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Abstract Human-Robot Collaboration (HRC) is a form

of direct interaction between humans and robots. The

objective of this type of interaction is to perform a task

by combining the skills of both humans and robots.

HRC is characterized by several aspects, related both

to robots and humans. Many works have focused on

the study of specific aspects related to HRC, e.g. safety,

task organization, etc. However, a major issue is to find

a general framework to evaluate the collaboration be-

tween humans and robots considering all the aspects

of the interaction. The goals of this paper are the fol-

lowing: (i) highlighting the different latent dimensions

that characterize the HRC problem; (ii) constructing a

conceptual framework to evaluate and compare differ-

ent HRC configuration profiles. The description of the

methodology is supported by some practical examples.

Keywords Human-Robot Collaboration · HRC

dimensions · Collaborative robots · HRC framework

1 Introduction

Human-Robot Collaboration (HRC) is a form of di-

rect interaction between humans and robots, princi-

pally aimed at achieving a common goal. The main
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Fig. 1 A collaborative robot assisting an operator in an as-
sembly task[77]

idea of HRC is to combine the abilities of the human

with those of robots. On the one hand, humans have

innate flexibility, intelligence and problem solving abil-

ities, on the other hand, robots provide precision, power

and repeatability [43]. Collaborative robots are particu-

lar robots designed specifically to work safely alongside

people or to assist them during certain tasks (Figure 1).

This kind of robots can be employed in various contexts

such as industrial plants, homes, and hospitals.

HRC is one of the fundamental cornerstones of In-

dustry 4.0, which is characterized by smart and au-

tonomous systems fueled by data and machine learning.

Unlike classical industrial robots, collaborative robots

allow humans to work alongside them and, as a result,

the removal of confinement barriers in factories. There-

fore, the implementation of HRC in the manufacturing

sector allows to create a dynamic and flexible environ-

ment, where production lines may change and adapt

quickly to new products. Some examples of industrial

collaborative robots are UR5e (Figure 2(a)), LBR iiwa
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(Figure 2(b)), Sawyer (Figure 2(c)), and YuMi (Fig-

ure 2(d)).

For an effective comprehension and implementation

of HRC it is necessary to study and analyze its various

aspects. To this end, the use of multidimensional scales

is a well-established approach for understanding com-

plex phenomena characterized by multiple aspects [21,

52]. The creation of a ”collaboration scale” allows a

team of experts to evaluate and compare different so-

lutions related to the implementation of collaborative

robots [32]. A collaboration scale can also be a useful

tool for finding solutions that optimize certain param-

eters of a process, such as efficiency or effectiveness.

The main challenge in creating such a tool is to bring

together different disciplines, such as engineering and

social sciences, in the evaluation of HRC.

To this end, the main goal of this work is provid-

ing, through a top-down approach, a conceptual HRC

framework which a team of experts can use to ana-

lyze and evaluate the collaboration between humans

and robots, with particular attention to the manufac-

turing sector. The main novel elements of the proposed

conceptual HRC framework are the following: (i) bring-

ing together different HRC aspects from different disci-

plines; (ii) presenting an organic and structured set of

evaluation methods for a comprehensive HRC evalua-

tion; (iii) allowing to compare different HRC applica-

tions considering the various HRC aspects; (iv) allowing

to evaluate HRC tasks also in application fields other

than manufacturing.

The paper is organized as follows. In Section 2, a

literature review on HRC is presented, also examining

the concept of collaboration. The dimensions that char-

acterize HRC are described and analyzed in Section 4,

providing also some preliminary evaluation metrics. In

Section 5, some HRC applications are described, show-

ing an example of evaluation framework. Discussion and

observations on the obtained results are reported in Sec-

tion 6. Finally, Section 7 covers conclusions and future

work.

2 Literature review

2.1 Meaning of ”collaboration”

The first step in understanding HRC is to reflect on the

meaning of the term collaboration. The term collabora-

tion has received several definitions over time. Although

the terms cooperation and collaboration sometimes are

used as synonyms in the literature, it is important to

note that they can have different meanings. Kozar [44]

has highlighted the difference between these two terms

by reporting the definitions given by different authors.

According to Smith [71], cooperation can be defined as

”working together to accomplish shared goals”, while

McInnerney and Robert [55] describe collaboration as

”working in a group of two or more to achieve a common

goal, while respecting each individual’s contribution to

the whole”. Rochelle and Teasley [64] define a cooper-

ative work as a task that is accomplished by dividing

it among participants, where ”each person is respon-

sible for a portion of the problem”, and collaborative

work as ”the mutual engagement of participants in a co-

ordinated effort to solve the problem together”. From

these definitions it can be observed that cooperation

is more focused on working together to create a final

product, and can be achieved even if all participants do

their assigned parts separately and bring their results to

the table. However, collaboration also requires to share

knowledge, implying direct interaction among partici-

pants by negotiations, discussions and accommodating

other’s perspectives [44]. Thus, compared to coopera-

tion, collaboration is a more complex form of interac-

tion and requires the fulfilment of additional conditions

in order to be achieved.

2.2 Human-Robot Interaction and HRC

Human-Robot Interaction (HRI) is a field of study dedi-

cated to understanding, designing, and evaluating robotic

systems to be used by or with humans [34]. HRI ad-

dresses problems related to different ways of interact-

ing with robots and their application. Over the years,

robots have been employed in various domains, such as

manufacturing [59], healthcare [60], and space [12]. De-

pending on the need for human intervention, different
types of interaction can be established [84]. For exam-

ple, in teleoperation the robot constantly needs to be

guided by a human. On the other hand, fully-automated

robots, such as industrial robots, may not involve hu-

man intervention during their operations.

HRC shares many aspects with HRI and can be con-

sidered a sub-field of HRI [83]. HRC is related to the

implementation of collaborative robots, which are par-

ticular robots designed to share space and tasks with

people. One of the main challenges of HRC is to cre-

ate robots that allow a safe coexistence and a natural

interaction with humans [9]. This implies that collabo-

rative robots need to have at least a minimum form of

autonomy, and possibly show initiative.

The concept of collaborative robot was introduced

for the first time in 1996 by Colgate et al. [23]. In

this work, a collaborative robot, also called cobot, was

defined as a robotic device which manipulates objects in

collaboration with a human operator. In particular, the

collaboration was interpreted as a form of assistance,
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(a) UR5e from Universal Robots[77]. (b) LBR iiwa from KUKA[49].

(c) Sawyer from Rethink Robotics[63]. (d) YuMi from ABB[1].

Fig. 2 Examples of industrial collaborative robots.

by guiding and constraining some movements of the

human in certain operations.

According to the standard ISO/TS 15066 [43], a col-

laborative robot is ”a robot intended to physically inter-

act with humans in a shared workspace”. This is in con-

trast, for instance, with classical industrial robots, de-

signed to operate autonomously and in separate spaces.

Cobots can have many roles, from autonomous robots

capable of working together with humans in an office

environment that can ask you for help, to industrial

robots having their protective guards removed. The aim

of these robots is to support and relieve humans through

conjoint work [46].

The implementation of HRC introduces several is-

sues related mainly to safety, communication, task or-

ganization, social-related aspects, and psychological as-

pects [9,37]. From the safety point of view, working

close to robots, without barriers, may introduce new

risks for humans. Previous works proposed different

methods for detecting the position of humans and robots

to avoid collisions, allowing a safe co-existence [81].

Some of the most common methods include continu-

ous 3D image processing [47] or acquiring data via in-

ertial motion capture suits [24]. In recent years, health

and safety regulations have been updated with the in-

troduction of ISO 10218-2 [38] and ISO/TS 15066 [43],

allowing the implementation of HRC also in an indus-

trial setting. Several research works focused on how

to perform task with the robots and how to instruct

them. HRC has been explored in different tasks, such as

pick&place[3,45], assembly[59], transportation[65], 3D

printing[7] etc.

Many works also focused on different social and psy-

chological aspects related to HRC. For instance, Sauppè

and Mutlu [66] studied the impact of a collaborative

robot in the industrial field by interviewing operators

that worked together with it for several months. Other

research works focused on studying the trust of humans

in collaborative robots [21,56], by analyzing the influ-

encing aspects. Tan et al. [74] studied the mental strain
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due to the interaction with a robot both from a physi-

ological and psychological point of view.

Since many different aspects characterize HRC, the

contribution from different disciplines is fundamental

to understand and design a complete HRC framework.

3 Methodology

The conceptual HRC framework has been built using

a ”top-down” approach. This heuristic method consists

in starting from the general definition of a problem and

gradually subdividing it into sub-problems[32,50]. This

approach allows to have a broad view of a problem and

to identify its characterizing aspects. For these reasons,

this methodology was chosen in order to create a con-

ceptual framework able to provide a wide and complete

vision on the HRC phenomenon and applicable in var-

ious contexts.

Starting from the concept and objectives of HRC,
the latent dimensions of the conceptual framework have

been identified. The identification of the HRC latent di-

mensions has been based on the following steps: 1) an

extensive literature review on HRC problem; 2) focus

groups with experts on the subject. Each latent dimen-

sion is characterized by different sub-dimensions, and
for each sub-dimension an evaluation scale has been

proposed. The proposed scales were mainly derived from

existing methods, or created, where necessary, on the

basis of information in the literature.

4 Conceptual HRC framework and HRC latent

dimensions

In this section, the latent dimensions and sub-dimen-

sions of the conceptual HRC framework will be pre-

sented. Table 1 contains the identified latent dimensions

and references for each sub-dimension.

Goodrich and Schultz[34] presented a survey on HRI,

where the HRI problem was analyzed and decomposed

into the following aspects that a designer can shape:

Autonomy, Information Exchange, Adaptivity and Train-

ing, Team Organization, Task. Since HRI is a more gen-

eral research field that includes HRC, these aspects can

be adapted to the HRC problem[83]. Other potential

dimensions of HRC have emerged from the literature

and focus groups, namely Human Factors, Ethics and

Cybersecurity.

HRC latent dimensions will be discussed and ana-

lyzed in the next sections, highlighting their relevance

in the representation of the HRC phenomenon. More-

over, for each sub-dimension, an evaluation scale will

be proposed and described.

4.1 Autonomy

Autonomy is a concept that indicates self-sufficiency,

i.e. the capability of an entity to take care of itself.

The term also denotes the quality of self-directedness,

or freedom from outside control [13]. The concept of

autonomy has acquired different meanings in different

fields [10]. In automation, autonomy is viewed as the

extend to which a system can perform a task without

human intervention. In this field, different taxonomies

and categorization schemes related to levels of automa-

tion have been proposed [70,30]. In the HRI, there are

mainly two schools of thought on the concept of au-

tonomy [10]. The first one is inspired by the concept

of autonomy developed in automation, proposing that

greater autonomy of the robot requires less frequent

interactions with humans [36,84]. This viewpoint is op-

posed to the other school of thought, which claims that

higher robot autonomy enables more advanced and com-

plex interactions [34,75]. This last point of view is the

one that best fits the context of HRC, where the contin-

uous interaction between human and robot has a funda-

mental role. Autonomy of a robot should be considered

in terms of its capabilities of sensing the surroundings,

planning and acting according to the environment and

other entities. In human-human collaboration, the en-

tities involved (i.e. humans) have a high level of au-

tonomy, allowing complex interactions and potentially

high levels of collaboration to be achieved, while not ex-

cluding any entities during the task. Similarly, in HRC,

a high level of robot autonomy should not imply the

exclusion of the human, but allow for a deeper and

richer interaction, leading to higher levels of collabo-

ration. Based on this idea, Beer et al. [10] proposed the

following definition of robot autonomy: ”the extent to

which a robot can sense its environment, plan based

on that environment, and act upon that environment

with the intent of reaching some task-specific goal (ei-

ther given to or created by the robot) without external

control”.

The evaluation of the Autonomy can be based on

the taxonomy of Levels Of Robot Autonomy (LORA)

proposed by Beer et al. [10]. In this model, levels of

autonomy are conceptualized through descriptions and

established based on the robot’s abilities to sense, plan,

and act with respect to a task and context. In Table 2

the autonomy scale based on LORA taxonomy is re-

ported. Despite the level ”Manual” represents a situ-

ation where no robot is involved during a task, it has

been taken into account for a complete taxonomy con-

tinuum.
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Table 1 Summary of the HRC latent dimensions and their sub-dimensions.

Latent dimension Sub-dimension References

Autonomy - Beer et al., 2014[10]; Bradshaw et al., 2004 [13]; [30]; Goodrich and Schultz, 2007 [34]; Huang et al.,
2004 [36]; Sheridan and Verplank, 1978 [70]; Thrun 2004[75]; Yanco and Drury, 2004 [84].

Information Exchange Communication medium Eimontaite et al., 2019 [29]; Goodrich and Schultz, 2007 [34]; Maurtua et al., 2017 [54]; Neto et al.,
2019 [57]; Papanastasiou et al., 2019 [59]; Wang, 2019 [82].Communication format

Team Organization Team structure Goodrich and Schultz, 2007 [34]; Scholtz, 2003 [69]; Yanco and Drury, 2004 [84].
Members role

Adaptivity and Training Robot adaptivity Argall et al., 2009 [5]; Astrom and Wittenmark, 1994 [6]; Biggs and MacDonald, 2003 [11]; Goodrich
and Schultz, 2007 [34]; Krüger et al., 2017 [48]; Raibulet, 2008 [62]; Rozo et al., 2016 [65]; Tsarouchi
et al., 2016 [76]; Wang and Zhang, 2017 [83].

Robot training method
Operator training

Task Field of application Bruno and Antonelli, 2018 [16]; BS 4778-3.1:1991 [17]; De Santis et al., 2008 [26]; Goodrich and
Schultz, 2007 [34]; ISO/TS 15066:2016 [43]; ISO 10218-2:2011 [38]; ISO 12100:2010 [39]; ISO/TR
14121-2:2012 [42]; Mateus et al., 2019 [53]; Rozo et al., 2016 [65]; Stanton, 2006 [73]; Tsarouchi et
al., 2016 [76]; Wang and Zhang, 2017 [83].

Task organization
Performance
Safety

Human factors Workload Arai et al., 2010 [4]; Bangor et al., 2008 [8]; Brooke, 1996 [15]; Campana and Quaresma, 2017 [19];
Charalambous et al., 2016 [21]; Eimontaite et al., 2019 [29]; Hart and Staveland, 1988 [35]; ISO
26800:2011 [40]; ISO 9241-11:2018 [41]; Lindblom and Wang, 2018 [51]; Sauppè and Mutlu, 2015 [66];
Schaub et al., 2013 [67]; Schmidtler, 2016 [68]; Tan et al., 2009 [74]; Yanco and Drury, 2004 [84].

Trust
Robot morphology
Physical ergonomics
Usability

Ethics Social impact Bröhl et al., 2016 [14]; BS 8611:2011 [18]; Charalambous et al., 2015 [20]; Charalambous et al., 2017
[22]; Davis, 1989 [25]; Venkatesh and Bala, 2008 [78]; Venkatesh and Davis, 2000 [79]; Veruggio, 2006
[80].

Social acceptance

Cybersecurity Identification Dedeke, 2017 [27]; NIST, 2018 [58]; Priyadarshini, 2018 [61].
Protection
Detection
Response
Recovery
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4.2 Information Exchange

Information Exchange represents the manner in which

information is exchanged between the human and the

robot. Communication is the basis of any type of in-

teraction between entities and is used to transmit in-

formation, give commands, and make known their own

status [34]. Voice and gestures are key channels that

humans use to naturally communicate between them.

Analogously, these channels can be important to achieve

a natural communication between humans and robots [54,

29]. According to Goodrich and Schulz [34], Informa-

tion Exchange can be characterized by Communication

medium and Communication format (see Table 3).

4.2.1 Communication medium

Communication medium refers to the senses involved in

the communication. In particular, there are three main

possible senses involved: sight (vision), hearing (audi-

tion), and touch (somatosensation). Sight and hearing

are the senses most involved in communication between

people, while touch may represent an immediate way of

exchange information. The evaluation of this dimension

can be performed with the four-level scale reported in

Table 3.

4.2.2 Communication format

Communication format refers to the means and ways

in which communication takes place between humans

and the robot system. There exist different devices that

allow to exchange information between humans and

robots. The technologies mostly implemented in HRC

communication include displays, cameras, virtual real-

ity, augmented reality, speakers, microphones etc. [34,

82,57,59]. The evaluation of this sub-dimension can be

performed using the four-level scale proposed in Ta-

ble 3.

4.3 Team Organization

Team Organization takes into account the organization

of the agents involved in the collaboration. A collabo-

rative task can involve multiple robots and people at

the same time. It is important to take into account the

balance between the number of robots and people in

a team, as well as to analyze the roles of each mem-

ber [34]. The Team Organization can be characterized

by the following sub-dimensions: Structure of the team

and Role of members (Table 4).

4.3.1 Structure of the team

Structure of the team refers to the composition of the

team, i.e. number of humans and robots involved. Major

problems are to understand how many robots a single

human can manage or, conversely, how many humans a

robot team needs to be managed. These kinds of prob-

lems highly depend on the context, the collaborative

task and the robot’s capabilities [34]. The evaluation

may consist in listing the number of humans and robots

involved in the collaboration, as reported in Table 4.

4.3.2 Role of members

Role of members refers to the role of each team member.

Humans and robots can contribute to the same task in

different ways according to the task. The description

of the role of humans and robots involved in the col-

laboration can help to better understand the context.

In the HRI context, Scholtz [69] provided a taxonomy

with five different interaction roles that a human may

have: supervisor, operator, teammate, mechanic, and

bystander. Although this classification is suitable for

representing human role, it is not particularly suitable

for representing robot role. A scale containing the main

roles potentially played by an entity (human or robot)

is proposed in Table 4.

4.4 Adaptivity and Training

Adaptivity and Training latent dimension concerns robot

adaptivity and instruction as well as human training.

Training the robot system to perform various tasks is

a key aspect of the HRC problem. There is a variety of

ways to train a robot, from the most traditional, such

as offline programming, to the most innovative, such as

programming by demonstration (PbD) [76]. In addition

to training the robot, it is often important to take into

account the training of operators who have to interact

with the robotic system [34]. Adaptivity is another key

aspect that allows the robot to change its behaviour

according to various situations. The implementation of

adaptivity allows the robot to tackle unpredicted sit-

uations and accomodate to other entities, while po-

tentially learning from experience. The sub-dimensions

that characterize the Adaptivity and Training dimen-

sion are: Robot adaptivity, Robot training method, and

Operator training (Table 5).

4.4.1 Robot adaptivity

Robot adaptivity represents the ability to accomplish a

given task despite unexpected situations. The ability to
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Table 2 Levels of Autonomy based on LORA taxonomy of Beer et al. [10].

LORA Sense Plan Act Description of the level

L0 - Manual H H H The human performs all aspects of the task including sensing the
environment, generating plans/options/goals, and implementing
processes.

L1 - Teleoperation H H H The robot assists the human with action implementation. How-
ever, sensing and planning is allocated to the human. For exam-
ple, a human may teleoperate a robot, but the human may choose
to prompt the robot to assist with some aspects of a task (e.g.,
gripping objects).

L2 - Assisted Teleop-
eration

H/R H H/R The robot assists the human with action implementation. How-
ever, sensing and planning is allocated to the human. For exam-
ple, a human may teleoperate a robot, but the human may choose
to prompt the robot to assist with some aspects of a task (e.g.,
gripping objects).

L3 - Batch Processing H/R H H/R Both the human and robot monitor and sense the environment.
The human, however, determines the goals and plans of the task.
The robot then implements the task.

L4 - Decision Sup-
port

H/R H/R R Both the human and robot sense the environment and generate
a task plan. However, the human chooses the task plan and com-
mands the robot to implement actions.

L5 - Shared Control
With Human Initia-
tive

H/R H/R R The robot autonomously senses the environment, develops plans
and goals, and implements actions. However, the human monitors
the robot’s progress and may intervene and influence the robot
with new goals and plans if the robot is having difficulty.

L6 - Shared Control
With Robot Initiative

H/R H/R R The robot performs all aspects of the task (sense, plan, act). If the
robot encounters difficulty, it can prompt the human for assistance
in setting new goals and plans.

L7 - Executive Con-
trol

R H/R R The human may give an abstract high-level goal (e.g., navigate
in environment to a specified location). The robot autonomously
senses environment, sets the plan, and implements action.

L8 - Supervisory
Control

H/R R R The robot performs all aspects of task, but the human continu-
ously monitors the robot, environment, and task. The human has
override capability and may set a new goal and plan. In this case,
the autonomy would shift to executive control, shared control, or
decision support.

L9 - Full Autonomy R R R The robot performs all aspects of a task autonomously without
human intervention with sensing, planning, or implementing ac-
tion.

adapt one’s actions to a certain situation is essential to

achieve a high level of collaboration. In the context of

control engineering, adaptivity is implemented to ad-

dress unexpected situations due to internal or external

changes in order to ensure an optimal operation of a

system [6]. In the field of robotics, adaptivity refers to

the dynamic behaviour in response to situations and/or

environmental changes [62]. By monitoring the environ-

ment and their current state, adaptive robot systems

are able to reflect on collected information and change

their behaviour. In HRI, especially in the social field,

adapting behaviour to human characteristics and con-

text is another key aspect [2]. It is worth noting that

there is a difference between the terms adaptability and

adaptivity, although they are sometimes used as syn-

onyms in the literature [48]. Adaptability refers to the

quality of being adaptable, i.e. the possibility of chang-

ing some parameters by the intervention of external en-

tities (e.g. an office chair, in which it is possible to ad-

just the height and the inclination by the intervention

of a human). Adaptivity, instead, indicates the quality

of being adaptive, the ability to adapt autonomously,

i.e. changing one’s own parameters without the inter-

vention of external entities. Thus, adaptivity can be

seen as a deeper and more complex quality compared

to adaptability. For the evaluation of the Robot adap-

tivity, a four-level scale based on the work of Krüger et

al. [48] is proposed in Table 5.
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Table 3 Summary of Information Exchange sub-dimensions
and related evaluation scales.

Sub-
dimension

Level Description of the level

Communication
medium

L0 No senses are involved in the
communication. (i.e. communi-
cation with the robot is not pos-
sible).

L1 At least a sense between sigh,
hearing, and touch is involved in
the communication.

L2 At least two senses between sigh,
hearing, and touch are involved
in the communication.

L3 Sight, hearing, and touch are all
involved in the communication.

Communication
format

L0 No means of communication be-
tween humans and robot.

L1 Information is exchanged only
through a control panel and/or
displays.

L2 At least a human-natural way of
communication is implemented
(e.g. gestures, natural language,
gaze) (control panels and dis-
plays may still be implemented).

L3 At least two human-natural ways
of communication are imple-
mented (control panels and dis-
plays may still be implemented).

Table 4 Summary of Team Organization sub-dimensions
and related evaluation scales.

Sub-
dimension

Level Description of the level

Team struc-
ture

- List of robots and humans in-
volved.

Members role L0 Executor. The entity just exe-
cutes given instructions.

L1 Assistant. The entity is able to
give suggestions to other enti-
ties while also providing support
during some operations; it is not
able to take final decisions.

L2 Master. The entity is able to give
orders to other entities and take
definitive decisions.

4.4.2 Robot training method

Robot training method refers to the methods for in-

structing the robot to perform a certain task. Robot

programming methods can be mainly distinguished in

two categories: manual programming and automatic pro-

gramming [11]. Manual programming is a method that

requires the user to implement actions to be performed

by the robot by hand using text-based or graphical pro-

gramming languages. Manual programming systems are

typically offline-programming systems, since the robot

is not necessary during the creation of a robot program.

This method allows to avoid interfering with any other

tasks that the robot normally performs. In particular, in

manufacturing, this method allows to not interrupt pro-

duction and to robotize short-run production. However,

a disadvantage of manual programming systems is the

need for technical skills to be used, which makes them

unsuitable for users not experienced in programming.

On the other hand, automatic programming allows to

create indirectly a robot program using various infor-

mation that is provided. With this method the user

does not interact with the program code, but mainly

with the robot, allowing even people with minimal tech-

nical skills to perform robot training. Most of the au-

tomatic programming systems are online-programming

systems, since the robot is often required during the

training phase. Although automatic programming sys-

tems are typically more intuitive, the robot’s downtime

can be considerably higher. The most common method

of automatic programming is Programming (or learn-

ing) by Demonstration (PbD). This method allows to

instruct the robot by showing the sequence of opera-

tions it will have to reproduce. A traditional PbD sys-

tem, implemented especially in industrial manipulators,

is the teach-pendant. This technique allows the state of

the robot to be recorded as the operator guides it, phys-

ically or using a controller, through the various opera-

tions of the task. The recorded states are then used to

generate the robot program. There exist also more so-

phisticated and intuitive PbD techniques based on nat-

ural communication [11,5]. These techniques allow the

user to provide demonstrations to the robot via natural

communication modalities (e.g. gestures, vision, voice,

touch). Implementing these communication modalities

can make training more intuitive, as they are based

on those typically used by humans to give instructions.

The evaluation of Robot training method sub-dimension

can be carried out through the three-level scale reported

in Table 5.

4.4.3 Operator training

Operator training indicates the effort in training the

operators involved in a collaborative task. Understand-

ing how to interact with the robot and interpret the

information it provides is essential for optimal collab-

oration. The effort required in training the operator

may vary significantly, depending on the type of col-

laborative robot, the communication interface and the

task [34]. The effort can be evaluated, for instance, con-

sidering the time required to teach the operators how
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Table 5 Summary of Adaptivity and Training sub-
dimensions and related evaluation scales.

Sub-
dimension

Level Description of the level

Robot adap-
tivity [48]

L0 The robot has no form of adap-
tivity, it just executes the pre-
fixed operations in a given task.

L1 The robot has an underling
model for its actions that pro-
duces flexible reactive behaviors,
but the model itself is not flex-
ible (e.g. a cleaning robot that
bumps into walls to understand
the presence of an obstacle and
change path).

L2 The robot shows adaptivity. The
robot has the ability to change
its own parameters according to
environmental stimuli to fulfill
a task. Thus, it has the ability
to learn from experience (e.g. a
cleaning robot that remembers
the position of the obstacles in
an environment it has already
explored and adjusts the clean-
ing path consequently).

L3 The robot shows adaptivity with
respect to the human. In par-
ticular, the robot has the abil-
ity to model the behavior of an-
other agent in relation to a goal
as well as its own actions and
abilities (goal-oriented adaptiv-
ity) (e.g. a cleaning robot that
decides which rooms to clean
according to human habits or
according to which rooms have
not yet been cleaned by someone
else).

Robot train-
ing method

L0 Only manual programming
methods are implemented.

L1 Automatic programming meth-
ods are implemented.

L2 Automatic programming meth-
ods based on natural commu-
nication (e.g. voice, gestures,
touch, vision) are implemented.

Operator
training

L0 Very heavy. Learning how to
work efficiently with the robot
requires time and is not intuitive.

L1 Heavy. Learning how to work ef-
ficiently with the robot requires
time and special attention on
some operations.

L2 Medium. Learning how to work
efficiently with the robot is quite
fast, but may require special at-
tention on some operations.

L3 Light. Learning how to work effi-
ciently with the robot is fast and
intuitive.

to perform the collaborative task, or the complexity of

the required actions. The four-level scale proposed in

Table 5 represents a way to evaluate this sub-dimension

and follows the well-being of humans.

4.5 Task

Task dimension contains information on the task to

be performed. The introduction of a robotic system

changes the way a task is performed and, at the same

time, new issues and hazards emerge [34,76]. A care-

ful organization of the task is necessary to ensure cer-

tain levels of performance and safety [53]. The Task

dimension can be characterized by the following sub-

dimensions: Field of application, Task organization, Per-

formance, and Safety (Table 6).

4.5.1 Field of application

Field of application refers to the field in which the task

takes place. The application field deeply influences the

risks and goals involved in a collaborative task. There-

fore, the description of the application context (e.g. In-

dustry, Healthcare, Education) is necessary to identify

requirements.

4.5.2 Task organization

Task organization refers to the assignation of individ-

ual operations to each team member. The task organi-

zation has a fundamental role, since it highly influences

other aspects, such as performances or workload [53].

Operations should be assigned by trying to focus on

the strengths of the entities involved and maintaining

an adequate workload for each of them [16].

4.5.3 Performance

Performance refers to the evaluation of the outcome

of the collaborative task. According to the application

field, the outcome and its evaluation may vary. For in-

stance, in manufacturing, efficiency and effectiveness

are typical indicators considered in the evaluation of a

product process. Efficiency refers to the required effort

or resources to produce a specific outcome. A method

to evaluate this aspect could be considering the number

of products produced per minute. Effectiveness refers to

the capability of producing a desired result. A method

to evaluate this aspect could be the number of defec-

tive pieces over 100 produced (defectiveness percent-

age). Depending on the requirements of the collabora-

tion outcome, the four-level scale proposed in Table 6

can be adapted to evaluate the performance.
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Table 6 Summary of Task sub-dimensions and related eval-
uation scales.

Sub-
dimension

Level Description of the level

Field of appli-
cation

- Description of the application
context.

Task organiza-
tion

- List of the operations.

Performance L0 Low. The collaboration outcome
is not acceptable (e.g. the pro-
cess is too slow).

L1 Medium. The collaboration out-
come is almost not acceptable.

L2 High. The collaboration outcome
is acceptable, but not completely
satisfactory.

L3 Very high. The collaboration
outcome is acceptable and satis-
factory.

Safety [38,42] L0 Low. Risk score >75% of maxi-
mum score.

L1 Medium. Risk score between
50% and 75% of the maximum
score.

L2 High. Risk score between 25%
and 50% of the maximum score.

L3 Very high. Risk score <25% of
the maximum score.

4.5.4 Safety

Safety concerns the identification of the risks and haz-

ards involved in the task and the related safety mea-

sures implemented. In addition to the risks due to the

task itself (e.g. welding), the physical interaction with

a robot introduces new risks in a working space, mainly

related to collisions [26]. The power and speed of the

robots should be adjusted in such a way that they do

not cause injury to people in the event of contact. In

order to evaluate the safety dimension in a HRC task,

a structured risk assessment can be taken offline during

the initial design stages. A top-down approach can be

used, based on a list of significant hazards for robot sys-

tems provided by ISO 10218-2 Annex A [38]. The list

proposed by the standard takes into account different

kind of hazards, such as mechanical, electrical, thermal,

noise, vibration, radiation, material, and environmental

hazards. The two main elements of the risk assessment

that can be considered are the severity of harm and

the probability of occurrence of harm [39,17]. For each

hazard or hazardous situation, the severity of harm can

be assessed according to the following 4-levels scale:

– L0: Minor. No injury or slight injury requiring no

more than first aid (little or no lost work time).

– L1: Moderate. Significant injury or illness requiring

more than first aid (able to return to same job).

– L2: Serious. Severe debilitating injury or illness (able

to return to work at some point).

– L3: Catastrophic. Death or permanent disabling in-

jury or illness (unable to return to work).

The probability of occurrence can be assessed ac-

cording to the following 4-levels scale:

– L0: Remote. It is very unlikely to occur.

– L1: Unlikely. It is not likely to occur.

– L2: Likely. It can occur.

– L3: Very likely. It is almost certain to occur.

Once the severity and probability are estimated, a risk

level for a harm can be derived from a risk matrix. The

risk matrix assigns a risk level based on the combina-

tion of the levels of severity and probability of occur-

rence of the harm. A risk matrix which can be used for

the assessment is the one proposed by ISO/TR 14121-

2 [42], which is shown in Table 7. Each level is associ-

ated with a numeric risk indicator, on an ordinal scale

from 0 to 3, where 1 indicates “low risk”, while 3 “high

risk”. The value 0 is assigned when the risk is negligi-

ble. A summary risk score is obtained by summing up

the risk levels of all hazards. According to the risk score

obtained, Safety can be evaluated using the four-level

scale proposed in Table 6, which follows the well-being

of humans.

4.6 Human factors

Human Factors (or ergonomics) is defined by ISO 26800

as the ”scientific discipline concerned with the under-
standing of interactions among human and other ele-

ments of a system, and the profession that applies the-

ory, principles, data and methods to design in order

to optimize human well-being and overall system per-

formance” [40]. In order to achieve an optimal level of

collaboration, it is essential to take into account the

psycho-physical state of the human involved in oper-

ations with the robot. The interaction of the human

with his surroundings causes also psychological reac-

tions. The introduction of new technologies, such as

collaborative robots, in various context has an impact

on the people involved [20]. Emotions and cognitive

processes can influence the success of the collabora-

tion and, consequently, the performance of the task [74].

Minimizing the stresses arising from the workplace or

the interaction with the robot is necessary to make

collaboration more effective [66,56,29]. Human factors

dimension can be characterized by the following sub-

dimensions: Workload, Trust, Robot morphology, Phys-

ical ergonomics, and Usability (Table 8).
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Table 7 Risk matrix proposed in ISO/TR 14121-2 [42].

Severity of harm
Probability of occurrence Catastrophic Serious Moderate Minor
Very likely High (3) High (3) High (3) Medium (2)
Likely High (3) High (3) Medium (2) Low (1)
Unlikely Medium (2) Medium (2) Low (1) Negligible (0)
Remote Low (1) Low (1) Negligible (0) Negligible (0)

Table 8 Summary of Human Factors sub-dimensions and
related evaluation scales.

Sub-
dimension

Level Description of the level

Workload [35] L0 Very high. Workload score >55.
L1 High. Workload score between 41

and 55.
L2 Medium. Workload score be-

tween 26 and 40.
L3 Low. Workload score <26.

Trust [21] L0 Low. Trust score <20.
L1 Medium. Trust score between 20

and 29.
L2 High. Trust score between 30 and

39.
L3 Very high. Trust score >39.

Robot mor-
phology [84]

- Description of robot morphol-
ogy: anthropomorphic, zoomor-
phic, or functional.

Physical er-
gonomics [31,
67]

L0 Red (>50 points). High risk - to
be avoided; action to lower the
risk is necessary.

L1 Yellow (26-50 points). Possible
risk - not recommended; redesign
if possible, otherwise take other
measures to control the risk.

L2 Green (0-25 points). No risk or
low risk - recommended; no ac-
tion is needed.

Usability [8,
15]

L0 Not acceptable. SUS score <51.

L1 Marginal. SUS score between 51
and 70.

L2 Acceptable. SUS score >70.

4.6.1 Workload

Workload refers to the effort of the human operators

during a task. Depending on the operations to be per-

formed in a task, the operator may accumulate fatigue

resulting mainly from mental or physical efforts. Men-

tal effort includes aspects such as mental strain, which

is the nervousness (i.e. a state of excitability, with great

mental and physical unrest) resulting from mental stresses,

due to cognitive aspects or external factors [4]. To eval-

uate this dimension, the NASA-TLX can be used [35].

This tool consists in a questionnaire with six items to

evaluate: Mental demand, Physical demand, Temporal

demand, Effort, Frustration and Performance. Each of

these items is evaluated on a scale between 0 and 100,

with an interval of 5. To obtain a final score that rep-

resent the level of workload, a weighted mean of these

values is performed. The weight of each dimension is

obtained through a process of pair-wise comparison of

importance operated by the evaluator. This operation

allows to capture the importance of each dimension on

the workload depending on the task, avoiding a priori

assumptions. Moreover, it also allows to capture the im-

portance that each subject assigns to each dimension, as

the perceived importance for each of them may vary de-

pending on individuals. The maximum final score that

can be achieved is 100, and the closer the final score is

to this value, the greater the operator’s workload. The

scale reported in Table 8 follows the well-being of hu-

mans and can be used to interpret the workload score.

4.6.2 Trust

Trust is the attitude that an agent will help to achieve

an individual’s goals in a situation characterized by un-

certainty and vulnerability [21]. Trust is a key aspect

for optimal collaboration: if people do not believe in the

collaborative capabilities of a robot, they may underuti-

lize it, leading to possible drops in performance in cer-

tain tasks, or even not use it. Therefore, it is important

to maintain appropriate levels of trust. The evaluation

can be performed through a trust questionnaire pro-

posed by Charalambous et al. [21]. The questionnaire

is composed of ten items, and each item is evaluated on

a 5-points Likert scale. The sum of the points returns a

score that indicates the level of trust, with a maximum

score of 50. The scale proposed in Table 8 follows the

well-being of humans and can be used to interpret the

trust score.

4.6.3 Robot morphology

Robot morphology refers to the evaluation of the mor-

phology and design of the collaborative robot. Depend-

ing on the context or the task, some types of design may

be more appropriate, encouraging a greater propensity

to collaborate or inspiring greater trust. For example, a
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Table 9 Structure of EAWS.

Macro-Section Section

Whole body 0 - Extra Points
1 - Body Postures
2 - Action forces
3 - Manual materials handling

Upper limbs 4 - Upper limb load in repetitive tasks

too big robot may discourage a human to collaborate,

while a robot with drawn eyes may help the operator to

feel more comfortable [66]. The morphological aspect of

a robot is important as it also helps to establish expec-

tations in people. Yanco and Drury [84] distinguished

between three morphology types: anthropomorphic (the

robot has a human-like appearance), zoomorphic (the

robot has an animal-like appearance), and functional

(the robot has an appearance that is neither human-

like nor animal-like, but is related to its function).

4.6.4 Physical ergonomics

Physical ergonomics addresses the anatomical, anthro-

pometric, physiological and biomechanical characteris-

tics of humans in relation to physical activity. In this

sub-dimension, postures, materials handling, force ap-

plications, and repetitive movements required by the

collaborative task are analyzed. A tool that can help in

the evaluation of physical ergonomics is the ”Ergonomic

Assessment Work-Sheet” (EAWS) [31,67]. This tool is

widely used in the manufacturing sector and has been

developed under the coordination of the International

MTM Directorate, based on international and national

standards and pre-existing assessment methods [67].

EAWS is composed of five sections (Extra Points, Body

Postures, Action forces, Manual materials handling, and

Upper limb load in repetitive tasks) divided among

two macro-sections (Whole body, and Upper limbs), as

shown in Table 9. For more details on EAWS structure,

see Appendix A. Through checklists representing var-

ious situations, scores are generated for each section.

Next, the macro-sections scores are obtained by adding

up the scores of their respective sections. The final score

is derived by taking the maximum value between the

scores of the two macro-sections. Lastly, the final score

is interpreted using a traffic light scale that represents

the levels of ergonomic risk [67]. The scale is reported

in Table 8.

4.6.5 Usability

Usability sub-dimension represents the evaluation and

design of the interaction between human and robot

that is supposed to take place. According to ISO 9241-

11:2018, usability is defined as the ”extent to which

a system, product or service can be used by specified

users to achieve specified goals with effectiveness, effi-

ciency and satisfaction in a specified context of use” [41].

In HRC, taking into account the operator experience is

essential for an optimal interaction design and to en-

hance collaboration with robots [19,51]. High levels of

usability can improve performances, human wellness,

and level of acceptance of a collaborative robot [68].

A tool often used to evaluate usability is the System

Usability Scale (SUS) [15]. SUS is a questionnaire com-

posed of ten items, which are evaluated using a 5-point

Likert scale. Odd items represent positive statements,

while even ones negative statements. According to the

answer, a score between 0 and 4 is assigned to each

item. By multiplying the sum of the scores by 2.5, the

overall SUS score is obtained. The SUS score ranges

between 0 and 100 (the higher, the better) and can be

interpreted using the acceptability ranges proposed by

Bangor et al. [8], reported in Table 8.

4.7 Ethics

Ethics represents the common understanding of the

principles that constrain and guide human behavior [18].

An effective implementation of new technologies requires

special attention to the people involved in the use of

them [22]. The introduction of robots in some contexts

is not only associated with physical hazards, but also

with ethical hazards [80]. According to BS 8611 [18],

ethical hazards are ”potential source of ethical harm”,

i.e. ”anything likely to compromise psychological and/or

societal and environmental well-being”. The following

sub-dimensions can characterize Ethics dimension: So-

cial impact, and Social acceptance (Table 10).

4.7.1 Social impact

Social impact refers to the consequences of introducing

a collaborative robotic system within a community. The

introduction of a collaborative robot in a work context

can lead to a change in the roles of some workers or

even job losses. Studying these effects is critical to un-

derstanding how to introduce collaborative robots while

minimizing the impact on workers. A first evaluation of

this sub-dimension is provided by the three-level scale

reported in Table 10, which follows the well-being of

humans.
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Table 10 Summary of Ethics sub-dimensions and related
evaluation scales.

Sub-
dimension

Level Description of the level

Social impact L0 Heavy. The introduction of the
collaborative robot involves the
dismissal of humans.

L1 Medium. The introduction of the
collaborative robot involves a
change of human tasks, but not
the dismissal of humans.

L2 Light. The introduction of the
collaborative robot does not in-
volve any effect on human tasks.

Social accep-
tance

L0 Low. Acceptance score <46.

[14] L1 Medium. Acceptance score be-
tween 46 and 70.

L2 High. Acceptance score between
71 and 90.

L3 Very high. Acceptance score
>90.

4.7.2 Social acceptance

Social acceptance indicates the perception of the col-

laborative robotic system within a community. It is

important that the community in which the collabo-

rative robot is introduced has a good level of predis-

position for such forms of technology. Otherwise, some

of the main risks could be poor robot usage or frus-

tration. An effective creation of workforce awareness

can improve the acceptance of new technologies, such

as collaborative robots [20]. Social acceptance evalua-

tion can be performed using a hybrid model developed

by Bröhl et al. [14], which is based on the Technology

Acceptance Model (TAM) [25], TAM 2 [79] and TAM

3 [78]. The model takes into account context-specific

factors of the interaction between humans and robots

in an industrial setting. The factors and items taken

into account for the social acceptance questionnaire are

reported in Table 11. Each item is evaluated on 7-point

Likert-scale [14]. According to the answer and the type

of item (positive or negative), a score between 0 and

6 is assigned to each item. The sum of points returns

a score that indicates the level of acceptance, with a

maximum score of 102. The four-level scale proposed in

Table 10 is used to interpret the acceptance score.

4.8 Cybersecurity

Cybersecurity is the process of protecting information

by preventing, detecting, and responding to attacks [58].

As technology grows, robots are increasingly connected

Table 11 Items and factors selected from Bröhl acceptance
model [14]. Items with ” * ” negatively affect acceptance.

Factor Negative
item

Item

Subjective norm In general, the organiza-
tion supports the use of
the robot.

Image People in my organiza-
tion who use the robot
have more prestige than
those who do not.

Job relevance The use of the robot is
pertinent to my various
job-related tasks.

Output quality The quality of the out-
put I get from the robot
is high

Result demonstrabil-
ity

I have no difficulty
telling others about
the results of using the
robot.

Perceived enjoyment I find using the robot to
be enjoyable.

Social implication * I fear that I lose the con-
tact to my colleagues be-
cause of the robot.

Legal implication
(Occupational safety)

I do not mind if the
robot works with me at
a shared workstation.

Legal implication
(Data protection)

I do not mind, if the
robot records personal
information about me.

Ethical implication * I fear that I will lose my
job because of the robot.

Perceived safety I feel safe while using the
robot.

Self-efficacy * I can use the robot, if
someone shows me how
to do it first.

Robot anxiety * Robots make me feel un-
comfortable.

Perceived usefulness Using the robot im-
proves my performance
in my job.

Perceived ease of use My interaction with the
robot is easy.

Behavioral intention If I could choose,
whether the robot
supports me at work,
I would appreciate
working with the robot.

Use behavior I prefer the robot to
other machines in the in-
dustrial environment.
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to the network, constantly exchanging information [61].

This makes robots exposed to cyber attacks that can

lead to data leakage, malfunction or even damage to

people or property. For these reasons, it is important to

implement security measures that protect robots and

minimize the vulnerabilities of the network to which

they are connected. In the NIST Cybersecurity Frame-

work (CSF) Core [58], five basic cybersecurity activities

are identified, namely identify, protect, detect, respond,

and recover. Based on this classification, Cybersecurity

can be characterized by the following sub-dimensions:

Identification, Protection, Detection, Response, and Re-

covery (Table 12, 13, and 14).

4.8.1 Identification

Identification represents the actions related to the un-

derstanding of policies, governance structures, asset cat-

egorization, cybersecurity risks, and priorities relevant

for managing cybersecurity risks to systems, assets, data,

and capabilities [58]. The evaluation of this sub-dimension

can be performed using the four-level scale proposed by

Dedeke [27], which is reported in Table 12.

4.8.2 Protection

Protection concerns activities related to the develop-

ment and implementation of safeguards to protect crit-

ical infrastructure services and to train staff and em-

ployees [58]. This sub-dimension can be evaluated using

the four-level scale proposed by Dedeke [27], which is

reported in Table 12.

4.8.3 Detection

Detection includes activities related to the development

and deployment of appropriate searching, monitoring,

and detection activities to identify cybersecurity events

[58]. The evaluation of this sub-dimension can be car-

ried out using the four-level scale proposed by Dedeke

[27], which is reported in Table 13.

4.8.4 Response

Response represents activities related to the develop-

ment and implementation of appropriate plans and pro-

cesses to take action regarding a detected cybersecurity

event [58]. This sub-dimension can be evaluated using

the four-level scale proposed by Dedeke [27], which is

reported in Table 13.

Table 12 Summary of Cybersecurity sub-dimensions and re-
lated evaluation scales (Part 1).

Sub-
dimension

Level Description of the level

Identification
[27]

L0 Partial. The relevant outcomes
are pursued by untrained
staff, inadequate policies, using
no/few tools, ad hoc processes,
inadequate technology, and no
information references.

L1 Risk informed. The relevant out-
comes are pursued by trained
staff, using adequate policies,
tools, and processes. The out-
comes conform to expectations
and are monitored, controlled,
and reported.

L2 Repeatable. The relevant out-
comes and practices are operated
as in L1, but the policies and
practices are now risk informed
and updated to adapt to chang-
ing threats. The outcomes fall
within acceptable risk tolerance.

L3 Adaptive. The relevant outcomes
and practices are operated as in
L2, and the outcomes are reg-
ularly monitored, assessed, and
reported organizationwide. The
practices and policies are institu-
tionalized and regularly assessed
and improved.

Protection
[27]

L0 Partial. The relevant outcomes
are limited by poor awareness
and training, inadequate poli-
cies, few access controls, inade-
quate data security tools, ad hoc
policies, and inadequate protec-
tive technologies.

L1 Risk informed. The relevant out-
comes are pursued by informed
employees and trained staff, ad-
equate policies, adequate access
controls, adequate data security
tools, adequate policies, and ad-
equate protective technologies.

L2 Repeatable. The relevant out-
comes and practices are oper-
ated as in L1, and risk-informed
management is used to select,
deploy, evaluate, and review fit-
ness of controls, policies, access
controls, data security tools, and
technologies.

L3 Adaptive. The relevant out-
comes and practices are oper-
ated as in L2, and protection
controls are monitored, assessed,
and reported organizationwide.
The policies are institutional-
ized. The policies and controls
are regularly assessed and im-
proved.
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Table 13 Summary of Cybersecurity sub-dimensions and re-
lated evaluation scales (Part 2).

Sub-
dimension

Level Description of the level

Detection [27] L0 Partial. The relevant outcomes
are limited by poor detection of
events, inadequate monitoring,
ad hoc processes, and inability to
recognize penetrations and inva-
sions.

L1 Risk informed. The relevant out-
comes are pursued by informed
employees and trained staff, ad-
equate policies, event detection
and monitoring tools, formal
processes, and adequate ability
to recognize penetrations and in-
vasions.

L2 Repeatable. The relevant out-
comes and practices are operated
as in L1, and risk-informed man-
agement is used to determine ap-
propriateness of detection and
monitoring tools and formal pro-
cesses.

L3 Adaptive. The relevant outcomes
and practices are operated as in
L2, and the effectiveness of de-
tection and monitoring tools is
monitored, assessed, improved,
and reported organizationwide.
The practices and policies are in-
stitutionalized.

Response [27] L0 Partial. The relevant outcomes
are limited by slow response to
detected events due to poor re-
sponse planning, lack of analysis,
slow mitigation, and poor com-
munications.

L1 Risk informed. The relevant out-
comes are pursued by informed
and trained employees who de-
ploy adequate response plan-
ning, adequate analysis, mitiga-
tion capabilities, and communi-
cations.

L2 Repeatable. The relevant out-
comes and practices are operated
as in L1, and risk-informed man-
agement is used to determine ap-
propriate response plans, analy-
sis, mitigations, and communica-
tions.

L3 Adaptive. The relevant outcomes
and practices are operated as
in L2, and the effectiveness of
response plans, analysis, miti-
gations, and communications is
monitored, assessed, improved,
and communicated. The prac-
tices are institutionalized.

Table 14 Summary of Cybersecurity sub-dimensions and re-
lated evaluation scales (Part 3).

Sub-
dimension

Level Description of the level

Recovery [27] L0 Partial. The relevant outcomes
are limited by lack of recovery
planning, poor recovery process
practices and readiness, and lack
of effective communications.

L1 Risk informed. The relevant out-
comes are pursued by informed
and trained employees who pos-
sess adequate recovery planning
and readiness. Adequate commu-
nications and improvements are
used.

L2 Repeatable. The relevant out-
comes and practices are oper-
ated as in L1, and risk-informed
management is used to deter-
mine appropriate recovery plans,
improvements, and communica-
tions.

L3 Adaptive. The relevant outcomes
and practices are operated as
in L2, and the effectiveness of
recovery plans, analysis, miti-
gations, and communications is
monitored, assessed, improved,
and communicated.

4.8.5 Recovery

Recovery involves activities related to the development

and implementation of appropriate plans and processes

to recover from cybersecurity events and to restore ser-

vices and capabilities impacted by such events. The

evaluation of this sub-dimension can be performed us-

ing the four-level scale proposed by Dedeke [27], which

is reported in Table 14.

4.9 Summary

Eight different HRC latent dimensions has been identi-

fied, specifically Autonomy, Information Exchange, Adap-

tivity and Training, Team Organization, Task, Human

Factors, Ethics, and Cybersecurity. For most of the HRC

latent dimensions, sub-dimensions have also been de-

tected and an evaluation method has been proposed

for each of them. Table 15 summarizes the conceptual

framework structure with the evaluation scales.

5 Examples of HRC framework application

To make explicit the meaning of the analysis conducted

on the HRC, some application examples are presented.
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Table 15 Summary of the HRC conceptual framework with latent dimensions, sub-dimensions and evaluation methods.

Latent dimension Sub-dimension Evaluation method

Autonomy - LORA [10]

Information Exchange Communication medium 4-level scale
Communication format 4-level scale

Team Organization Team structure Categorical scale
Members role 3-level scale

Adaptivity and Training Robot adaptivity 4-level scale (based on [48])
Robot training method 3-level scale
Operator training 4-level scale

Task Field of application Categorical scale
Task organization List of operations
Performance 4-level scale
Safety Risk assessment with 4-level scale (based on [38,42])

Human factors Workload NASA-TLX [35] (4-level scale)
Trust Trust Scale Questionnaire [21] (4-level scale)
Robot morphology Categorical scale [84]
Physical ergonomics EAWS [67]
Usability SUS [15] (3-level scale [8])

Ethics Social impact 3-level scale
Social acceptance Bröhl TAM [14] (4-level scale)

Cybersecurity Identification Dedeke framework [27]
Protection Dedeke framework [27]
Detection Dedeke framework [27]
Response Dedeke framework [27]
Recovery Dedeke framework [27]

Fig. 3 Collaborative robot UR3 [77].

In sub-section 5.1, an assembly task in manufactur-

ing context is analyzed. In sub-section 5.2, a naviga-

tion task in healthcare context, where an elder has to

reach a place with the support of a collaborative robot,

is presented. This second case study has been chosen

to explore the potential application of the conceptual

framework in non-manufacturing contexts.

5.1 Collaborative assembly task in manufacturing

Let us consider an assembly task, designed within the

technology labs of ”Politecnico di Torino”. The team is

composed of a human and the single-arm collaborative

robot UR3 (Figure 3) [77]. The task is to join two pieces

by means of a snap-in mechanism. The robot takes a

component and approaches the operator holding it; the

operator takes the other component and assembles it

with the other; the robot moves away with the assem-

bled workpiece and places it in a specific location. The

human has control of the process by sending a command

when the robot can proceed with the next operation,

leading to a master-executor relationship. The list of

the operations is schematically represented in Figure 4

and can be summarized as follows:

1. Picking Piece 1 (Robot);

2. Picking Piece 2 (Human);

3. Joining Piece 1 and Piece 2 (Human);

4. Placing joined piece (Robot).

Table 16 summarizes the evaluation profile created

by a team of experts. Autonomy has been rated L3

(Batch Processing). The robot is able to sense the envi-

ronment and to implement actions, however the human

decides the objectives and manages the phases of the
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(a) Step 1: Robot picks Piece 1. (b) Step 2: Human picks Piece 2.

(c) Step 3: Human joins Piece 1 and 2. (d) Step 4: Robot places joined piece.

Fig. 4 Sequence of assembly task operations.

task by giving commands to the robot. Communication

with the robot takes place via a screen that displays var-

ious status information. The operator informs the robot

when to proceed with the next operation by means

of a hand panel. Therefore, Communication medium
and Communication format are both evaluated L1. The

robot is able to stop if a certain force limit is reached,

mainly for safety reasons, and has a form of adaptivity

for the task that allow it to correctly grab the piece

through the vision system. These features lead to level

L1 for Robot adaptivity. The instruction of the robot can

be achieved by manual programming or teach-pendant,

which is a traditional PbD technique, leading to level

L1 for Robot training method. The Operator training

has been evaluated L3 (Light). The operator training

is estimated to last around 60 minutes, and the oper-

ations involed in the task are not difficult. Safety has

been evaluated L3 (Very high): the risk score obtained

was 20/90, meaning that the task presents a fairly low

safety risk for the operator. The performance of the col-

laborative task has been evaluated taking into account

effectiveness and efficiency. The outcome of the process

resulted acceptable and Performance has been rated

L2 (High). Workload has been rated 32.5/100, meaning

that the operator workload is evaluated L2 (Medium-

low). Trust has been evaluated L2 (High), since a trust

score of 36.5/50 was obtained. Physical ergonomics has

been rated L2 (Green). The task implies a low biome-

chanical load on the operator, as it requires the han-

dling of low load objects and the application of low

forces while maintaining a non-fatiguing posture. This

is confirmed by the EAWS score of 12 (<25), indicat-

ing a low biomechanical overload risk (see Appendix A).

Usability obtained a SUS score of 72.5/100, leading to

an L2 (Acceptable) rating. Social impact has been rated

L2 (Light), since the introduction of the robot does not

imply dismissals of humans or changes of tasks. As-

suming an operator between 20 and 35 years of age,

the Social acceptance score obtained was 71/102, lead-

ing to an L2 (High) rating, which indicates a good level

of propensity to collaborate with the robot. Regard-

ing cybersecurity, Identification, Protection, Detection,

Response, and Recovery have been estimated L1 (Risk

informed). The presence of trained personnel to take

care of IT security is necessary to ensure the continuity

of the production process.
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Table 16 Summary of the evaluation of the latent HRC di-
mensions for assembly task.

Latent dimen-
sion

Sub-dimension Evaluation

Autonomy - L3 (Batch Pro-
cessing)

Information
Exchange

Communication
medium

L1

Communication for-
mat

L1

Team Organi-
zation

Team structure 1 Human, 1
Robot

Members role Human (L2),
Robot (L0)

Adaptivity
and Training

Robot adaptivity L1

Robot training
method

L1

Operator training L3 (Light)

Task Field of application Industry
Performance L2 (High)
Safety L3 (Very high)

Human Fac-
tors

Workload L2 (Medium)

Trust L2 (High)
Robot morphology Functional (Sin-

gle arm)
Physical ergonomics L2 (Green)
Usability L2 (Acceptable)

Ethics Social impact L2 (Light)
Social acceptance L2 (High)

Cybersecurity Identification L1 (Risk in-
formed)

Protection L2 (Repeatable)
Detection L1 (Risk in-

formed)
Response L1 (Risk in-

formed)
Recovery L1 (Risk in-

formed)

5.2 Collaborative navigation task in healthcare

An example of HRC task where the collaboration level

is potentially high concerns the assistance to people,

in particular guiding elders to a specific destination.

The SmartWalker (Figure 5) is a robotic system belong-

ing to a group of devices termed PAMM (Personal Aid

for Mobility and Monitoring) [28,72,85]. PAMMs are

robotic systems intended to assist the elderly in senior

assisted living facilities, providing support, guidance,

and health monitoring while walking. The system con-

cept of the SmartWalker, and of PAMMs in general, is

presented in Figure 5. The SmartWalker has three main

sensors: a sonar array for obstacle avoidance, a six axis

Fig. 5 PAMM SmartWalker. On the upper side, a user with
the SmartWalker. On the lower side, the system concept of
the PAMM SmartWalker [85].

force/torque sensor for reading the user’s input, and

a camera for localization. The sonar array is used to

identify the position of objects not given on the facility

map, allowing the system to avoid them. The six axis

force/torque sensor reads the forces and torques applied

to the handle, allowing the user to give commands to

the SmartWalker. The upward looking camera is used

to read passive signposts placed on the ceiling, which

allow to locate the system in the facility.

The PAMM SmartWalker constantly communicates

with a central computer, which provides the facility

map with the position of fixed obstacles, a user pro-

file, and instructions. On the other hand, the Smart-
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Walker sends to the central computer the current po-

sition, user’s health conditions, and requests [72]. The

main task of the PAMM SmartWalker is to guide el-

ders to a planned destination in the facility, while pro-

viding physical support. An adaptive shared control is

implemented in the system, which allows to give the

user as much control as he can safely handle, mediat-

ing between the computer instructions and the user’s

intention [72]. The main idea is to provide support to

the user only when he needs it. Once the destination

is chosen, an optimal path is generated based on the

facility map. If the user deviates from the pre-planned

path, and there are no obstacles on the way, the com-

puter controller will gently guide the user back. The

SmartWalker has also an adaptive model that makes

it feels slow and steady at the beginning and end of

the motion, and light and responsive while is moving

faster [72]. This feature allows users to feel more confi-

dent and reduce fatigue.

Table 17 summarizes the collaboration profile ob-

tained with the HRC framework. The evaluation has

been performed by a team of experts, taking also into

account the evaluation results obtained in previous works

[72,85]. The collaborative task takes place in healthcare

context and consists in reaching a destination. Auton-

omy has been rated L5 (Shared Control With Human

Initiative). The robot is able to sense the environment

and to plan a path to reach a specific location, but

the human decides when starting and pausing the nav-

igation. Communication with the robot takes place via

the force/torque sensor and the power wheels. The user

communicates his intentions by applying forces and

torques to the handle of the SmartWalker, which in turn

guides the user applying forces. Therefore, Communica-

tion medium and Communication format are evaluated

L1 and L2, respectively. The robot is able to avoid ob-

stacles and to guide the user to the right path, while

leaving the control to the user. These features shows

adaptivity with respect to the environment and the hu-

man, leading to level L3 for Robot adaptivity. The in-

struction of the SmartWalker is achieved by manual

programming, leading to level L0 for Robot training

method. The Operator training has been evaluated L3

(Light). Since the system is thought to be used by el-

ders and the robotic system resembles a classic walker,

the user learns easily how to move with it. The Phys-

ical ergonomics has been evaluated L2 (Green), since

the EAWS score obtained was 12.5, which is less than

25 points. Based on the results obtained by Spenko et

al. [72] and Yu et al. [85], Performance of the collabora-

tive task has been evaluated L3 (Very high). The evalu-

ation was performed by taking into account the proxim-

ity to obstacles, the deviation from the ideal path, the

Table 17 Summary of the evaluation of the latent HRC di-
mensions for navigation task.

Latent dimen-
sion

Sub-dimension Evaluation

Autonomy - L5 (Shared Con-
trol With Hu-
man Initiative)

Information
Exchange

Communication
medium

L1

Communication for-
mat

L2

Team Organi-
zation

Team structure 1 Human, 1
Robot

Members role Human L2,
Robot L1

Adaptivity
and Training

Robot adaptivity L3

Robot training
method

L0

Operator training L3 (Light)

Task Field of application Healthcare
Performance L3 (Very high)
Safety L3 (Very high)

Human Fac-
tors

Workload L2 (Medium)

Trust L3 (Very high)
Robot morphology Functional

(Walker)
Physical ergonomics L2 (Green)
Usability L2 (Acceptable)

Ethics Social impact L2 (Light)
Social acceptance L3 (Very high)

Cybersecurity Identification L1 (Risk in-
formed)

Protection L1 (Risk in-
formed)

Detection L1 (Risk in-
formed)

Response L1 (Risk in-
formed)

Recovery L1 (Risk in-
formed)

excessive or high-frequency oscillation about the path,

and the tip over margins [85]. Safety has been evalu-

ated L3 (Very high), since the task requires reaching a

destination and the SmartWalker provides support and

guides the user, limiting harm.

Based on the results obtained by Yu et al. [85] from

the analysis of user experience, Workload, Trust, Us-

ability, and Social acceptance can be evaluated. Work-

load has been rated L2 (Medium), as the SmartWalker

relieves the user’s mental fatigue by guiding him, how-

ever the elderly user may get physically fatigued during

the task. Trust has been evaluated L3 (Very high), as
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Fig. 6 Graphical comparison between the evaluation profiles of the examples in sub-section 5.1 (blue) and sub-section 5.2
(orange).

users have found the SmartWalker reliable and simi-

lar to a classic walker. Usability can be rated L2 (Ac-

ceptable), since the SmartWalker interface is intuitive

for elders and similar to how a classic walker is used.

Social acceptance has been evaluated L3 (Very high),

since the SmartWalker gives assistance during the task

while leaving the control to the user. Social impact has

been rated L2 (Light), as the introduction of the Swart-

Walker does not imply dismissals of humans or changes

of their tasks.

Regarding the Cybersecurity latent dimension, Iden-

tification, Protection, Detection, Response, and Recov-

ery have been estimated L1 (risk informed). These eval-

uations can be justified by the need for specific staff to

properly manage the system of the SwartWalkers, with-

out however investing too many resources.

Figure 6 shows a graphical comparison between the

two HRC profiles obtained in the two application ex-

amples.

6 Discussion

The main goal of this work was to provide a conceptual

framework to analyze and compare HRC profiles of dif-

ferent applications (Table 15), highlighting the dimen-

sions that characterize the HRC problem. The proposed

conceptual framework brings together different view-

points on HRC, representing a meeting point between

several disciplines: from engineering to cognitive and

social sciences. For a complete description of the HRC

problem it is necessary to analyze aspects concerning

both the collaborative robotic system and the people

involved. However, these aspects are not completely in-

dependent of each other, as suggested in a previous

work [33]. It can be also observed that some dimensions

mostly concern the collaborative robotic system, while

others concern humans. Dimensions like Autonomy, In-

formation Exchange, and Robot training method are

mainly related to the characteristics of the collabora-

tive robot involved in a certain task. On the other hand,
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dimensions like Human Factors and Ethics are highly

related to the humans involved in the collaboration.

In fact, the success of collaboration depends not only

on the context of application, but also on the predis-

position and previous experiences of the people. It is

important to create an environment that encourages

HRC, making the people involved feel gratified by the

interaction and the outcome.

The conceptual HRC framework provided in this pa-

per includes also an organic and structured set of oper-

ational tools (i.e. evaluation metrics) for carrying out a
comprehensive evaluation on HRC. A team of experts

can use the framework to evaluate collaborative tasks

taking into account all the different aspects of HRC. In

order to test the conceptual framework, two HRC tasks

from two different contexts were considered. The frame-

work was able to provide a comprehensive description

and evaluation for both HRC applications, demonstrat-

ing that the sub-dimensions taken into account are ade-

quate. The framework has also proven to be potentially

suitable to be applied in non-manufacturing contexts.

Moreover, as shown in Section 5, this framework allows

to compare different tasks or settings of an application,

highlighting the differences on the various dimensions

and sub-dimensions. A team of experts can use the re-

sults obtained from the HRC framework to make deci-

sions or focus on the improvement of certain aspects of

the collaboration.
Some limitations are present. The framework is de-

liberately general, which allows the comparison between

different fields of application. The comparison can be

useful, for instance, to assess the ”maturity degree” of

HRC in one field compared to another. A summary of
the various dimensions of the conceptual framework has

not been deliberately proposed. This is mainly due to

the high heterogeneity and possible relationships be-

tween sub-dimensions, but also to prevent the synthesis

from losing the informative detail given by the individ-
ual sub-dimensions. For these reasons, in-depth investi-

gations into the relationships between sub-dimensions

in different application fields are necessary in order to

create appropriate composite indicators.

7 Conclusion

In this paper a conceptual framework to evaluate HRC

has been proposed. The aspects related to HRC has

been analyzed and discussed. HRC is characterized by

several aspects related to different fields of research,

from robotics to human factors. Eight HRC latent di-

mensions (Autonomy, Information Exchange, Team Or-

ganization, Adaptivity and Training, Task, Human Fac-

tors, Ethics, and Cybersecurity) have been identified,

with their respective sub-dimensions. For each sub-dimension,

an evaluation method has also been provided, leading

to the creation of a conceptual HRC framework. Within

this framework, different collaborative applications can

be evaluated and compared on the various dimensions

that characterize HRC.

This work contributes to providing a broad view of

HRC, combining technical aspects with human-social

factors. Future works will be focused on the creation of

a collaboration scale, and the improvement of evalua-

tion methods for each HRC dimension and sub-dimension.

Future investigations will also concern the application

of mathematical modelling techniques to build HRC

evaluation systems for specific application contexts.
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Appendix A EAWS structure

In this section, the structure of EAWS [67], a tool for

the evaluation of physical ergonomics, is reported in

more detail. Moreover, the evaluation of physical er-

gonomics through EAWS for the assembly task exam-

ple, introduced in Section 5.1, is shown in detail. EAWS

is divided in two macro-sections: Whole body and Up-

per limbs. The Whole body macro-section is composed

of four sections:

– Extra Points (Figure 7), which contains additional

types physical work load;

– Body Postures (Figure 8), which addresses static

working postures and high frequent movements;

– Action forces (Figure 9), which concerns body forces

and forces of the hand–finger system;

– Manual materials handling (Figure 10), which ad-

dresses the handling of loads of more than 2-3 kg.

The Upper limbs macro-section has only one section:

Upper limb load in repetitive tasks (Figure 11), which

covers gripping modes, forces, postures of the upper

limbs in repetitive task.

Moreover, Figures 7, 8, 9, 10, and 11 contain the

evaluation of each EAWS section for the assembly task
example, introduced in Section 5.1. Manual materials

handling section was not taken into account, due to the

absence of handling of loads exceeding 2-3 kg. Adding

up the scores, the Whole body macro-section obtained

12 points, while the Upper limbs macro-section 2.8 points

(Figure 7). Therefore, the final score of the EAWS is

12, as it is the maximum between the scores of the two

macro-sections. The final EAWS evaluation is ”Green”,

since the final score is less than 25.
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Fig. 7 Overall result and Extra Points section of EAWS [67]. The evaluations for the assembly task are provided in red.
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Fig. 8 Body Postures section of EAWS [67]. The evaluations for the assembly task are provided in red.
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Fig. 9 Action forces section of EAWS [67]. The evaluations for the assembly task are provided in red.

Fig. 10 Manual materials handling section of EAWS [67]. The evaluations for the assembly task are provided in red.
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Fig. 11 Upper limbs macro-section evaluation for assembly task. The evaluations for the assembly task are provided in red.


