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Abstract: Nonlinear dissipative phenomena are common features of many dynamical systems and 
engineering applications, and their experimental characterization has always been a challenge 
among the research community. Within the wide range of nonlinear damping mechanisms, friction 
is surely one of the most common, and with a high impact on the dynamical behavior of structures. 
In this paper, the nonlinear identification of friction in a negative stiffness oscillator is pursued. The 
structure exhibits a strong nonlinear behavior, mainly due to its polynomial elastic restoring force 
with a negative stiffness region. This leads to an asymmetric double-well potential with two stable 
equilibrium positions, and the possibility of switching between them in a chaotic way. Friction plays 
a crucial role in this context, as it derives from the continuous sliding between the central guide and 
the moving mass. The system is driven through harmonic tests with several input amplitudes, in 
order to estimate the variations in the energy dissipated per cycle. The identification of the frictional 
behavior is then pursed by minimizing the errors between the experimental measurements and the 
model predictions, using the harmonic balance method in conjunction with a continuation 
technique on the forcing amplitudes. 

Keywords: friction; nonlinear; experimental; identification; harmonic balance 
 

1. Introduction 

Friction is a complex nonlinear phenomenon highly present in mechanical systems. It results 
from the interaction between adjacent surfaces and is dependent on their topography and materials, 
and on the presence of lubrication and relative motion [1]. Studies on friction have been carried out 
for more than 500 years [2], and a more detailed explanation about modeling techniques can be found 
in several works in the literature [3–5]. A major classification of friction is usually done by separating 
the “pre-sliding” from the “sliding” (or “gross-sliding”) behavior. The first can be associated with the 
elastic and plastic deformations at the asperity levels of the adjacent surfaces, and it is known to be 
mostly dependent on their relative displacement. The friction force in the pre-sliding regime is a 
hysteretic function of the position with a non-local memory [1,4]. Instead, the sliding regime is largely 
due to the shearing resistance of the asperities, and mainly dependent on the velocity. The pioneering 
friction model of Coulomb [6] is indeed the most known example of sliding friction. 

The experimental identification of friction has always been a difficult task, especially when real-
life mechanical structures are involved. This is indeed due to the intrinsic nonlinear nature of the 
friction phenomenon, which may lead to limit cycles, tracking errors, stick–slip motion, hysteresis 
and other typical features of nonlinear systems such as natural frequency shifts and jumps. Many 
nonlinear identification techniques have been developed by the research community in the last 
decades, and two extensive literature reviews can be found in [7,8]. Nevertheless, different methods 
are suitable for the different classes of nonlinearities and kind of excitations, and few of them have 
been tested with frictional and/or hysteresis nonlinearities. In [1], several identification techniques of 
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pre-sliding and sliding friction were compared, ranging from white-box to black-box models. The 
identifications were performed directly on the friction force, which was measured in a controlled 
laboratory setup with a tribometer. In [9], the same experimental setup was adopted and the 
identification was performed considering the LuGre [10] and the Maxwell-slip [11] friction models in 
conjunction with nonlinear regression techniques. The LuGre model was again adopted in [12] to 
identify the frictional behavior in a torque motor control system, using an evolutionary algorithm to 
minimize the residuals between predictions and measurements with constant velocity experiments. 
A different approach was adopted in [13], where a general hysteresis model was identified via the 
nonlinear state–space modeling of a single-degree-of-freedom system under multisine excitation. 
Ground vibrations sine sweep tests were conducted in [14], to estimate the shape of the friction force 
at the joints of the wing-payload substructure of an F-16 aircraft using the restoring force surface 
(RFS) [15] and wavelet transform methods. Indeed, friction phenomena associated with joints are 
known to be a typical source of nonlinearity in mechanical systems [16], and this represents a critical 
issue in several engineering applications, such as bladed disks [17]. In such cases, friction is usually 
modeled with node-to-node contact elements, where Coulomb’s friction law is used to model the 
local slip conditions of the joint interfaces [18]. On the experimental side, the nonlinear dynamical 
behavior of contact interfaces has been widely observed, for instance in [19–21]. 

In this paper, the data-driven nonlinear modeling of the frictional behavior of a negative stiffness 
oscillator is performed. The oscillator is part of a device designed to improve the current collection 
quality in railway overhead contact lines, attempting to alter their damping distribution and reduce 
the wave propagation, known to be a critical phenomenon in such structures [22,23]. It is 
characterized by a strong nonlinear behavior mainly due to its double-well characteristics [24], and 
it exhibits two stable equilibrium positions plus an unstable one. The oscillations can either be 
bounded around one stable point (“in-well”) or include all the three positions (“cross-well”). In both 
cases, periodic oscillations can evolve to steady in-well or cross-well chaotic motions under external 
periodic excitations [25,26]. The bi-stable nature of the device is translated to a polynomial-kind 
restoring force with a negative slope around the origin. This has been experimentally identified in a 
previous work [27] using the nonlinear subspace identification method (NSI) [28] with cross-well 
oscillations under random excitation. However, the method struggled when trying to infer a 
nonlinear dissipative model. 

The identification of the friction force of the device turns out to be a particularly challenging 
task, as it is not the only and dominant source of nonlinearity. The device is here driven through 
several harmonic excitations with increasing amplitudes, and the friction force is identified by 
minimizing the residuals between the model predictions and experimental measurements of the 
energy dissipated per cycle over the considered input amplitude range. The model response is 
computed using the harmonic balance method (HBM) [29], therefore searching for periodic responses 
approximated by Fourier series. HBM is usually adopted in conjunction with a continuation 
technique [30,31] to study the evolution of the periodic solutions with respect to the excitation 
frequency and to build the so-called “nonlinear frequency response curves”. The same idea is used 
in this paper, but a novel procedure is implemented adopting the continuation technique with respect 
to the excitation amplitude. This allows to estimate the “nonlinear amplitude response curves”, and 
therefore the dissipated energy per cycle. Given the interest in obtaining a physically based model, a 
white-box approach is pursued in this work. A proper frictional model should then be considered, 
which is first inferred using the RFS method together with physical insights about the device 
functionality. A genetic algorithm [32] is eventually used to optimize the model parameters based on 
the experimental observations. 

Results show a good confidence in the identified parameters and provide a reliable model able 
to catch the strong nonlinear dynamics of the structure under test. This confirms the effectiveness of 
the presented methodology, which can be applied to a wide class of nonlinear systems. 
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2. A Negative Stiffness Oscillator 

The device consists of a U-shaped frame connected through rods to a central moving mass. The 
frame keeps the rods under compression during their movement, achieving a bi-stable mechanism. 
A schematic representation of the device is depicted in Figure 1. 

 

Figure 1. Schematic representation of the negative stiffness oscillator. 

The lower surface of the frame is attached to a shaking table, so as to impose a displacement 
𝑏𝑏(𝑡𝑡) to the structure. An accelerometer is located on the shaking table to measure the acceleration of 
the base �̈�𝑏(𝑡𝑡). The displacement 𝑏𝑏(𝑡𝑡) is then obtained by integrating twice its measured acceleration. 
It is also assumed that the inertia of the moving parts can be concentrated into one central point with 
a mass of 𝑚𝑚 = 0.26 𝑘𝑘𝑘𝑘, comprising the mass of the central bushing and the equivalent inertia of the 
rods. The vertical movement of this point is described by the coordinate 𝑦𝑦(𝑡𝑡) and it is measured by 
a laser vibrometer. The zero position of 𝑦𝑦(𝑡𝑡) corresponds to the horizontal configuration of the rods. 
The reader can refer to [27] for more details about the device. 

It is assumed that the system can be modeled as a single-degree-of-freedom system in the 
variable 𝑧𝑧(𝑡𝑡) = 𝑦𝑦(𝑡𝑡) − 𝑏𝑏(𝑡𝑡), leading to an equation of motion of the kind 

𝑚𝑚�̈�𝑧 + ℛ(𝑧𝑧, �̇�𝑧) = −𝑚𝑚�̈�𝑏 = 𝑓𝑓(𝑡𝑡), (1) 

where ℛ(𝑧𝑧, �̇�𝑧) is the restoring surface, the sum of the (elastic) restoring force 𝒦𝒦(𝑧𝑧) and the damping 
force 𝒟𝒟(𝑧𝑧, �̇�𝑧). The latter is supposed to be a function of both displacement 𝑧𝑧  and velocity �̇�𝑧 . The 
restoring force of the considered system can be expressed as a polynomial expansion of degree three: 

𝒦𝒦(𝑧𝑧) = 𝑘𝑘3𝑧𝑧3 + 𝑘𝑘2𝑧𝑧2 − 𝑘𝑘1𝑧𝑧 + 𝑘𝑘0. (2) 

Therefore, the undamped equation of motion takes the form of a double-well asymmetric 
Duffing oscillator [26], and its potential can be defined as 

𝒰𝒰(𝑧𝑧) =
1
4
𝑘𝑘3𝑧𝑧4 +

1
3
𝑘𝑘2𝑧𝑧3 −

1
2
𝑘𝑘1𝑧𝑧2 + 𝑘𝑘0𝑧𝑧. (3) 

A qualitative representation of the potential is shown in Figure 2, where its double-well nature 
can be clearly noticed. The potential is not symmetric because of the gravitational contribution and 
the asymmetry of the frame. Further, the three equilibrium positions are depicted, obtained by setting 
𝒦𝒦(𝑧𝑧∗) = 0. Two out of three positions represent a stable equilibrium, namely 𝑧𝑧−∗  and 𝑧𝑧+∗ , while the 
central position 𝑧𝑧0∗ is an unstable equilibrium point. The oscillations of the moving point are said to 
be “in-well” when the motion is bounded around one of the two stable equilibrium positions 𝑧𝑧±

∗ . The 
associated linear natural frequency 𝜔𝜔± can be computed by 

𝜔𝜔± = �𝒰𝒰
′′�𝑧𝑧±

∗ �
𝑚𝑚

, (4) 

𝒰𝒰′′�𝑧𝑧±
∗ � being the second derivative of 𝒰𝒰(𝑧𝑧) computed in 𝑧𝑧−∗  or 𝑧𝑧+∗ . 
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Figure 2. Qualitative representation of the potential 𝒰𝒰(𝑧𝑧). Red dots: equilibrium positions. 

Two photos of the device in correspondence with the two stable equilibrium positions are 
depicted in Figure 3. 

 
Figure 3. Photos of the experimental setup. (a) Negative equilibrium position 𝑧𝑧−∗ ; (b) positive 
equilibrium position 𝑧𝑧+∗ . 

3. Experimental Nonlinear Characterization and Equation of Motion 

Both random and harmonic tests have been performed to identify the features of the device, and all 
the tests have been conducted with a sampling frequency of 512 𝐻𝐻𝑧𝑧. In particular, random tests have 
been used in a prior work to identify the restoring force of the device, whose results are briefly 
summarized in the following. Harmonic tests are instead used in this work to identify the damping force. 
The excitation force is expressed in this case in terms of excitation amplitude 𝑓𝑓0 and frequency 𝜈𝜈. 

3.1. Identification of the Restoring Force 

The values of the coefficients of the restoring force have been experimentally identified in [27] 
using the nonlinear subspace identification (NSI) algorithm with cross-well measurements under 
random excitation. A portion of the time history of the measured displacement 𝑧𝑧(𝑡𝑡) is reported in 
Figure 4, while the identified values are reported in Table 1. 
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Figure 4. Measured cross-well oscillations under random excitation in [27]. 

Table 1. Previously identified coefficients of the restoring force. 

𝒌𝒌𝟑𝟑 (𝑵𝑵 𝒎𝒎𝟑𝟑⁄ ) 𝒌𝒌𝟐𝟐 (𝑵𝑵 𝒎𝒎𝟐𝟐⁄ ) 𝒌𝒌𝟏𝟏 (𝑵𝑵 𝒎𝒎⁄ ) 𝒌𝒌𝟎𝟎 (𝑵𝑵) 
7.35 ⋅ 105 1.56 ⋅ 103 550 2.4 

According to Equation (4), the linear natural frequencies of the small oscillations around the two 
stable equilibrium positions are 𝜔𝜔− = 11.6 ⋅ 2𝜋𝜋 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 and 𝜔𝜔+ = 8.6 ⋅ 2𝜋𝜋 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠. 

The RFS method can be applied to the time history of Figure 4 to visualize the experimental 
restoring and damping forces, and the results are depicted in Figure 5a. In particular, if small 
velocities are taken into account, such that |�̇�𝑧| < 𝜖𝜖𝑠𝑠 , the obtained slice of the restoring surface 
approximates the restoring force 𝒦𝒦. Figure 5b shows the experimental restoring force compared to 
the identified one of Table 1, which nicely fits the experimental observations. Instead, when small 
displacements around the equilibrium positions are considered, such that |𝑧𝑧 − 𝑧𝑧∗| < 𝜖𝜖𝑑𝑑 , an 
approximation of the damping force 𝒟𝒟 should be retrieved. This is reported in Figure 5c, but the 
dispersion of the points appears to be too high to correctly deduce any damping model. 

 

Figure 5. Experimental restoring surface from [27] with cross-well random excitation in (a); experimental 
restoring force (blue dots, 𝜖𝜖𝑠𝑠 = 0.1% ) and identified restoring force (red line) in (b); experimental 
damping forces around 𝑧𝑧−∗  (green dots, 𝜖𝜖𝑑𝑑 = 0.1%) and 𝑧𝑧+∗  (yellow dots, 𝜖𝜖𝑑𝑑 = 0.1%) in (c). 
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3.2. Characterization of the Friction Force 

Given the difficulty of extrapolating a damping model from random measurements, two series 
of stepped sine tests have been performed with increasing forcing input amplitudes at a fixed 
excitation frequency of 𝜈𝜈 = 9 𝐻𝐻𝑧𝑧, starting from the two equilibrium positions. An extract of the 
recorded displacement is depicted in Figure 6. 

 
Figure 6. Stepped sine tests. Oscillations around the positive equilibrium in (a) and around the 
negative equilibrium in (b). 

The two measured responses are then stacked together to build the experimental restoring 
surface, illustrated in Figure 7a. As before, if small velocities are taken into account (|�̇�𝑧| < 𝜖𝜖𝑠𝑠), the 
obtained slice of the restoring surface approximates the restoring force 𝒦𝒦 (Figure 7b), and the results 
are comparable with Figure 5b. The experimental damping force 𝒟𝒟 is depicted in Figure 7c and 
obtained considering small displacements around the equilibrium positions ( |𝑧𝑧 − 𝑧𝑧∗| < 𝜖𝜖𝑑𝑑 ). The 
results in this case are much more informative than the previous tests of Figure 5c. 

 

Figure 7. Experimental restoring surface with stepped sine excitations in (a); experimental restoring 
force (blue dots, 𝜖𝜖𝑠𝑠 = 0.1%) and identified restoring force (red line) in (b); experimental damping 
forces around 𝑧𝑧−∗  (green dots, 𝜖𝜖𝑑𝑑 = 0.1%) and 𝑧𝑧+∗  (yellow dots, 𝜖𝜖𝑑𝑑 = 0.1%) in (c). 

A deeper look at the evolution of the damping force across the position of the moving mass can 
be observed when slicing the restoring surface in the neighborhood of a general position �̃�𝑧, such that 

z
*

+

0 5 10 15 20

Time (s)

z
*

-

z

a)

b)



Vibration 2020, 3, 11 138 

 

|𝑧𝑧 − �̃�𝑧| < 𝜖𝜖𝑑𝑑. Results are represented in Figure 8, where different shapes of the damping force can be 
observed to be varying in position �̃�𝑧. 

 
Figure 8. Variation in the experimental damping force across the position of the moving mass, 
|𝑧𝑧 − �̃�𝑧| < 𝜖𝜖𝑑𝑑 with 𝜖𝜖𝑑𝑑 = 0.1%. 

The damping force generally resembles the sliding friction behavior, but it appears to vary with 
the position of the moving mass. In particular, the slopes of the negative and positive velocity regions 
change due to the polynomial restoring force. The amplitude of the damping force changes as well, 
and its variations can be described by a non-constant normal force along 𝑧𝑧. Indeed, the normal force 
comes from the interaction between the moving mass and the rods, which varies during the 
movement of the mass. Given the above considerations, the damping force is assumed as follows: 

𝒟𝒟(𝑧𝑧, �̇�𝑧) = 𝑓𝑓𝑑𝑑(𝑧𝑧) tanh(4�̇�𝑧 𝑣𝑣𝑡𝑡⁄ ) + 𝑓𝑓𝑠𝑠(𝑧𝑧)
�̇�𝑧 𝑣𝑣𝑡𝑡⁄

�1
4 (�̇�𝑧 𝑣𝑣𝑡𝑡⁄ )2 + 3

4�
2 + 𝑐𝑐�̇�𝑧. (5) 

Equation (5) represents a continuous friction model, as in [33], and includes the following: 

• A dynamical damping friction term 𝑓𝑓𝑑𝑑(𝑧𝑧), with a Coulomb-like function having a transition 
velocity 𝑣𝑣𝑡𝑡; 

• A static friction term 𝑓𝑓𝑠𝑠(𝑧𝑧) to account for the stiction force and the Stribeck effect; 
• A linear viscous damping term 𝑐𝑐�̇�𝑧 , to account for possible viscous forces generated by the 

lubricated slider. 

The dynamic friction term 𝑓𝑓𝑑𝑑(𝑧𝑧) is assumed to be non-negative and described by a quadratic 
function, while the static term 𝑓𝑓𝑠𝑠(𝑧𝑧) is assumed to be proportional to the dynamic term, yielding 

𝑓𝑓𝑑𝑑(𝑧𝑧) = max{0,   𝛼𝛼𝑧𝑧2 + 𝛽𝛽𝑧𝑧 + 𝛾𝛾} , 

𝑓𝑓𝑠𝑠(𝑧𝑧) = (𝑘𝑘𝑠𝑠 − 1) 𝑓𝑓𝑑𝑑(𝑧𝑧), 𝑘𝑘𝑠𝑠 ≥ 1. 
(6) 

The complete equation of motion of the system is therefore 

𝑚𝑚�̈�𝑧 + 𝑓𝑓𝑑𝑑(𝑧𝑧)

⎣
⎢
⎢
⎢
⎡

tanh �
4�̇�𝑧
𝑣𝑣𝑡𝑡
� + (𝑘𝑘𝑠𝑠 − 1)

�̇�𝑧
𝑣𝑣𝑡𝑡

�1
4 �

�̇�𝑧
𝑣𝑣𝑡𝑡
�
2

+ 3
4�

2

⎦
⎥
⎥
⎥
⎤

+ 𝑐𝑐�̇�𝑧 + 𝑘𝑘3𝑧𝑧3 + 𝑘𝑘2𝑧𝑧2 − 𝑘𝑘1𝑧𝑧 + 𝑘𝑘0 = 𝑓𝑓. (7) 

The unknowns to be identified are the parameters defining the damping force, i.e., 𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑣𝑣𝑡𝑡 ,𝑘𝑘𝑠𝑠 
and 𝑐𝑐. 
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4. Optimization-Based Identification Strategy 

The identification pursued in this work aims to estimate the damping force via an optimization-
based strategy. In this context, the definition of the cost function to be minimized is a crucial step, as 
it has a huge influence on the feasibility of the optimization. This is usually chosen as the residual 
between a measured feature and the corresponding model prediction. A valid feature in this context 
is the energy dissipated per cycle (EDC), given by the following considerations: 

• The external forcing term is periodic, and the response is expected to be periodic as well 
(excluding the chance of chaotic motion); 

• The evolution of the dissipated energy with the input amplitude is directly correlated with the 
dissipation functional form, i.e., the damping force 𝒟𝒟; 

• It depends both on the response amplitude and the phase with the forcing term. 

The 𝑘𝑘𝑡𝑡ℎ measured EDC corresponding to an input amplitude 𝑓𝑓0,𝑘𝑘  of the stepped sine test is 
called 𝑆𝑆𝑘𝑘𝑚𝑚𝑚𝑚𝑠𝑠 , while the corresponding model prediction is called 𝑆𝑆𝑘𝑘𝑚𝑚𝑚𝑚𝑑𝑑 . The cost function 𝜀𝜀  is 
therefore defined as the sum of the absolute differences: 

𝜀𝜀 = �|𝑆𝑆𝑘𝑘𝑚𝑚𝑚𝑚𝑠𝑠 − 𝑆𝑆𝑘𝑘
𝑚𝑚𝑚𝑚𝑟𝑟|

𝑘𝑘

. (8) 

Model predictions depend on the set of parameters to be optimized, which can be recast into a 
vector 𝜽𝜽 as follows: 

𝜽𝜽 = [𝑓𝑓𝑑𝑑(𝑧𝑧−∗ ), 𝑓𝑓𝑑𝑑(𝑧𝑧+∗ ), 𝑓𝑓𝑑𝑑(0), 𝑣𝑣𝑡𝑡 ,  𝑘𝑘𝑠𝑠,  𝑐𝑐]T. (9) 

The final value 𝜽𝜽� is the minimizer of the cost function 𝜀𝜀(𝜽𝜽): 

𝜽𝜽� = arg min
𝜽𝜽

𝜀𝜀(𝜽𝜽). (10) 

Note that the vector of parameters takes into account the values of the dynamic friction forces in 
𝑧𝑧−∗ , 𝑧𝑧+∗ , 0 rather than 𝛼𝛼,𝛽𝛽, 𝛾𝛾 of Equation (6) to have a better physical interpretation of the outcome. 
The coefficients 𝛼𝛼,𝛽𝛽, 𝛾𝛾  can eventually be found by fitting the quadratic function 𝑓𝑓𝑑𝑑(𝑧𝑧)  to the 
considered three points. 

A genetic algorithm is adopted in this work to find the best set of parameters 𝜽𝜽� . Genetic 
algorithms belong to the class of evolutionary global optimizers, and they are commonly used to 
generate high-quality solutions to optimization problems using biologically inspired mechanisms, 
such as reproduction, mutation and selection. Candidate solutions act like individuals in a 
population, which evolves through successive generations. A portion of the existing population is 
selected at each generation to breed a new offspring, and the selection is made upon the 
corresponding values of the cost function. Modifications can be introduced to better explore the range 
of possible solutions and avoid local minima. For instance, a mutation rate can be defined to introduce 
random changes to the existing solutions. The reader can refer to [32] for an exhaustive description 
of evolutionary (and genetic) algorithms. 

4.1. Experimental Estimation of the Energy Dissipated per Cycle (EDC) 

The EDCs are directly estimated from the experimental measurements by numerically 
computing the integral of the response 𝑧𝑧(𝑡𝑡) with respect to the harmonic input 𝑓𝑓(𝑡𝑡) for each cycle 
and averaging over the number of cycles. Transients are removed, so as to take into account only the 
steady-state responses. Since the measurements are performed starting from the two equilibrium 
positions, two sets of dissipated energies are collected, called 𝑺𝑺−𝑚𝑚𝑚𝑚𝑠𝑠  and 𝑺𝑺+𝑚𝑚𝑚𝑚𝑠𝑠  and refer to the 
oscillations around 𝑧𝑧−∗  and 𝑧𝑧+∗ , respectively. The complete vector of measured EDCs is therefore 
𝑺𝑺𝑚𝑚𝑚𝑚𝑠𝑠 = vec{𝑺𝑺−𝑚𝑚𝑚𝑚𝑠𝑠,𝑺𝑺+𝑚𝑚𝑚𝑚𝑠𝑠} . Each final value 𝑆𝑆𝑘𝑘𝑚𝑚𝑚𝑚𝑠𝑠  is obtained by averaging over the cycles, and the 
associated standard deviation 𝜎𝜎𝑘𝑘𝑚𝑚𝑚𝑚𝑠𝑠 is used as an index of dispersion. 
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A representative response-input plot is reported in Figure 9 with an excitation amplitude equal to 
1.3 𝑁𝑁, while Figure 10 depicts the evolution of 𝑺𝑺𝑚𝑚𝑚𝑚𝑠𝑠 with respect to the input amplitudes vector 𝒇𝒇0. 

 
Figure 9. Energy dissipated per cycle in (a) with excitation amplitude of 1.3 𝑁𝑁. Blue: oscillations 
around the positive equilibrium position; orange: oscillations around the negative equilibrium 
position. Corresponding response-input plots in (b) and (c) with highlighted areas. 

The range of considered input amplitudes goes from 0.2 to 2.7 𝑁𝑁. Period doublings start to 
occur in the experimental measurements beyond this value, which are not the object of this study. 
The error bars in Figure 10 represent the quantity 𝑆𝑆𝑘𝑘𝑚𝑚𝑚𝑚𝑠𝑠 ± 3𝜎𝜎𝑘𝑘𝑚𝑚𝑚𝑚𝑠𝑠. 

 

Figure 10. Experimental estimation of the dissipated energy per cycle. Blue line: oscillations around 
𝑧𝑧+∗ ; orange line: oscillations around 𝑧𝑧−∗ . Bars represent the quantity 𝑆𝑆𝑘𝑘𝑚𝑚𝑚𝑚𝑠𝑠 ± 3𝜎𝜎𝑘𝑘𝑚𝑚𝑚𝑚𝑠𝑠. 

4.2. Numerical Computation via Harmonic Balance Method with Amplitude Continuation 

Considering a harmonic input of the kind 𝑓𝑓(𝑡𝑡) = 𝑓𝑓0 sin(𝜔𝜔𝑡𝑡), the energy dissipated over one cycle 
𝑆𝑆 can be written as 

𝑆𝑆 = � 𝑧𝑧(𝑡𝑡)𝑟𝑟𝑓𝑓
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚

= 𝜔𝜔𝑓𝑓0 � 𝑧𝑧(𝑡𝑡) cos(𝜔𝜔𝑡𝑡)
2𝜋𝜋
𝜔𝜔

0
𝑟𝑟𝑡𝑡. (11) 
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Since the system described by Equation (7) is nonlinear, the response 𝑧𝑧(𝑡𝑡)  to a periodic 
excitation can be written in terms of a Fourier series with H harmonics: 

𝑧𝑧(𝑡𝑡) = 𝑍𝑍0 + Re ��𝑍𝑍ℎ𝑚𝑚𝑖𝑖ℎ𝜔𝜔𝑡𝑡
𝐻𝐻

ℎ=1

�. (12) 

It can be easily proved that the integral of Equation (11) is zero for each integer harmonic 
contribution of the response different from 1. Therefore, the EDC reduces to 

𝑆𝑆 = 𝜔𝜔𝑓𝑓0 � |𝑍𝑍1| sin(𝜔𝜔𝑡𝑡 + 𝜙𝜙1) cos(𝜔𝜔𝑡𝑡)
2𝜋𝜋
𝜔𝜔

0
𝑟𝑟𝑡𝑡 = 𝜋𝜋𝑓𝑓0|𝑍𝑍1| sin(𝜙𝜙1), (13) 

where 𝜙𝜙1 is the phase of the first harmonic of the response. Note that Equation (13) is valid only if 
sub-harmonics are not taken into account. 

The Fourier coefficients of the response 𝑧𝑧(𝑡𝑡) can be rapidly computed via the harmonic balance 
method for each forcing input amplitude 𝑓𝑓0,𝑘𝑘 and for a fixed 𝜔𝜔. In particular, the focus is to track the 
evolution of 𝑆𝑆  varying 𝑓𝑓0 , and to compare the model predictions 𝑺𝑺𝑚𝑚𝑚𝑚𝑑𝑑  with the experimental 
observations 𝑺𝑺𝑚𝑚𝑚𝑚𝑠𝑠 of Figure 10. An arc-length continuation procedure (like the one proposed in [30]) 
is adopted to study the evolution of the dissipated energy. The forcing input amplitude 𝑓𝑓0  is 
therefore chosen as the “continuation parameter” and the solution for each 𝑓𝑓0 is sought along the arc-
length of a solution branch. This allows to account for possible singularities of the system being 
Jacobian, which lead to response bifurcations [29]. An illustrative example is exposed in the following. 

Illustrative Example 

A linear oscillator with continuous velocity-based friction is considered in this example. The 
system parameters are summarized in Table 2 and the equation of motion reads 

𝑚𝑚�̈�𝑦 + 𝑐𝑐�̇�𝑦 + 𝑘𝑘𝑦𝑦 + 𝑓𝑓𝑑𝑑 �tanh(4�̇�𝑦 𝑣𝑣𝑡𝑡⁄ ) + (𝑘𝑘𝑠𝑠 − 1)
�̇�𝑦 𝑣𝑣𝑡𝑡⁄

�1
4 (�̇�𝑦 𝑣𝑣𝑡𝑡⁄ )2 + 3

4�
2� = 𝑓𝑓0𝑚𝑚𝑖𝑖𝜔𝜔𝑡𝑡. (14) 

The excitation frequency 𝜔𝜔 is set to 80% of the linear natural frequency of the system �𝑘𝑘/𝑚𝑚 , 
and the amplitude increases in the range 0 − 2 𝑁𝑁. Seven harmonics are included in the response. 

Table 2. Parameters of the illustrative example. 

𝒎𝒎 (𝒌𝒌𝒌𝒌) 𝒌𝒌 (𝑵𝑵/𝒎𝒎) 𝒄𝒄 (𝑵𝑵𝑵𝑵/𝒎𝒎) 𝒇𝒇𝒅𝒅 (𝑵𝑵) 𝒌𝒌𝑵𝑵 𝒗𝒗𝒕𝒕 (𝒎𝒎/𝑵𝑵) 
1.3 800 1 1 1.2 10−2 

The nonlinear amplitude response curve obtained using HBM with the amplitude continuation 
is depicted in Figure 11, together with the EDCs and the evolution of the harmonic coefficients. An 
unstable branch can be noted in the region between 1.3 and 1.4 𝑁𝑁. Multiple solutions exist in this 
region, meaning that the system response would avoid the unstable branch and suddenly reach a 
new stable solution. This phenomenon is very common in nonlinear systems when sweeping around 
their resonance frequencies and it is usually called “jump” [29]. Here, the nature of the phenomenon 
is different, but the behavior is very similar. Figure 12 depicts the response of the system around the 
unstable region computed by numerically integrating the equation of motion with the Newmark 
algorithm [34] and under the amplitude sweep up and down excitations. The nonlinear amplitude 
response curve computed with the HBM is also overlapped. The jump phenomenon can be clearly 
observed. A slight difference can be noted between the HBM and numerical simulations around the 
jump region. This is probably due to the different kind of excitation in the two approaches: numerical 
simulations are conducted with an amplitude sweep excitation, which contains transients. The HBM 
represents instead the steady-state solutions for each input amplitude value. 
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Figure 11. Harmonic balance method (HBM) with amplitude continuation, illustrative example. 
Dashed lines represent unstable paths. Response amplitude in (a); energy dissipated per cycle (EDC) 
in (b); normalized harmonic coefficients in (c). 

 

Figure 12. Comparison between the HBM and numerical integration, illustrative example. Blue line: 
numerical integration with amplitude sweep down sine excitation; orange line: numerical integration 
with amplitude sweep up sine excitation; black line: the HBM with amplitude continuation. 

5. Results and Discussion 

The unknown parameters of Equation (7) are identified by optimizing the residuals between the 
measured EDCs 𝑺𝑺𝑚𝑚𝑚𝑚𝑠𝑠 of Figure 10 and the predicted ones 𝑺𝑺𝑚𝑚𝑚𝑚𝑑𝑑 according to Equation (13). Both sets 
of measurements around the positive and negative equilibrium positions are considered. 

The genetic algorithm is applied considering a population of 100 individuals, 20 generations and 
20% mutation rate. The latter in particular is to allow the algorithm to explore a wider range of 
possible solutions, by randomly modifying a portion of the existing population. The cost function 
with respect to the single parameters of the optimization is depicted in Figure 13. 
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Figure 13. Cost function 𝜀𝜀 with respect to the parameters of the optimization. 

It can be noted that the minimum value of the cost function is reached sharply when considering 
the parameters 𝑓𝑓𝑑𝑑(𝑧𝑧−∗ ),𝑓𝑓𝑑𝑑(0),𝑓𝑓𝑑𝑑(𝑧𝑧+∗ ) and 𝑐𝑐, while results are more dispersive for the others. It should 
be highlighted though that these four parameters have the biggest influence in the EDC of the 
considered measurements. The transition velocity and the static proportionality coefficient have a 
major influence in the low-amplitude region, and tend to compensate each other. Some more details 
are presented in the sensitivity analysis in the next section. 

The value of the cost function across the generations of the genetic optimization is reported in 
Figure 14. The minimum value of the cost function is 𝜀𝜀(𝜽𝜽�) = 0.012, and the corresponding set of 
parameters 𝜽𝜽� is listed in Table 3. 

 
Figure 14. Cost function 𝜀𝜀 across the generations. 

Table 3. Identified values. 

𝒇𝒇𝒅𝒅(𝒛𝒛−∗ )(𝑵𝑵) 𝒇𝒇𝒅𝒅(𝟎𝟎) (𝑵𝑵) 𝒇𝒇𝒅𝒅(𝒛𝒛+∗ ) (𝑵𝑵) 𝒌𝒌𝑵𝑵 𝒄𝒄 (𝑵𝑵𝑵𝑵 𝒎𝒎⁄ ) 𝒗𝒗𝒕𝒕 (𝒎𝒎/𝑵𝑵) 
0.33 0.67 0.66 1.07 2.02 1.5 ⋅ 10−2 

Eventually, the comparison between the measured EDCs and the final model predictions is 
reported in Figure 15. The average percentage deviation between the measured and predicted EDCs is 
6% for the positive oscillations and 12% for the negative ones. The model nicely captures the nonlinear 
dynamics of the system, especially at higher input amplitudes. Errors are instead more consistent in the 
low-amplitude region. Nevertheless, displacements in this region are so small that other phenomena 
might be involved, such as displacement-dependent and hysteretic frictional behavior. 
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Figure 15. Energy dissipated per cycle. Continuous lines: experimental estimations 𝑆𝑆𝑚𝑚𝑚𝑚𝑠𝑠 ± 3𝜎𝜎𝑚𝑚𝑚𝑚𝑠𝑠; 
dashed-dotted lines: final model predictions. Blue line: oscillations around 𝑧𝑧+∗ ; orange line: 
oscillations around 𝑧𝑧−∗ . 

5.1. Sensitivity Analysis 

A sensitivity analysis is carried out on the parameters of the identification to check their 
influence on the predicted EDCs. The parameters are varied in the measure of 20%, 50%, 70%, 120% 
and 150% of their identified values in Table 3. In particular, 𝑓𝑓𝑑𝑑(𝑧𝑧) is varied with a coefficient 𝑘𝑘𝑑𝑑, so 
as to consider the quantity 𝑘𝑘𝑑𝑑 ⋅ 𝑓𝑓𝑑𝑑(𝑧𝑧). Figure 16 shows the results of the sensitivity analysis on the 
EDCs associated with the oscillations around the positive equilibrium position. 

 

Figure 16. Sensitivity analysis on the parameters of the identification. Dashed-dotted red line: 
reference EDC with the identified values. Blue lines: EDCs corresponding to a 20%, 50%, 70%, 120% 
and 150% variation of the selected parameter. 

As expected, the linear viscous damping and the dynamic friction term have the highest 
influence on the overall behavior of the EDC. The transition velocity and the static friction term have 
some importance in the low-amplitude area. Given the poor number of experimental points in this 
region, their effects are difficult to separate in the optimization process, thus explaining their 
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dispersion in Figure 13. Furthermore, low-amplitude oscillations might be affected by other 
phenomena, such as hysteresis loops, which are not considered in this study. 

5.2. Nonlinear Amplitude Response Curves 

Finally, the identified model is used to build the nonlinear amplitude response curve of the 
structure, with an excitation frequency 𝜈𝜈 = 9 𝐻𝐻𝑧𝑧 and an input amplitude range of 0.1 − 3.7 𝑁𝑁. As 
already pointed out in Section 4.1, period doublings start to occur in the experimental measurements 
after 2.7 𝑁𝑁. For this reason, sub-harmonics up to 1/4𝜈𝜈 are also included in the following test to check 
whether this happens also in the model. Figure 17 depicts the nonlinear amplitude response curve 
starting from the positive equilibrium position, as well as the normalized harmonic coefficients. It 
can be noted that sub-harmonics start to show up around the 3 𝑁𝑁 input amplitude, resulting in a 
period-doubling cascade. Representations like the one in Figure 17a are usually called “bifurcation 
maps”. Each point of a bifurcation map represents the amplitude(s) of the steady-state solution for a 
specific value of the excitation amplitude. However, the map in Figure 17a is built using the harmonic 
balance method, which allows only a certain number of sub/super-harmonics to be considered in the 
response. In other words, it is not possible to predict chaotic behavior with this tool, as a periodic 
response is needed. 

 
Figure 17. The HBM with amplitude continuation, final model. Response amplitude in (a); normalized 
harmonic coefficients in (b). 

A final validation of the goodness of the model is depicted in Figure 18, showing the 
experimental bifurcation map compared with the predicted one. The deviations between the 
predictions and observations resemble the ones obtained with the EDCs in the amplitude range up 
to 2.7 N. Higher discrepancies show up after period doublings start to appear. This is somehow 
expected, since the model has been trained on lower amplitudes. Further, period doublings are 
difficult to handle experimentally, as the system starts to show a considerable dependence on small 
external perturbations, such as noise. This makes the amplitudes of the periodic solutions to be quite 
variable, and the forcing input difficult to control. 
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Figure 18. Bifurcation map of the system in the range 0.1–3.7 N. Black dots: experimental observations; 
red line: nonlinear amplitude response curve with the HBM. 

The encouraging results prove the goodness of the presented methodology and provide a 
reliable model for a system with rich and strong nonlinear dynamics. 

6. Conclusions 

In this paper, the nonlinear identification of a negative stiffness oscillator has been presented. In 
particular, the damping force of the device has been identified upon a physically based model, 
governed by a frictional behavior and dependent on the velocity and position. The identification has 
been carried out by minimizing the residuals between the model predictions and experimental 
observations. In particular, the energy dissipated per cycle has been adopted as the optimization 
criterion. On the experimental side, the system has been driven through harmonic tests with several 
input amplitudes, in order to estimate the variations in the energy dissipated per cycle. On the 
computational side, the harmonic balance method has been implemented with a continuation 
technique on the forcing input amplitudes. Results show a good confidence in the identified 
parameters, with low residuals in the analyzed input amplitude range. This confirm the effectiveness 
of the presented methodology, which can be applied to a wide class of nonlinear systems. 
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