 214 41.9 80.3 19.6 108 53.2 65.0 20.4 23

46-60 39.3 98.9 19.9 227 39.4 89.4 17.6 128 46.3 98.9 27.7 11 - - - -

61-70 40.3 82.7 24.0 141 42.0 91.6 19.7 217 42.4 94.1 19.3 167 36.0 68.9 23.5 28

71-80 46.5 99.0 2.2 140 47.9 99.8 26.1 91 52.4 95.3 35.5 7 - - - -

81-90 47.1 89.3 27.8 41 - - - - - - - - - - - -

91-01 41.3 58.8 29.2 12 - - - - - - - - - - - -

>01 30.5 31.6 29.4 2 - - - - - - - - - - - -

build. 627 659 312 51



A. Statistical distribution of energy consumption data 
Considering the typical heating season 2011-12, space 

heating data distributions were analysed considering 17 
homogeneous groups of buildings described in Tables 1 and 
2. For every homogeneous group, a statistical analysis was 
performed in order to evaluate the frequency distribution of 
energy consumption data; in particular, the Normal, Log-
Normal and Gamma distributions have been evaluated. Two 
statistical tests were used in conjunction with the distributions 
to observe the trend of energy consumptions data and identify 
the anomalous data: the Kolmogorov-Smirnov (KS) and the 
chi-squared (χ2) tests. 

B. Buildings and urban variables 
With a GIS tool the energy consumption of more than 

1,600 residential buildings were georeferenced to combine the 
energy-use data with the characteristics of the buildings and 
their surrounding with a statistical approach. All the available 
data about buildings and urban context were collected and 
associated to each building. A study on the homogeneous 
groups of buildings was performed considering the type of 
distribution of energy performance values for each group. 

C. Univariate and multivariate analysis techniques 
In the first part of the study univariate techniques were 

applied. In the following part, the results of the use of 
multivariate techniques for describing data and understanding 
the relationship among them are presented. Statistical 
distributions were used to analyse the database about energy 
consumptions of different type of buildings and to remove 
anomalous data; the Pearson coefficient was used to evaluate 
the grade of correlation of each variable with the energy 
consumption data. 

D. Multiple regression models 
This statistical technique is the most used and simple for 

investigating and modeling the relationship between a 
dependent and two or more independent variables. The 
heating energy consumption was estimated using a multiple 
linear regression, which is expressed by: ܻ = ߚ + ଵߚ ∙ ଵݔ + ⋯+ ߚ ∙ ݔ +    (1)ߝ

where Yi is dependent variable, the space heating energy 
consumption, xij are the independent variables, βj are the 
parameters estimated and εi is the random error of each 
observation i, i=1,…,N. The standard assumptions for the 
errors εi are that they are independent and normally distributed 
with mean 0 and constant variance σ2, εi~IIND(0, σ2). 

The model in Eq (1) was identified using Ordinary Least 
Squares (OLS) method. It follows that the observed values yi 
(i=1,…,N) can be written as: ݕ = ܾ + ܾଵ ∙ ଵݔ + ⋯+ ܾ ∙ ݔ + ݁   (2) 

where bj are the least squares estimates of βj (j=0,1,…,p) 
and ei  (i=1,…,N) are the residuals. The predicted values ݕො 
are computed as b0+b1·xi1+⋯+bp·xip (i=1,…, N). 

A meaningful result from a multiple regression model can 
be obtained by confirming at least approximately the 
assumptions of the method. The validity of the assumptions is 
checked using some diagnostic tools on the residuals. 
Residuals should be approximately normal, with constant 
variance (homoscedasticity) and uncorrelated. The 
distribution of the residuals was evaluated through probability 
graphs. The “residuals vs predicted values” and the “residuals 
vs regressors” graphs have been also built. The 
homoscedasticity of the residuals was also evaluated by the 
White test that considers the two following hypotheses: 

ଶߪ	:ܪ = ଶߪ		ݐℎܽݐ	ℎܿݑݏ	∃,	ଵ:ܪ ଶ     (3)ߪ	 	≠  ଶ   (4)ߪ	

where the null hypothesis (Eq. 3) represent the equal 
variance (σ2) for the errors while the alternative hypothesis 
(Eq. 4) the different variance for the errors. In the case of a 
non-constant variance for the errors a variance-stabilizing 
transformation is required in order to obtain more accurate 
parameter estimators of the model.  

A potential problem for the validity of the results of a 
multiple regression is the collinearity among regressors. 
Variance Inflation Factor (VIF) is a measure of the amount of 
multicollinearity in a set of multiple regression variables. In a 
multiple regression model, multicollinearity makes difficult to 
test how much the independent variables affects the dependent 
variable since they are all influencing each other. The 
multicollinearity was assessed by the VIFs calculated by the 
reciprocal of the inverse of Rj

2 (R2 is the coefficient of 
determination) of an independent variable xj as it is expressed 
by: ܸܨܫ = 	 ଵଵିோೕమ ; 		݆ = 1,… ,  (5)    .

Usually VIF values greater than 5 suggest that the 
regression coefficients are poorly estimated. To evaluate the 
adequacy of the model, the coefficient of determination R-
squared (R2) and the adjusted R2 (Adj R2) were used. R2 
represents the proportion of the variance in the dependent 
variable that is predictable from the independent variables. 
Similarly, the adjusted R2 is a modified version of the 
coefficient of determination that has been adjusted for the 
number of predictors in the model. While the value R2 
increases with the addition of variables in the model, the 
adjusted R2 increases only if the new term improves the model 
more than would be expected by chance. Standard regression 
output includes the results of the statistical tests which 
compare the null hypothesis H0 against the alternative 
hypothesis H1 where H0 and H1 are defined as: 

H0: βj=0; H1: βj ≠0.    (6) 
Usually the null hypothesis is rejected (in other words the 

parameter is significant) when the T statistic, or t-ratio 
(defined as the ratio between bj, the estimate of βj, and the 
estimate of the standard deviation of the estimator Bj of βj), is 
large or more precisely when the relative p-value is less than 
5%. In this work, the estimate of the standard deviation of the 
estimator Bj of βj is simply denotes by ݏೕ; it follows then t-

ratio is equal to: ܾ/ݏೕ .  
For this study, 80 variables were considered and the 

stepwise method was performed in order to select only the 
most influential variables. It is an automatic selection 
procedure which combines forward selection and backward 
elimination methods. The backward elimination step 
considers a subset of regressors and for each regressor the t-
ratio is computed. If the smallest absolute value of the t-ratios 
is less than a prespecified value, the corresponding regressor 
is eliminated. The forward selection step is similar but 
considers adding instead of eliminating variables. A new 
variable is added if the corresponding t-ratio is the largest and 
its value is greater than a prespecified value. To avoid the 
effect of the unit of measures the independent variables have 
been standardized. Considering the mean ̅ݔ and the standard 
deviation σj of the value {xij: i=1,…, N}, the standardization 
is defined as: ݖ = 	 ௫ೕି௫̅ೕ	ೕ .      (7) 



V. RESULTS AND DISCUSSION 

The steps described in the previous paragraph about the 
methodological framework were used also to describe the 
results of this study. 

A. Statistical distribution of energy consumption data 
In literature was found that energy performance (EP) of 

residential buildings depends mainly by their period of 
construction and surface to volume ratio (S/V). Then a study 
on the energy performance distribution was completed to 
identify the characteristics of the homogeneous group of 
buildings with similar energy performances. In this study, it 
was found that space heating consumption data distributions 
were not normal but Gamma and Log-Normal, as can be seen 
from Table 3. The trend Log-Normal was also found in [15] 
for office buildings because energy consumption densities are 
always non-negative, which indicates that they may be Log-
Normally distributed. The frequency distribution is very 
closed to the theoretical or expected distribution. In Table 3 
the statistical analysis values with 3 ranges of data is reported 
and in only 3 cases the KS test led to reject the hypothesis of 
Gamma/Log-N distributions (in red).  

TABLE III.  ANALYSIS OF STATISTICAL DISTRIBUTIONS GAMMA AND 
LOG-NORMAL FOR THE HOMOGENEOUS GROUPS OF BUILDINGS 

Period of 
construction 

S/V 
classes 

S/Vavg 
m2/m3 

EPh,avg 

kWh/m3/y 

Statistical test 
Gamma distr. Log-N distr.  
Χ²  

(p-values) 
KS 

(deviation) 

Χ²
(p-values)

KS
(deviation)

< 1945 

A 0.30 36.64 19.4% 0.17 35.4% 0.17
B 0.36 38.93 8.9% 0.09 6.6% 0.09
C 0.45 41.91 12.1% 0.13 12.0% 0.13
D 0.98 53.16 8.7% 0.09 29.0% 0.28

1946-60 
A 0.34 39.29 12.5% 0.09 38.4% 0.09
B 0.42 39.38 37.1% 0.12 21.9% 0.12
C 0.81 46.32 71.2% 0.41 15.5% 0.41

1961-1970 

A 0.29 40.35 6.4% 0.11 34.1% 0.11
B 0.35 41.98 19.8% 0.09 27.7% 0.09
C 0.42 42.40 26.9% 0.11 17.4% 0.11
D 0.80 36.03 20.8% 0.26 45.1% 0.26

1971-80 
A 0.32 46.47 8.0% 0.12 14.0% 0.12
B 0.41 47.87 32.5% 0.14 13.7% 0.14
C 0.81 52.41 85.5% 0.51 11.1% 0.51

1981-90 A 0.36 47.11 46.0% 0.21 13.1% 0.21
1991-2001 A 0.40 41.33 44.6% 0.39 38.7% 0.39

B. Characteristics and systems efficiencies of the buildings 
and urban characteristics of the surroundings 
Before applying any statistical procedures is necessary, 

first analyzed the data for understanding the tendency, the 
dispersion, the accuracy also to detect outliers. The sample 
used in this study counts with 2,230 observations that 
represent residential buildings located in different part of the 
city. The variables present in the dataset can be classified into 
three main groups:  
1. Building variables as: energy consumption, type of use, 

period of construction, maintenance level, area and 
volume, type of envelope (with thermal transmittances of 
opaque and transparent envelope), orientation, 
compactness or S/V and type of heating system. 

2. Urban variables representing the surroundings where each 
building is located as (at block of buildings scale): climate 
and microclimate variations, buildings density, buildings 
coverage ratio, buildings average height, percentage of 
heated volume, aspect ratio, distance from the center of the 
city, main buildings and streets orientation, solar 
exposition and albedo coefficient of urban environment 
(Figure 1). 

3. Socio-economic variables: number of inhabitants, family 
total components, percentage of males and females, 

percentage of foreigners, age, educational level, 
employment rate, dwelling property, workforce people 
and income level. 
Buildings characteristics were defined at building scale, 

while the urban variables and socio-economic factor at block 
of buildings scale. Then, these last variables were defined with 
average values at block of buildings scale and then associated 
at every building in that area. From the analysis of this dataset, 
mainly considering the average and the standard deviation 
values of the variables, the residential database counted on 
2,060 observations after removing the anomalous 
observations (i.e. not residential buildings with high volumes 
or energy consumption and unoccupied buildings with very 
low energy consumption). 

 

 
Fig. 1. Analysis of urban variables in the city of Turin: BD and H/W 

ratio 

C. Univariate and multivariate analysis techniques 
Through the univariate analysis, it is possible to describe 

the observations by looking only one variable at the time. The 
high correlation between energy consumption and heated 
volume is represented. The coefficient of Pearson r = 0.898, 
close to the value of 1 especially for low volumes, measures 
the linear dependency between these two variables. 
Multivariate analysis was applied after, considering more than 
one variable at the time. This type of analysis was made 
through principal components and correlation analyses 
performed using the statistical software SAS. The aim of these 
analyses was to understand which variables are more 
correlated with energy consumption and which are not 
independent of each other, a necessary condition for the linear 
regression model to be identified in the following paragraph. 

D. Perform a multiple linear regression models 
Considering the model represented by equations (1), (2) 

and (7) the following multiple regression models were 
performed. The first stepwise method (model ‘1’) resulted in 
a model with 24 independent variables exposing that the most 
influential variables are at building scale the volume, the 
heated volume, the net area and the transmittance of the walls. 
Table 4 display the general information of the models showing 
that the selected variables are capable of explaining the 84% 
of the variance in the energy consumption. In addition, Table 
6 shows the information obtained from the model and its 
respective values for the estimates bj of the parameters βj, the 
estimates of standard errors ݏೕ , t-ratios and the variance 
inflation factor (VIF). It can be observed that the VIF values 
for the volume and net area are very high because they are 
correlated to the heated volume; then they will not be 
considered. 

The distribution of the residuals are shown by a histogram 
(Figure 2) and a probability graph (Figure 3). The residuals do 
not accomplish the normality assumption of a multiple linear 
regression model, presenting a Kernel distribution with long 
tails especially for high values of the response. Also, looking 
at the probability graph it can be seen that the residuals cannot 
be considered as normally distributed. The scatterplot of the 
residuals displayed in Figure 4 exposed a funnel pattern 



meaning that the variance of the residuals tend to increase with 
an increasing of the predicted value so the variance of the 
residuals is not constant going against to homoscedasticity 
assumption. Table 5 displays the results from the White test, 
evidencing that the residuals are not homoscedastic and are 
then heteroskedastic (p-value is smaller than 0.05). As the 
assumptions of a multivariate linear regression analysis were 
rejected, a transformation on the dependent variable was 
performed using “log10” function. Therefore, the stepwise 
method using the “log10” of the dependent variable was 
performed resulting in a model with 26 variables, an adjusted 
R2 value of 0.816 (model ‘2’). The residuals of this model 
showed a better distribution even if the p-value of the White 
test is very close to 5%. For this model, the scatterplot 
“residuals versus predicted” evidences the presence of a 
quadratic trend. The best result was found to be the “log10” 
including the quadratic terms zij

2 corresponding to each 
predictor zij (models ‘3’ and ‘4’). For this reason, the square 
of each predictor was added to the model and then the multiple 
linear regression resulted in a polynomial expression that is 
summarized in the following equation: 

	ଵሺ݃ܮ  ܻሻ = ߚ + ଵሺሻߚ ∙ ଵݖ + ଵሺ௦ሻߚ ∙ ଵଶݖ + ⋯+ ሺሻߚ ݖ∙ + ሺ௦ሻߚ ∙ ଶݖ +        (8)ߝ

TABLE IV.  MODEL INFORMATION WITH EQUATION (1) 
Model R2 Adj R2

‘1’ 0.84 0.84
‘2’ 0.818 0.816
‘3’ 0.877 0.874
‘4’ 0.88 0.87

TABLE V.  WHITE TEST FOR HOMOSKEDASTICITY 
Model DF χ2 Pr > ChiSq

‘1’ 324 337.22 0.029
‘3’ 877 850.26 0.7354

 

 
Fig. 2. ‘1’ and ‘3’ model: Normal and Kernel distribution of errors 

 
Fig. 3. ‘1’ and ‘3’ model: probability graph 

 
Fig. 4. ‘1’ and ‘3’ model: variance distribution of the residuals 

The stepwise method (model ‘3’) resulted in an 
improvement in comparison to the previous models. The 
model achieves an adjusted R-square of 0.874 with 41 
variables, as it is displayed in Table 4. The biggest influence 
on EP (energy performance index) is given by the heated 
volume, the area and the number of floors (Table 7). While 
these variables implied an increase of the energy consumption 

the net area, the squared residents and the squared area present 
strong negative influence on the dependent variables. The VIF 
in Table 4 evidence that some variables are still correlated 
with other variables inside the model. In Figures 2 and 3, are 
displayed the graph related to the residuals showing a better 
result with the transformation although there are still some 
difficulties for predicting higher values. The results for 
evaluating the heteroscedasticity of the residuals can be 
analysed through Table 7 and Figure 4; the scatterplot does 
not evidence any pattern on the residuals while the White test 
does not reject the null hypothesis of having homoscedastic 
residuals.  

TABLE VI.  MODEL 1 WITH EQUATION (1) 

Variable  ൫ݖ൯ 
bj (parameter 
estimate of βj) 

Standard 

Error ࢙  t-ratio
p-value 

Pr >  
|t-ratio|

VIF 

Intercept 2.53E-10 0.009 0 1 - 
Volume -0.612 0.09 -6.82 <0.0001 92.63

University degree -0.082 0.017 -4.89 <0.0001 3.22 
Independent system -0.052 0.011 -4.71 <0.0001 1.4 

Floor -0.045 0.016 -2.9 0.004 2.78 
BOsc -0.034 0.01 -3.37 0.001 1.16 

Rented dwellings -0.027 0.012 -2.25 0.025 1.6 
Distant center -0.025 0.016 -1.53 0.126 2.97 

Age 5-9 -0.023 0.01 -2.23 0.026 1.23 
BHsc -0.023 0.014 -1.64 0.102 2.2 

Age 25-29 -0.021 0.012 -1.82 0.069 1.53 
R Women -0.02 0.011 -1.85 0.064 1.28 

Condition Status Poor -0.017 0.01 -1.61 0.108 1.25 
Solid fuel 0.021 0.01 2.18 0.029 1.09 

Buildings used 0.024 0.01 2.42 0.016 1.08 
Age 65-69 0.024 0.011 2.22 0.026 1.34 

Electric Energy 0.025 0.01 2.59 0.01 1.06 
Year 1 0.037 0.011 3.37 0.001 1.38 

Age more than 74 0.043 0.014 3.14 0.002 2.12 
Workforce people (WP) 0.046 0.017 2.75 0.006 3.14 

HDD 0.062 0.011 5.45 <0.0001 1.5 
Window HTS 0.083 0.026 3.22 0.001 7.63 

Wall HTS 0.282 0.036 7.74 <0.0001 15.26
NET area 0.335 0.081 4.15 <0.0001 74.74

Heated volume 0.862 0.022 39.9 <0.0001 5.37 
 

A more stable model was found but it still has some 
problems that need to be solved as the presence of collinearity 
and influential observation that may change the model. The 
presence of multicollinearity inside a model may dramatically 
affect its usefulness; it implies a linear dependence among the 
variables making the regression coefficient poorly estimated. 
The solution to this problem was to remove the variables that 
may have collinearity with others. The removal of the 
variables cannot be made at the same time but one by one 
because the VIF of the remaining variables could change. The 
model ‘3’ showed that some of the independent variables have 
linear dependency. The variable with the biggest value of VIF 
is the square of the family total components; then, the 
complete model was performed with the remaining variables. 
The removal of the variable “Family components2” resulted 
in a decrease on the VIF value for the square of the resident 
variables. The procedure was repeated 3 times in total until 
was reached a model without highly linear dependence among 
the independent variables. The variables that were removed 
from the model were: the square of the gross volume, the net 
area and the squared of the family total components. Finally, 
the correlated independent variables and the most influential 
observations were removed and all the assumptions were 
achieved. The last model ‘4’ counts of 32 predictors which are 
both linear and quadratic; VIF values are always less than 5. 
Tables 4 and 7 present the information about the last model. 
From the model ‘4’, in Figure 5, emerged that the heated 
volume, the area and the S/V have the highest influence on the 
energy consumption; as expected, these variables are directly 
proportional with energy consumption. Also urban parameters 



and the socio-economic variables influence the energy 
consumptions. 

TABLE VII.  MODEL 4 WITH EQUATION (8) 

Variable  ൫ݖ൯ 
bj (parameter 
estimate of βj)

Standard 

Error ࢙  t-ratio 
p-value Pr > 

|t-ratio| 

Intercept 0,19 0,02 7,78 <,0001 
Age 25-29 -0,04 0,01 -4,08 <,0001 
Age 45-49 -0,02 0,01 -2,46 0,014 

Age 5-9 -0,05 0,01 -5,01 <,0001 
Age 60-64 -0,04 0,01 -4,25 <,0001 

Age10-14 2 -0,01 0,00 -2,36 0,0184 
Age65-69 2 0,01 0,00 2,11 0,0351 

Albedo -0,04 0,01 -2,99 0,0028 
Albedo 2 0,02 0,01 2,72 0,0066 

Area 0,2 0,02 9,42 <,0001 
Area 2 -0,07 0,01 -8,53 <,0001 
BHsc -0,03 0,01 -2,3 0,0213 

Bosc 2 -0,01 0,00 -2,77 0,0057 
Families in rented dwellings -0,07 0,01 -4,62 <,0001 

Floor 0,14 0,02 8,33 <,0001 
HDD 2 0,05 0,01 6,75 <,0001 

Heated volume 1,01 0,03 38,46 <,0001 
Heated volume 2 -0,14 0,01 -15,87 <,0001 

Height 2 -0,05 0,01 -5,46 <,0001 
HWsc 2 0,03 0,01 4,11 <,0001 

Natural gas 2 -0,03 0,01 -4,36 <,0001 
Other fuels 0,03 0,01 2,63 0,0085 

Residential buildings 2 -0,02 0,01 -2,4 0,0165 
Residents 2 0,02 0,01 2,58 0,0098 

S/V 0,18 0,02 10,67 <,0001 
S/V 2 -0,02 0,00 -5,17 <,0001 
UM -0,03 0,01 -2,3 0,0217 

University degree 2 0,02 0,01 2,08 0,038 
University degree -0,07 0,02 -4,35 <,0001 

Workforce P 2 -0,03 0,01 -4,89 <,0001 
Workforce people 0,04 0,01 2,89 0,0039 
WP Occupied 2 0,03 0,01 6,2 <,0001 

Year 1 0,04 0,01 3,79 0,0002 
 

 

 
Fig. 5. Weight of the variables on the EP of residential buildings. 

VI. CONCLUSIONS 
The multiple linear regression model was applied for 

residential buildings and was validated using a group of 
observations selected randomly through the software SAS. 
The best results were found with the “log10” of the dependent 
variable (energy consumption) and including the quadratic 
terms of each independent variable with coefficients of 
determination of 0.82-0.88; the model is good, also for less 
amount of utilized variables, after all the verifications (model 
‘4’). The model for residential building points out that at 
building scale the most influential variables were the heated 
volume, the area and the S/V ratio (higher values for these 
variables are associated with a higher energy consumption). 
Regarding to the urban parameters the model evidences that 
the HDD, the aspect ratio H/W and the albedo are positively 
correlated. Contrary, the buildings coverage ratio and the 
building height are negatively correlated with the total energy 
consumption. The number of residents inside a census section 

is associated with an increase on energy consumption but 
these variables does not showed the stronger influence. About 
the socio-economic variables, the university degree of the 
inhabitants was the variable that showed a stronger influence 
on energy consumptions and its relationship was actually 
negative. Also, the percentage of families living in rented 
dwellings are associated with a decrease on energy 
consumption, while the work-force and the occupied work-
force are associated with an increase of the energy 
consumption. For the variables that characterize the energy 
vector, only four variables were important: the natural gas, the 
LPG, the percentage of residential buildings and the 
percentage of buildings used. The greater decrease on energy 
consumption is obtained when the natural gas is more used as 
it is associated with new boilers or district heating heat 
exchangers. In conclusion, the resulted models evidenced the 
most important variables that affect the space heating 
consumption of buildings evidencing that energy-use does not 
only depends on the characteristics of the building itself but 
also on the urban characteristics of the surrounding 
environment. The statistical methodology used in this study 
could be used for evaluating the energy consumption at urban 
scale in another city considering also the characteristics of the 
population besides the physical aspects as the features of 
buildings and of the urban context. All of these aspects are 
important for urban planners, architects and decisions makers 
for identifying the best solution when retrofit interventions or 
an energy plan are needed, considering the real effects that the 
decisions will have on the energy consumption and GHG 
emissions for a district, city or territory. The use of other 
statistical methods, like probabilistic graphical models, could 
be investigated in future researches [16]. 
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