
04 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Protecting In-Vehicle Services : Security-Enabled SOME/IP Middleware / Iorio, Marco; Buttiglieri, Alberto; Reineri,
Massimo; Risso, Fulvio; Sisto, Riccardo; Valenza, Fulvio. - In: IEEE VEHICULAR TECHNOLOGY MAGAZINE. - ISSN
1556-6072. - ELETTRONICO. - 15:3(2020), pp. 77-85. [10.1109/MVT.2020.2980444]

Original

Protecting In-Vehicle Services : Security-Enabled SOME/IP Middleware

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/MVT.2020.2980444

Terms of use:

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2833292 since: 2020-08-21T18:43:47Z

Institute of Electrical and Electronics Engineers Inc.

1

Protecting In-Vehicle Services: Security-Enabled
SOME/IP Middleware

Marco Iorio∗, Alberto Buttiglieri†, Massimo Reineri†, Fulvio Risso∗, Riccardo Sisto∗, Fulvio Valenza∗
∗Politecnico di Torino, Torino, Italy

{name.surname}@polito.it
†Italdesign, Moncalieri, Italy

{name.surname}@italdesign.it

Abstract—With every generation, vehicles are becoming
smarter and more oriented toward information and communi-
cations technology (ICT). However, computerization is posing
unforeseen challenges in a sector for which the first goal must
be safety: car hacking has been shown to be a real threat. This
article presents a novel mechanism to provide improved security
for applications executed in the vehicle based on the principle of
defining exactly who can talk to whom. The proposed security
framework targets Ethernet-based communications and is tightly
integrated within the emerging Scalable service-Oriented Middle-
warE over IP (SOME/IP) middleware. No complex configurations
are needed: simple high-level rules, clearly stating the commu-
nications allowed, are the only element required to enable the
security features. The designed solution has been implemented as
a proof of concept (PoC) inside the vsomeip stack to evaluate the
validity of the approach proposed: experimental measurements
confirm that the additional overhead introduced in end-to-end
communication is negligible.

I. BACKGROUND

Modern cars are characterized by dozens of different
Electronic Control Units (ECUs), each one hosting one or more
applications devoted to monitor and manage every single aspect
of the vehicle itself. Advanced Driving Assistance Systems are
going further, moving the control of safety critical systems, like
braking and steering, to computers, algorithms, and software.

Different devices cannot operate in complete isolation:
communications and protocols are fundamental to allow the ex-
change of information within the car. To this extent, Controller
Area Network (CAN bus) is a well-established technology
forming the backbone of every in-vehicle network, being it
suitable for strongly real-time oriented applications. By its side,
Automotive Ethernet [1] is gaining more and more importance,
enabling high-bandwidth communications and replacing a
plethora of complex proprietary technologies [2]. On the top
of bare Ethernet, Service Oriented Architectures (SOAs) are
becoming increasingly popular as a high-level abstraction
to support complex applications and allow for maximum
flexibility [3]. According to this design pattern, a system is
composed of a set of services providing different functionalities.
Additionally, the communication is abstracted through a virtual
bus, allowing the exchange of messages regardless of the
physical device where each service is currently executed on.
To date, one of the most promising SOA middleware for
in-vehicle communications is SOME/IP [4], having it been

designed explicitly for automotive use-cases by the AUTOSAR
consortium.

With the increasing prominence of computer-based systems,
new challenges are threatening the life of millions of unaware
drivers. During recent years, different researchers have suc-
ceeded in exploiting specifically crafted network messages
to take over the control of safety-critical systems [5], [6].
Albeit the presented attacks do require physical access to
in-vehicle buses, isolation cannot be assumed as a sufficient
prevention. On the one hand, [7], [8] demonstrated that many
commercial vehicles present serious vulnerabilities in network
stack implementations, namely Bluetooth, Wi-Fi and 4G,
granting wicked individuals the possibility to remotely access
the cars’ internals. On the other one, possible attacks may
originate from within the vehicle itself: both unauthorized
devices and compromised software updates could be installed
by dishonest mechanics or for tuning reasons.

Being a vital system in every vehicle, the CAN bus has
already been the subject of extensive research to increase the
security and prevent malicious attacks. Groza et al. [9] recently
presented a survey of a wide range of possible solutions,
including both active protections, which exploit cryptographic
functions to guarantee message authentication, and physical
layer solutions, using signal patterns to distinguish between
different nodes. On the other hand, much less attention has been
devoted to the protection of Ethernet-based communications in
the automotive domain. Although effective and mature protocol
suites are available in the broader field of ICT networking,
they appear not to fit well the peculiarities of in-vehicle
networks and especially of the SOME/IP middleware. The IPsec
protocol, for example, is restricted by limited granularity due to
application unawareness, while TLS does not support multicast
communications and requires a rather complex authentication
handshake. Hamad et al. [10] recently proposed a framework to
provide secure communications between ECUs by exploiting
security policies. However, this solution requires the definition
of low-level rules, strongly limiting the dynamism introduced
by SOAs.

This paper presents a novel security framework protecting
SOME/IP-based communications. It has been designed with
simplicity in mind, leveraging the integration within the
communication middleware to replace low-level policies with
simple high-level rules, clearly stating the permitted traffic
matrix in terms of services. Along with the definition of

2

the allowed communications, the proposed solution grants
application developers the capability of assigning a different
security level to each service. Thus, the protection can be tuned
depending on the specific level of criticality, to achieve the
best trade-off between security and performance.

II. SOME/IP
SOME/IP is an emerging communication middleware stan-

dardized by AUTOSAR. It aims to include all the features
required by automotive, Ethernet-oriented, use-cases while
fulfilling the hard requirements regarding resource consumption
in vehicles. The middleware is designed to provide a service-
oriented abstraction on the top of one or more transport
protocols, mainly UDP and TCP, and offers two communi-
cation patterns: request/response and publish/subscribe. The
former corresponds to standard Remote Procedure Call (RPC),
providing the possibility to invoke functions made available
by other applications. The latter, on the other hand, exploits
notifications managed directly by the middleware to decouple
the sender from the recipients and allow for traffic optimization.
Additionally, one of the most noteworthy features provided by
SOME/IP is the service discovery [11], which can dynamically
advertise the availability of different services as well as manage
the subscription to selected events.

However, albeit being deemed to be very promising as a
communication middleware, SOME/IP does not include any
security functionality, leaving the applications and the messages
transmitted across the network completely unprotected from
malicious attacks.

A. vsomeip

The vsomeip stack1 is an open-source implementation of
the SOME/IP specifications, designed as part of the GENIVI
project. A representation of the architecture proposed by
vsomeip is depicted in Fig. 1, which shows two ECUs
interconnected through an Ethernet link. Different applications
are being executed at the same time on the top of a Linux
kernel. Each one is characterized by its own instance of the
vsomeip library, which can be further subdivided into two
main building blocks.

The upper part shows the module providing the public API,
which is exploited by all applications for the interaction with
the library itself. The core part of vsomeip is the routing
manager entity, responsible for message delivery both locally
and remotely. Two different types of the routing manager do
coexist and are completely transparent from the applications’
point of view:

• routing manager, the full-fledged version loaded by only
one application per each device. It is responsible for
sending messages to and receiving them from applications
residing on remote devices, by managing the transport
endpoints (i.e. the TCP and UDP sockets). Furthermore, it
is in charge of loading the service discovery (if enabled).

• routing manager proxy, executed by all the other instances
and in charge of the communications with other applica-
tions residing on the same ECU, leveraging Unix domain

1https://github.com/GENIVI/vsomeip

Application A1

vsomeip API

Routing Manager

Routing Manager
Stub

Local Endpoint

Service Discovery

TCP/UDP
Endpoint

Application A2

vsomeip API

Local Endpoint

Routing Manager
Proxy

IPC

Application B1

vsomeip API

Routing Manager

Routing Manager
Stub

Service Discovery

TCP/UDP
Endpoint

EthernetTCP/UDP TCP/UDP

ECU 1 ECU 2

Fig. 1. vsomeip architecture, freely redrawn from [12].

sockets, while messages toward remote recipients are
redirected to the main routing manager.

According to the vsomeip documentation, the framework
includes some security features based on Unix credentials, thus
available only for local communications. Nonetheless, these
capabilities appear to be somehow limited and weak, due to
the total lack of protection for what regards communications
between remote devices and the usage of unauthenticated
configuration files.

III. SECURING SOME/IP

Our security framework, aiming to protect SOME/IP com-
munications, has been designed to operate at service instance
granularity. Hence, each instance of a SOME/IP service is
considered as a unique entity to which a specific application
can be either allowed or denied access. Nonetheless, being
services just logical abstractions grouping together methods and
events, the final security granularity depends on the architectural
decisions made by application developers.

A different security level, among the three incremental alter-
natives enumerated in the following, can be assigned to each
service instance: thus, it is possible to select for each service
the best balance between protection and computational/network
overhead.

1) Nosec, corresponding to vanilla SOME/IP. Although
not providing any security property, it may be suitable
for very simple and low-criticality services, since it
introduces no additional complexity to the transmission.

2) Authentication, assuring that only allowed applications
can send messages associated to a specific service: in
other words, it attests data authentication and integrity.
Additionally, this security level also prevents replay

3

attacks, characterized by the capture of valid packets
for a subsequent retransmission to trigger again the
same action. These security properties are deemed to be
fundamental in vehicular networks. Indeed, while data
exchanged may not need to remain secret, it is of the
highest importance that every application processes the
information received only when its authenticity and in-
tegrity is assured. Otherwise, malicious messages injected
in the network could succeed in fooling the application
logic, possibly triggering safety-critical physical actions
at arbitrary time intervals.

3) Confidentiality, guaranteeing all the security properties
offered by the authentication level and, additionally, data
confidentiality, to preclude unauthorized parties from
accessing the information exchanged. Hence, although
being named confidentiality, this security level com-
bines all the three main security properties that can
be associated to messages: authentication, integrity and
confidentiality. Confidentiality, alone, would not be able
to provide sufficient security: an attacker, in fact, would
remain able to inject malicious messages undetectable
by the receivers, albeit with only unpredictable payloads.
Even though currently not characterized by the same
importance of the other security properties, the intro-
duction of confidentiality might be useful also in in-
vehicle networks. In particular, application developers
could assign this security level to prevent unauthorized
aftermarket ECUs from reading the messages exchanged
on the bus, thus selectively limiting their ability to grab
external information. Additionally, it may contribute
to the protection of intellectual property, avoiding that
the content of network messages provides hints about
complex application logic.

A. Security protocol

The core of the solution proposed is represented by a
security protocol, which is made up of an initial handshake
phase for session establishment followed by the transmission
of secured messages. The former is carried out at start-up
between each requester of a service and the offerer by exploiting
asymmetric cryptography. Consequently, each application needs
to be accompanied by a private key and the corresponding
signed digital certificate, which trustworthily enumerates all the
service instances (optionally through wildcards) it is allowed
to either offer or request, along with the minimum security
level that must be guaranteed for each of them. To this extent,
digital certificates can be leveraged by car makers as a sort of
contract, to certify that applications developed either internally
of by third-parties are indeed allowed to request and/or offer a
predetermined set of services. Fig. 2 sketches a possible format
of a vsomeip entry within a digital certificate, containing all
the required pieces of information.

To achieve complete compatibility with the SOME/IP mid-
dleware, we consider also multicast communications in addition
to unicast messages. For this reason, group protection is
proposed to secure the messages belonging to a specific service
instance: a single symmetric key is randomly generated by the

vsomeip : 0x1234 : 0x5678 / offer = authentication

Keyword Service ID Instance ID
or *

Offer or
Request

Minimum
security level

Fig. 2. Format of a vsomeip entry inside the digital certificate.

offerer and securely shared with all the requesters during the
session establishment phase. Although better isolation could be
provided by using multiple keys, the selected strategy is deemed
to provide a good trade-off between security and complexity.
Indeed, symmetric keys, being automatically regenerated every
time a service is started, are assumed to last only for a limited
time, reducing to a great extent the possibilities for a successful
attack. Nonetheless, in case of long-running services, a re-
keying mechanism would become necessary, according to a
well-established practice.

B. Session establishment

The purpose of the session establishment phase is twofold.
On the one side, a mutual authentication is carried out, verifying
that both the server and the client have respectively the right to
offer and request the considered service. The former performs
an explicit authentication, by means of a digital signature,
while the latter is implicitly authenticated, being required to
use its private key during the process. On the other one, session
parameters are communicated to the requester, transmitting
in an encrypted form the symmetric key necessary for the
subsequent protection of messages. The actual security level
of the service instance is decided by the offerer and it must
be compatible with (equal to or possibly greater than) the one
stated within its own certificate. At the same time, during the
handshake, the requester compares the advertised security level
with its own specifications, to prevent the access to a service
less secure than its needs.

The handshake phase is implemented by a simple protocol,
made up of two message exchanges, which follows the re-
quest/response communication pattern. Hence, all the necessary
pieces of information are transported by SOME/IP packets,
targeting the service for which the authentication is carried on
and, in particular, a special method devoted to this task. Fig. 3
summarizes the main data exchanged during different session
establishment handshakes performed in parallel by multiple
applications. Every independent handshake is started by the
framework on behalf of the application requesting a service, by
sending an initial request to begin the communication. Most
notably, the request message contains the digital certificate
associated with the requesting application, trustworthily stating
the list of service instances it can access. Once the offerer
of the service receives the authentication request, it retrieves
the peer’s certificate, validates it by means of the trusted root
certificate, and verifies whether the handshake can continue
or the request shall be denied due to a lack of privileges.
In case of a successful outcome, the response message is
prepared by the offerer, to share with the requester its own
certificate and the parameters necessary for the subsequent

4

Requests service:
Climate Control

Requests service:
Climate Control

Requests service:
Climate Control

Offers service:
Climate Control

→ digital certificate
→ private key
→ public key encryption
→ digital signature
→ symmetric key

Fig. 3. Three session establishment handshakes performed in parallel by
multiple applications requesting the same service, along with the exchanged
messages; different colors are used to associate each element to the corre-
sponding owner.

protection of the actual application messages. In particular, the
response contains the symmetric key associated with the service
instance of interest, encrypted with the public key stated by
the certificate of the requester. This procedure guarantees that
only the owner of the corresponding private key can decrypt
it, thus enforcing the confidentiality of the symmetric key.
Additionally, the same message comprises the digital signature
computed by the offerer over the entire response to guarantee
its authenticity and integrity. In the end, when the requester
receives the response, it validates the certificate and verifies the
permissions associated with the offerer. Finally, it can check the
validity of the digital signature using the public key extracted
from the digital certificate and, in case of match, decrypt the
symmetric key leveraging its own private key.

The handshake protocol has been designed to be entirely
executed by the communication middleware. Hence, the process
is completely transparent from the applications’ point of view,
which are notified of the availability of the service only once the
authentication has been successfully completed. Additionally,
no limitations are introduced on the transport layer used by
the middleware for the handshake phase. Hence, automatic
retransmissions are foreseen in case of message losses and
random nonces are used to associate each response to the
corresponding request. Finally, although the description up to
now mentioned the transmission of whole digital certificates
for reasons of clarity, it would certainly be a waste of both time
and network bandwidth due to their considerable size. Being
the vehicle a closed system, in fact, it is possible to assume the
placement of the necessary cryptographic material inside every
ECU at applications deploy time. For these reasons, according
to a well-established practice, certificates are actually identified
during the handshake through a fingerprint, a unique identifier
computed by means of a cryptographic hash function.

C. Message protection

After having successfully established a secure session,
messages can be securely exchanged between the involved
parties. The technique adopted for the run-time protection

0 7 8 1516 2324 31

Service ID Method ID

Length

Client ID Session ID

Protocol
Version

Interface
Version

Message
Type

Return
Code

SO
M

E
/I

P
he

ad
er

Payload (variable size)

E
nc

ry
pt

ed

{

Support Data (variable size)

A
uthenticated

Message Authentication Code (variable size)

Fig. 4. Secured SOME/IP message format.

varies based on the security level at which the service operates.
While, in case of nosec services, vanilla SOME/IP messages
are simply serialized, authentication and confidentiality-level
packets are respectively processed by the selected Message
Authentication Code (MAC) [13] and Authenticated Encryption
with Associated Data (AEAD) [14] algorithm. Similarly, when a
message is received, its security level is immediately compared
against the expected one; in addition, authentication and
confidentiality-level packets are processed by the corresponding
cryptographic function to verify their authenticity and, in the
latter situation, to decrypt the payload: if a mismatch is detected,
the message is immediately discarded.

Fig. 4 shows the format of a secured packet, highlighting in
bold the differences with respect to a vanilla SOME/IP packet.
While the entire message, including the SOME/IP header, is
authenticated in both authentication and confidentiality levels,
the latter provides also the encryption of the payload, which
carries application data. The modifications are analyzed in the
following:

• Length: since the secured packet comprises more infor-
mation with respect to vanilla SOME/IP, the content of
the length field needs to be updated to reflect the changes,
to allow for a correct deserialization at reception side;

• Message Type: two previously unused bits of this
field are exploited as flags, to specify the security level
associated with the current message;

• Support Data: includes all the pieces of information
required to be transmitted along with the MAC, to perform
validation and decryption when the message is received;
while its size and content varies depending on the adopted
algorithm, it always consists of a sequence number,
necessary for replay protection;

• Message Authentication Code: the output of the
cryptographic function, which allows the receiver to verify
the authenticity and integrity properties of the message;
its size depends on the symmetric algorithm utilized.

The protection from message replay is guaranteed through
the usage of an authenticated sequence number, added to every
message of service instances operating at both authentication
and confidentiality level. Being SOME/IP usable both on top

5

of reliable and unreliable transport protocols, it is possible
to assist to message losses and reordering: hence, a sliding
window technique is adopted.

Finally, the proposed message format is fully compatible
with vanilla SOME/IP applications; a traditional device can
interact with all the existing services provided that the nosec
security level is allowed.

IV. EXPERIMENTAL EVALUATION

To evaluate the validity of the approach proposed, the security
framework has been implemented as a PoC, integrating the
designed functionalities within vsomeip. For the sake of
simplicity, the cryptographic data has been assumed to be
protected by means of operating system facilities. However,
strong protection would require a hardware support, to prevent
both the access to the private keys from malicious parties and
the alteration of the root certificate. The source code of the
PoC is publicly available on GitHub.2

A. Benchmark methodology

The benchmarking process concentrated on the two main
phases of the proposed security protocol. First, we considered
the penalties introduced by the session establishment phase,
measuring the time required by an application to access the
desired services, hence assessing how the solution can scale
when increasing the number of services. Second, we evaluated
the run-time protection phase: two applications, communicating
through the vsomeip framework, were used to evaluate the
difference between the available security levels in terms of
message round trip times (RTTs), served requests per second
and CPU load.

Three different strategies were adopted to achieve this goal.
First, we assessed the latency introduced in the communication
by the proposed security protocol, measuring the time elapsed
from the very beginning of a request to the reception of the
corresponding response. Hence, the output measure includes
both the latency introduced by the framework and the one due
to the transmission across the network. Second, we evaluated
to which degree the different security measures impacted the
number of requests an offerer can serve in a given unit of time.
Differently from the previous evaluation scenario, the client has
been configured to perform a high number of requests in parallel
and at the highest possible pace, overloading both the requester
and the offerer devices. In this case, the total time required
to answer all the requests was used to compute the number
of served requests (i.e. the corresponding response has been
received by the client) per each second. Last, the alternative
communication pattern, publish/subscribe, was considered, to
verify whether the usage of notifications alters the results
obtained with the previous techniques. As a complement of
the previous benchmarks, we also evaluated the amount of
CPU used by the requester while sending and receiving the
messages. Although the presented measurements are referred
to the client application, definitely similar results are expected
to be associated with the offerer, being in charge of performing
the exact same operations.

2https://github.com/netgroup-polito/secure-vsomeip

32

64

128

256

512

1024

2048

4096

8192

16384

1 2 4 8 16 32 64 128 256

To
ta

l
el

ap
se

d
tim

e
(m

se
c)

of concurrent session establishments

Fig. 5. Evaluation of the time required to concurrently complete multiple
session establishments varying the handshake parallelism (the dotted line
represents a reference corresponding to a linear increase in the elapsed time).

Being embedded systems the target of the solution presented,
our testbed encompassed two identical NXP’s development
boards running an embedded Linux distribution and intercon-
nected by means of a Fast Ethernet link, which represents the
most common speed in the automotive environment. They are
based on the i.MX 7Dual Applications Processor, characterized
by two ARM Cortex-A7 cores operating at up to 1GHz and
equipped with 1GB of DDR3 RAM. Concerning the session
establishment phase, the widely used RSA-2048 asymmetric
cryptosystem was chosen as a strong algorithm for encryption
and digital signatures. Each RTT benchmark, on the other
hand, was executed both exploiting vanilla vsomeip, taken as
a reference, and the PoC implementation, considering all the
three available security levels. For what regards authentication
and confidentiality-level services, ChaCha20-Poly1305 [15]
was picked up as the selected cryptographic algorithm, thanks
to its outstanding performance with embedded systems. Appli-
cations based on the request/response pattern were executed
considering all the three types of network bindings offered
by vsomeip: Unix domain sockets, implementing local
communication, UDP and TCP. Instead, for what regards
notifications, we limited our tests to UDP since it was the
only option to support multicast communication. Measurements
were repeated with different payload lengths, ranging from 1
to 1024 bytes, which are deemed to be quite representative
of actually used values: only the requests size was modified,
while the responses were always characterized by the absence
of the payload.

B. Numerical Results and Discussion

Beginning with the analysis of the session establishment
benchmark, Fig. 5 plots the total time required to complete
multiple authentication handshakes in parallel, when varying
the amount of requested services. The overall trend certifies
the scalability of the handshake phase, by showing how the
measured values do not tend to explode when increasing
the number of services. Indeed, considering the dotted line
displayed in the graph as a reference, it becomes evident how
the increase in the total time when doubling the number of
concurrent session establishments is less than linear, thanks

6

0

50

100

150

200

250

300

350

400

0
15
30
45

1 4 16 64 256 1024

R
T

T
(µ

se
c)

C
PU

(%
)

Payload size (bytes)

Vanilla vsomeip
Nosec level

Authentication level
Confidentiality level

(a)

0

500

1000

1500

2000

2500

3000

0
1.5
3

4.5

1 4 16 64 256 1024

R
T

T
(µ

se
c)

C
PU

(%
)

Payload size (bytes)

Vanilla vsomeip
Nosec level

Authentication level
Confidentiality level

(b)

Fig. 6. RTT and CPU usage comparison between vanilla vsomeip and the security-enhanced version both in case of (a) local and (b) remote communication.
In (b), the uncertainty bands graphically overlap the top of the histogram bars, being significantly smaller than the RTT values (i.e. less than 0.5%).

0

2000

4000

6000

8000

10000

12000

0
15
30
45

1 4 16 64 256 1024

R
eq

ue
st

s
pe

r
Se

co
nd

C
PU

(%
)

Payload size (bytes)

Vanilla vsomeip
Nosec level

Authentication level
Confidentiality level

(a)

0

2000

4000

6000

8000

10000

12000

0
25
50
75

1 4 16 64 256 1024

R
eq

ue
st

s
pe

r
Se

co
nd

C
PU

(%
)

Payload size (bytes)

Vanilla vsomeip
Nosec level

Authentication level
Confidentiality level

(b)

Fig. 7. Served requests per second and CPU usage comparison between vanilla vsomeip and the security-enhanced version both in case of (a) local and (b)
remote communication.

to the better exploitation of the available parallelism by
interleaving the different steps of the process.

Second, the outcome of the benchmarks assessing the run-
time protection is presented. Talking about transport protocols,
definitely similar results have been obtained both with UDP
and TCP: for the sake of brevity, only the plots about the
former are presented in the following. Considering the RTT
benchmarks, shown in Figs. 6a and 6b, different conclusions
can be drawn depending on whether the messages need to be
transmitted to a remote host or not. While in case of local
communication, in fact, the security functionalities introduce
additional latency accounting for about one third of the
total RTT, the overhead becomes almost negligible if packets
flow across Ethernet, given the predominance of the physical
communication overheads. Comparing vanilla vsomeip with

the PoC operating at nosec level, the latter appears to be
associated with slightly worse performance. Albeit executing
the same operations, variations may be ascribed to some
implementation artifacts required by the PoC, as well as to
experimental deviations due to the Linux scheduler. As for
the CPU usage, no relevant differences are introduced by the
security protocol, with at most a 10% overhead in case of
remote communication if the confidentiality level is selected.
Nonetheless, the significantly higher number of requests issued
and served when leveraging local communication (thanks to
absence of the latency introduced by the physical network)
imposes a considerably higher computational burden on the
CPU compared to remote communication.

Figs. 7a and 7b, on the other hand, present the outcome of the
benchmarks evaluating the effect of the security measures on

7

the maximum number of requests that can be issued and served
in one second. In this case, definitely similar results have been
obtained both in case of local and remote communication, being
the physical network overheads mitigated by the high number
of parallel requests. Interestingly enough, slightly worse results
are associated with local communication: however, this behavior
can be easily explained looking at the CPU load. Although
both situations are characterized by rather overloaded devices,
it is worth noting that, in case of local communication, both
the client and the server are being executed at the same time
on the same device, thus halving the available computational
capacity. Hence, it becomes evident how the number of served
requests is in this case limited by the CPU usage, which reached
100%. Comparing the effect of the different security levels,
both authentication and confidentiality caused a decrease in the
number of served requests accounting for at most one third in
case of the biggest payload size considered in the evaluation,
with the latter security level being slightly more demanding.
Considering the CPU load, no particular variations emerged
between the different security levels. Yet, the overall penalties
can be better highlighted computing the CPU load per served
requests ratio, hence combining the effects on both independent
aspects. Indeed, this metric confirms the introduction on average
of a 25% overhead in case security is enabled.

Finally, considering the results concerning notification-based
communication (not presented here due to space limitations),
no evident differences can be extrapolated with respect to the
simpler request/response pattern.

V. CONCLUSION

This paper proposed a novel approach to protect SOME/IP-
based in-vehicle communications. Given the increasing cars’
automation, unsecured in-vehicle messages are becoming
a tempting target for wicked individuals to, e.g., conceal
incomplete repairs or, in the extreme case, obtain the control of
safety-critical systems. The main contribution of this paper is a
novel security protocol, designed to guarantee the authenticity
and confidentiality of the information exchanged without
limiting the capabilities of the network middleware.

TABLE I briefly summarizes the main advantages of our
proposal compared to the use of SOME/IP encapsulated
within an existing secure protocol. First, both IPSec (L3
security) and TLS/DTLS (L4 security) fall short in providing
all the functionalities required for full SOME/IP protection,
support for one-to-many communications among all. Second,
they do not fit well the communication paradigms adopted
by vsomeip, namely the presence of a single application
responsible for the transmission and reception of remote
messages and the usage of inter-process communication (IPC)
between applications residing on the same ECU. Indeed, they
cannot provide real end-to-end security between the sending and
the receiving applications, leaving the internal communications
unauthenticated and protecting only the messages flowing
across the network. Our solution, instead, achieves 100%
compatibility with both SOME/IP and vsomeip, and features
a more efficient handshake procedure.

Performance measurements confirmed the introduction of
limited latency ascribable to the implemented security function-

TABLE I
COMPARISON BETWEEN SECURE SOME/IP AND SOME/IP OVER L3

(IPSEC) AND L4 (TLS/DTLS) SECURITY

SOME/IP SOME/IP Secure
over IPSec over (D)TLS SOME/IP

Service awareness 7 3 3

Multicast support 7 7 3

App-to-app security 7 7 3

L4 transparency 3 7 3

IPC protection 7 7 3

alities. Considering the likely situation of UDP or TCP-based
communications over a physical network, in fact, additional
penalties are almost negligible, also in a constrained envi-
ronment like the automotive one. Anyhow, even overloading
the devices with an excessive amount of traffic, slowdowns
are deemed to be still sustainable. Finally, authentication and
confidentiality levels appear to be characterized by very similar
performance, with a higher cost associated to the latter only
for bigger payloads.

REFERENCES

[1] IEEE, “IEEE standard for Ethernet amendment 1: Physical layer
specifications and management parameters for 100 Mb/s operation over
a single balanced twisted pair cable (100BASE-T1),” IEEE Std 802.3bw-
2015 (Amendment to IEEE Std 802.3-2015), pp. 1–88, Mar. 2016.

[2] S. Tuohy et al., “Intra-vehicle networks: A review,” IEEE Transactions
on Intelligent Transportation Systems, vol. 16, no. 2, pp. 534–545, Apr.
2015.

[3] AUTOSAR, Explanation of Adaptive Platform Design, 2017.
[Online]. Available: https://www.autosar.org/fileadmin/user_upload/
standards/adaptive/17-10/AUTOSAR_EXP_PlatformDesign.pdf

[4] ——, SOME/IP Protocol Specification, 2016. [Online].
Available: https://www.autosar.org/fileadmin/user_upload/standards/
foundation/1-0/AUTOSAR_PRS_SOMEIPProtocol.pdf

[5] T. Hoppe, S. Kiltz, and J. Dittmann, “Security threats to automotive CAN
networks — practical examples and selected short-term countermeasures,”
Reliability Engineering & System Safety, vol. 96, no. 1, pp. 11–25, Jan.
2011.

[6] K. Koscher et al., “Experimental security analysis of a modern automo-
bile,” in Proc. IEEE Symposium on Security and Privacy, May 2010, pp.
447–462.

[7] S. Checkoway et al., “Comprehensive experimental analyses of auto-
motive attack surfaces,” in Proc. 20th USENIX Conference on Security,
Aug. 2011, pp. 77–92.

[8] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger
vehicle,” Black Hat USA, Aug. 2015.

[9] B. Groza and P. Murvay, “Security solutions for the controller area
network: Bringing authentication to in-vehicle networks,” IEEE Vehicular
Technology Magazine, vol. 13, no. 1, pp. 40–47, Mar. 2018.

[10] M. Hamad, M. Nolte, and V. Prevelakis, “A framework for policy based
secure intra vehicle communication,” in Proc. IEEE Vehicular Networking
Conference (VNC), Nov. 2017, pp. 1–8.

[11] AUTOSAR, SOME/IP Service Discovery Protocol
Specification, 2017. [Online]. Available: https://www.autosar.
org/fileadmin/user_upload/standards/foundation/1-3/AUTOSAR_PRS_
SOMEIPServiceDiscoveryProtocol.pdf

[12] Genivi, “vsomeip in 10 minutes.” [Online]. Available: https:
//github.com/GENIVI/vsomeip/wiki/vsomeip-in-10-minutes

[13] C. Paar and J. Pelzl, “Message authentication codes (MACs),” in
Understanding Cryptography: A Textbook for Students and Practitioners.
Springer, 2010, pp. 319–330.

[14] P. Rogaway, “Authenticated-encryption with associated-data,” in Proc.
9th ACM Conference on Computer and Communications Security, Nov.
2002, pp. 98–107.

[15] Y. Nir and A. Langley, “ChaCha20 and Poly1305 for IETF protocols,”
RFC Editor, RFC 8439, 2018.

8

Marco Iorio (marco.iorio@polito.it) is a Ph.D. stu-
dent at Politecnico di Torino, Italy. His research
interests include vehicular networks, cybersecurity
and cooperative driving.

Alberto Buttiglieri (al-
berto.buttiglieri.it@gmail.com) was a Department
Coordinator at Italdesign, where he managed several
projects on Infotainment and Connected Car. In
2020 he moved to CNH Industrial where is working
as Connected Services Manager, in the Aftermarket
Solution Digital division.

Massimo Reineri (massimo.reineri@italdesign.it) is
a Connected Car Specialist at Italdesign. His main
activities are focused on testbed, content download-
ing, communication protocols and user applications
and for Vehicular Networks.

Fulvio Risso (fulvio.risso@polito.it) is an associate
professor at Politecnico di Torino, Italy. His research
interests focus on high-speed and flexible network
processing, edge/fog computing, software-defined
networks, network functions virtualization.

Riccardo Sisto (riccardo.sisto@polito.it) is a full
professor at Politecnico di Torino, Italy. His main
research interests include formal methods, applied to
distributed software and communication protocol en-
gineering, distributed systems, and computer security.
He is a Senior Member of the ACM.

Fulvio Valenza (fulvio.valenza@polito.it) is a re-
search fellow at Politecnico di Torino, Italy. His
research activity focuses on network security policies,
orchestration and management of network security
functions in the context of SDN/NFV-based networks.

