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a b s t r a c t 

Assembly processes in low-volume productions, i.e., single-units or small-sized-lots, are often character- 

ized by a high level of customization and complexity. As a consequence, the scarcity of historical data 

and the difficulty in applying standard statistical techniques make process control extremely challenging. 

Accordingly, identifying effective diagnostic tools plays a key role in such productions. This paper pro- 

poses an innovative method for identifying critical workstations in assembly processes based on defect 

prediction models. Starting from the level of complexity in terms of assembly process and design, the 

method allows identifying the workstations whose defectiveness deviates, at a certain confidence level, 

from the predicted average value. Once the causes leading to significant nonconformities have been de- 

tected, appropriate corrective actions may be promptly undertaken to improve the process. An example 

of implementation of the method in wrapping machines production is presented and discussed. 

© 2020 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Manufacturing companies are increasingly focusing on produc- 

ng high-quality, fault-free products that meet customer needs. De- 

ects in the final product, particularly those generated during the 

roduction processes, can have a dramatic impact on the product 

tself, both in terms of quality and cost. From this point of view, 

dentifying appropriate process control and monitoring systems 

nd adequate predictive maintenance techniques plays a vital role 

n the quality improvement process of manufacturing industries 

 Montgomery, 2012 ; Aivaliotis et al., 2017 , 2019 ; Mourtzis et al.,

018 ). Statistical Process Control (SPC) consists of methods for un- 

erstanding, monitoring, and improving process performance over 

ime, with the aim to make the process stable or predictable, by 

istinguishing common variation from special or sporadic variation 

 Montgomery, 2012 ; Woodall, 20 0 0 ). SPC techniques have been ex- 

ensively used to monitor process performance and detect anoma- 

ous situations in multiple industrial contexts. However, traditional 

PC approaches are usually not appropriate for single-unit or low- 

olume productions, and for situations where a wide variety of 

ixed products exist ( Koons and Luner, 1991 ; Del Castillo et al., 

996 ; Does, 1997 ; Trovato et al., 2010 ; Marques et al., 2015 ). 
∗ Corresponding author. 

E-mail address: elisa.verna@polito.it (E. Verna). 

t

ttps://doi.org/10.1016/j.procir.2020.05.217 

212-8271/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article

 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
The category of low-volume productions certainly includes low- 

olume assembly manufacturing processes, often characterized by 

 high level of customization and complexity, such as the case of 

rapping machines for the packaging of palletized loads. The pro- 

uction of wrapping machines can be classified as a low-volume 

ssembly process due to the high degree of customization, to the 

xtent that each machine can be considered almost unique. More- 

ver, the total average number of such customized machines pro- 

uced in a year reaches, typically, only a few tens of units. There- 

ore, due to the limited historical data available and the difficulty 

n applying the main SPC techniques, the process control repre- 

ents a challenging issue in the industrial sector of wrapping ma- 

hines. 

In the past decades, different SPC methods specific for low- 

olume productions have been proposed in the literature, and 

ach of these has its advantages, shortcoming, and is more suit- 

ble for certain production scenarios than for others ( Koons and 

uner, 1991 ; Del Castillo et al., 1996 ; Does, 1997 ; Trovato et al.,

010 ; Marques et al., 2015 ; Verna et al., 2020 ). This paper presents

 novel and effective diagnostic tool for the assembly of low- 

olume productions that allows identifying the critical steps of the 

ssembly process based on defect prediction models. Specifically, 

he Research Questions (RQ) addressed in this paper are as follows: 

RQ1: Can defects generated in assembly processes of low-volume 

productions be estimated using a defect prediction model? 
under the CC BY-NC-ND license 
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RQ2: How can the identified defect prediction model be exploited 

as a diagnostic tool to improve assembly processes? 

In order to answer these questions, the method involves the de- 

omposition of the assembly process into several assembly steps 

 m ), also called workstations, in which a specific operation is per- 

ormed. According to previous studies in the electromechanical 

eld, assembly defects caused by operators during assembly oper- 

tions can be predicted modeling the level of complexity in terms 

f assembly design and process ( Hinckley, 1993 ; Shibata, 2002 ; 

u et al., 2010 ). Accordingly, for each workstation, two complex- 

ty factors are defined, namely the process-based and the design- 

ased complexity factors ( Hinckley, 1993 ; Shibata, 2002 ; Su et al., 

010 ). Then, basing on a combination of historical data and tech- 

ical experience on the assembly of wrapping machines, a pre- 

iction model relating the observed defects per unit ( DPU ) in 

ach workstation is developed. In accordance with previous studies 

 Hinckley, 1993 ; Shibata, 2002 ; Galetto et al., 2018 ; Galetto et al.,

020; Genta et al., 2018 ), the power-law behavior of the model is 

emonstrated. In detail, comparing the observed experimental val- 

es of DPU in each workstation with the expected average value 

btained from the reference model, the method allows to easily 

dentify critical workstations, i.e. those whose defectiveness devi- 

tes, at a certain confidence level, from the predicted DPU . Con- 

equently, the appropriate corrective actions to improve the pro- 

ess can be promptly adopted once the causes leading to signif- 

cant non-conformities are identified. The remainder of the pa- 

er is organized into four sections. Section 2 reviews the predic- 

ion models for operator-induced assembly defects based on as- 

embly complexity factors developed for massive productions. In 

ection 3 the defect prediction model for low-volume productions 

s derived, using as a case study the assembly of wrapping ma- 

hines. Section 4 presents how the defect prediction model can be 

sed to identify critical workstations and to improve the assembly 

rocess; the relevance of the method is highlighted by examples 

eferring to wrapping machines assembly. Section 5 summarizes 

he original contributions of this research, focusing on its impli- 

ations, limitations and possible future developments. 

. Review of defect prediction models for mass productions 

Starting from the prediction model that Hinckley (1993 ) derived 

y analyzing long term defect data provided by automobile, hard 

isk drive, and semiconductor companies involving tens of millions 

f parts and assembly operations, Shibata ( Shibata, 2002 ) adapted 

t to the assembly of Sony’s home audio products. Specifically, in 

rder to derive a defect prediction model, Shibata analyzed sev- 

ral thousands of data related to four different models of audio 

quipment produced over months. In Shibata’s study, the product 

ssembly process was decomposed into a series of “operation stan- 

ards” ( Shibata, 2002 ), also called “workstations” in other studies 

 Su et al., 2010 ), in which a certain number of “job elements”, i.e.

lementary operations, are performed. In order to predict the de- 

ects per unit occurring in each i th workstation ( DPU i ), a process-

ased complexity factor for each workstation, Cf P,i , was considered 

s a predictor, defined as follows: 

 f P,i = 

N a i ∑ 

j=1 

SS T i j − t 0 · N a,i = T A T i − t 0 · N a,i (1) 

here N a,i is the number of job elements in the workstation i, SST ij 
s the Sony Standard Time spent on the job element j in the work- 

tation i, TAT i is the total assembly time related to the workstation 

 , and t 0 is the threshold assembly time, i.e. the time required to 

erform the simplest assembly operation ( Shibata, 2002 ). The cor- 

elation relationship between Cf P,i and DPU i derived from experi- 
149 
ental data ( Shibata, 2002 ) was as follows: 

P U i = 

( C f P,i ) 
K 

C 
(2) 

here C and K are two regression coefficients obtained by the lin- 

arization of the function, in the form: 

og DP U i = K · log C f P,i − log C (3) 

A further novelty introduced in the work of Shibata (2002 ) is 

he definition of an additional complexity factor, the design-based 

omplexity factor Cf D,i , defined as: 

 f D,i = 

K D 

D i 

(4) 

here K D is an arbitrary coefficient for calibration with process- 

ased complexity; D i refers to the ease of assembly (EOA) of the i 

h workstation, which is evaluated by means of the design method 

or assembly/disassembly cost-effectiveness (DAC) developed by 

ony Corporation ( Yamagiwa, 1988 ). The correlation relationship 

etween Cf D,i and the DPU can be expressed as follows: 

P U i = a · C f b D,i (5) 

here a and b are again regression coefficients obtained by the 

inearization of the function, in the form: 

og DP U i = b · log C f D,i + log a (6) 

By combining Eqs. (2) and (5) , Shibata derived a bivariate pre- 

iction model, which can be written as: 

P U i = c · (C f P,i ) 
d · (C f D,i ) 

e (7) 

here c, d, e are again regression coefficients obtained by the lin- 

arization of the function, in the form: 

og DP U i = d · log C f P,i + e · log C f D,i + log c (8) 

In a later study, Su et al. (2010 ) modified the method proposed 

y Shibata to fit the assembly of copiers. Instead of using SST, 

 new process-based assembly complexity factor was formulated 

ased on Fuji Xerox Standard Time, which was considered by the 

uthors more suitable for copier production ( Su et al., 2010 ). 

In addition, since DAC method was developed for evaluating the 

OA of Sony electronic products, they remarked that it might not 

e directly suitable for different products, such as copiers. Accord- 

ngly, the evaluation method of the design-based complexity fac- 

or, reported in Eq. (3) , was revised. First, in accordance with the 

ethod developed by Ben-Arieh for evaluating the degree of dif- 

culty of the assembly operations ( Ben-Arieh, 1994 ), l parameters 

11 in the specific case of copier assembly) are selected as crite- 

ia for evaluating the design-based assembly complexity. Then, the 

eights of the l criteria are allocated using the analytic hierarchy 

rocess (AHP) approach ( Wei et al., 2005 ; Saaty, 1980 ). In detail, e

valuators (6 assembly engineers in the specific study) are asked to 

ompare the relative importance of each parameter in determining 

he difficulty of inserting a part into a product. From such evalu- 

tions, the weight w q of the l parameters and the corresponding 

egrees of difficulty are obtained. The degree of difficulty, denoted 

s A kqi , i.e. the evaluation of the parameter q in the workstation i 

stimated by the evaluator k , is rated by scores between 0 and 10. 

n light of this, the new design-based complexity factor was rede- 

ned as follows: 

 f D,i = 

l ∑ 

q =1 

( 

w q · 1 

e 
·

e ∑ 

k =1 

A kqi 

) 

(9) 

Su et al. (2010 ) tested the correlation between each redesigned 

ssembly complexity factor and the DPU , showing that the best re- 

ression function, in both cases, was a cubic polynomial model. In 
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Fig. 1. (a) Rotating ring wrapping machine of Tosa Group S.p.A (Italy); (b) front view of the 3D CAD model of a pre-stretch device with indication of the main components. 
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ddition, the redesigned process- and design-based complexity fac- 

ors were also integrated into a new bivariate prediction model, 

hose behavior was confirmed to be again cubic Su et al., 2010 ). 

owever, in a recent study Galetto et al. (2020 ) proved that the cu-

ic models resulted from the logarithmic transformation bias that 

ccurred when predicting defects, thus confirming the adequacy of 

he power-law behavior of Eqs. (2) , ( (5) and (7) . 

. Defect prediction model for low-volume productions: the 

ase of wrapping machines 

In order to identify a defect prediction model for low-volume 

roductions, the assembly of wrapping machines for the packag- 

ng of palletized loads is analyzed. Specifically, among the sev- 

ral typologies of products produced by the company Tosa Group 

.p.A. (Italy), the rotating ring wrapping machine is considered, see 

ig. 1 (a). The production of these machines can be considered a 

ow-volume production process as the total number of machines 

roduced each year is of about 50 units. Moreover, due to the high 

evel of product customization, each rotating ring wrapping ma- 

hine can be considered a unique piece. This study focuses on the 

ssembly of a single part of the rotating ring wrapping machine, 

amely the pre-stretch device, see Fig. 1 (b). The main reason of 

his choice is that, although each machine differs from the others 

n some details, this device is common to all rotating ring wrap- 

ing machines. The pre-stretch device is an electromechanical de- 

ice that performs the following functions: (i) pulling/unwinding, 

ii) pre-stretch and positioning of the plastic film, (iii) performing 

he necessary number of windings. From the manufacturing point 

f view, the assembly process of the pre-stretch device may be 

ubdivided into 29 workstations, as described in Table 1 . Each of 

he subassemblies of the pre-stretch device is first assembled on 

he bench by the operator and then assembled on the frame plate. 

his double process is the criterion used to define the workstations 

isted in Table 1 . 

In Table 1 , the nominal values of DPU occurring under station- 

ry process conditions in each workstation are reported. Such ex- 

erimental DPU i values are obtained by drawing on the company 

istorical data and on the experience of the Head of the Techni- 

al Department. They can, therefore, be considered as the reference 

alues of the average defectiveness rate of the assembly process in 

ptimal working conditions. 
150 
According to the studies of Shibata (2002 ) and Su et al. (2010 ),

or each workstation, the process-based and the design-based com- 

lexity factors are obtained experimentally in order to define a 

redictive model correlating the DPU s with the complexity fac- 

ors. Specifically, each workstation is subdivided into job elements, 

hose assembly time is measured three times and then the aver- 

ge value is considered. To derive the first predictor, Cf P,i , Eq. (1) is

pplied by exploiting as the threshold assembly time, t 0 , the 

ime required to perform the least complex job element, equal 

o 0.04 min. The second predictor, Cf D,i , is calculated according to 

q. (9) by deriving the weights w q of 11 parameters, defined in 

able 2 , and the degrees of difficulty, A kqi , from the evaluations of 

 = 6 evaluators (2 engineers and 4 assembly operators). The 11 

arameters are selected by slightly modifying the parameters de- 

ned in the work of Ben-Arieh (1994 ) according to the assembly 

haracteristics of the wrapping machines. The values of the ob- 

ained predictors, Cf P,i and Cf D,i , are listed in Table 1 . 

Using the software MATLAB R ©, nominal DPU i vs Cf P,i and Cf D,i , 

eported in Table 1 , are plotted, showing a power-law behavior, 

s evidenced in Fig. 2 (a). Accordingly, the DPU values are ana- 

yzed using the power-law regression model developed by Shibata, 

ee Eq. (7) . Differently from Shibata, the regression coefficients are 

ot obtained by linearizing the function, rather by using a non- 

inear model, due to the well-known problem of retransformation 

ias ( Galetto et al., 2020 ; Taylor, 1986 ; Perry, 2018 ). The prediction

odel derived is reported in Eq. (10) and illustrated in Fig. 2 (a). 

P U i = 5 . 04 · 10 

−5 · (C f P,i ) 
0 . 77 · (C f D,i ) 

3 . 08 (10) 

As emerges from the analysis of the residuals between nominal 

PU and predicted DPU , shown in Fig. 2 (b) and (c), the power-law

odel describes well the trend of the DPU as a function of the as- 

embly complexities not only when dealing with mass productions, 

ut also for low-volume productions. 

. Use of the prediction model as a diagnostic tool 

The defect generation model obtained for low-volume assembly 

rocesses, reported in Eq. (10) , can be used as a reference model 

or the purposes of diagnostic analysis. Specifically, using the av- 

rage values of the regression parameter estimates, the respective 

tandard deviations and the correlation matrix for parameter es- 

imates, obtained by applying the nonlinear regression model of 

q. (7) to data of Table 1 , the variance associated with the predic-
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Table 1 

Pre-stretch device assembly of rotating ring wrapping machine: decomposition into workstations (WS), nominal DPU i , C f P,i and C f D,i , predicted DPU i , lower limit LL PI ( DPU i ) 

and upper limit UL PI ( DPU i ) of the 95% prediction interval, and observed DPU i detected in 6 months. 

WS no. Workstation description Nominal DPU i C f P,i [min] C f D,i Predicted DPU i LL PI ( DPU i ) UL PI ( DPU i ) Observed DPU i 

1 Motor no. 1 bench assembly 0.0364 7.1 4.4 0.0214 0.0 0 0 0 0.0755 0.0357 

2 Motor no. 2 bench assembly 0.0364 7.4 4.6 0.0250 0.0 0 0 0 0.0788 0.0357 

3 Support plate of motor no. 2 bench assembly 0.0182 5.8 5.1 0.0287 0.0 0 0 0 0.0802 0.0 0 0 0 

4 Spindle bench assembly 0.0 0 0 0 3.8 4.3 0.0126 0.0 0 0 0 0.0639 0.0 0 0 0 

5 Rubber tyres bench assembly 0.1091 11.9 5.7 0.0715 0.0134 0.1295 0.1071 

6 Idle rolls bench assembly 0.0545 7.7 4.9 0.0320 0.0 0 0 0 0.0843 0.0714 

7 Rubberized pads bench assembly 0.0 0 0 0 3.5 2.8 0.0030 0.0 0 0 0 0.0538 0.0 0 0 0 

8 Belt tensioner device bench assembly 0.0364 2.4 3.5 0.0045 0.0 0 0 0 0.0551 0.0357 

9 Driven wheels of transmission system bench assembly 0.0 0 0 0 0.3 3.7 0.0012 0.0 0 0 0 0.0512 0.0 0 0 0 

10 Pre-stretch frame plate preparation 0.0182 4.8 4.2 0.0142 0.0 0 0 0 0.0663 0.0714 

11 Rubber rollers on pre-stretch frame plate assembly 0.0182 5.2 5.3 0.0312 0.0 0 0 0 0.0849 0.0357 

12 Idle rollers on pre-stretch frame plate assembly 0.0182 5.7 5.1 0.0298 0.0 0 0 0 0.0815 0.0 0 0 0 

13 Motor no. 1 on frame plate assembly 0.0 0 0 0 3.7 5.1 0.0205 0.0 0 0 0 0.0730 0.0 0 0 0 

14 Transmission system of motor no. 1 assembly 0.0 0 0 0 0.9 5.4 0.0084 0.0 0 0 0 0.0618 0.0 0 0 0 

15 Motor no. 2 on frame plate assembly 0.0182 8.5 4.9 0.0355 0.0 0 0 0 0.0883 0.0357 

16 Transmission system of motor no. 2 assembly 0.0364 0.8 4.9 0.0060 0.0 0 0 0 0.0573 0.0357 

17 Motor no. 1 bracket on pre-stretch frame plate assembly 0.0 0 0 0 0.9 4.2 0.0041 0.0 0 0 0 0.0544 0.0 0 0 0 

18 Belt tensioner on pre-stretch frame plate assembly 0.0364 1.7 4.3 0.0067 0.0 0 0 0 0.0573 0.0357 

19 Transmission system of motor no. 1 calibration 0.0364 5.7 5.2 0.0306 0.0 0 0 0 0.0826 0.0357 

20 Transmission system of motor no. 2 calibration 0.0364 6.3 5.2 0.0332 0.0 0 0 0 0.0850 0.0357 

21 Spindle preparation for assembly on pre-stretch frame plate 0.0 0 0 0 2.2 5.2 0.0147 0.0 0 0 0 0.0682 0.0 0 0 0 

22 Spindle group on pre-stretch frame plate assembly 0.0364 13.4 5.6 0.0738 0.0155 0.1322 0.0357 

23 Rubber pads on pre-stretch frame plate assembly 0.0 0 0 0 2.3 4.1 0.0075 0.0 0 0 0 0.0581 0.0 0 0 0 

24 Motor assembly no. 1 final steps 0.0545 1.1 4.1 0.0041 0.0 0 0 0 0.0544 0.0357 

25 Motor assembly no. 2 final steps 0.0545 1.2 4.3 0.0049 0.0 0 0 0 0.0553 0.0357 

26 Spindle release lever bench assembly 0.0 0 0 0 1.2 4.1 0.0042 0.0 0 0 0 0.0545 0.1786 

27 Spindle release lever on pre-stretch frame plate assembly 0.0 0 0 0 7.9 4.7 0.0293 0.0 0 0 0 0.0828 0.0 0 0 0 

28 Compensation arm bench assembly 0.0909 12.2 5.5 0.0672 0.0113 0.1230 0.1071 

29 Compensation arm on pre-stretch frame plate assembly 0.0 0 0 0 5.4 5.0 0.0257 0.0 0 0 0 0.0771 0.0 0 0 0 

Table 2 

Parameters exploited for the evaluation of the design-based complexity factor and their weights. 

Parameter label Parameter description Weight 

P1 Shape of mating objects 0.139 

P2 Force required 0.120 

P3 Alignment of components 0.150 

P4 Mating direction 0.169 

P5 Ratio of the mating component’s weight to the mated one 0.094 

P6 Ratio of length to width (diameter) of the mating component 0.091 

P7 Reachability to the assembled component 0.056 

P8 Mating component’s length, 0.064 

P9 Amount of support required for the assembly 0.037 

P10 Stability of the resultant assembly 0.041 

P11 Length of components intersection 0.038 
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ion of the DPU in each workstation, VAR ( DPU i ), can be estimated

s follows: 

AR ( DP U i ) ≈
[
∂DP U i 

∂K 

]T 

· cov (K) ·
[
∂DP U i 

∂K 

]
(11) 

here K = [ c, d, e ] T is the vector of regression parameters and 

ov (K) is the variance-covariance matrix of regression param- 

ters, both estimated by applying the Gauss-Newton method 

mplemented in the software MATLAB R © to the model of 

q. (7) ( Bates and Watts, 1988 ). 

By exploiting the uncertainty associated with the DPU i estimate, 

he 95% prediction interval of each DPU i may be calculated, as 

hown in Eq. (12) : 

P U i ± 2 . 055 ·
√ 

VAR ( DP U i ) + S 2 (12) 

here S is the standard error of the regression, also called the 

tandard error of the estimate, derived from the sum of the 

quared residuals RSS , the number of observations N and the 

umber of free parameters P , according to Eq. (13) ( Bates and 

atts, 1988 ): 

 = 

√ 

RSS 

N − P 
(13) 
151 
In this case, S is equal to 0.024. In Table 1 the defects per 

nit in each i th workstation ( DPU i ) predicted using Eq. (10) and

he corresponding 95% prediction interval, expressed as lower limit 

nd upper limit, denoted respectively as LL PI ( DPU i ) and UL PI 

 DPU i ), are reported. It should be noted that negative values of the 

ower limits of prediction intervals of DPU are set equal to zero in 

able 1 . Accordingly, for most workstations, the prediction interval 

s not symmetric with respect to the predicted DPU i . 

The prediction limits defined in Table 1 can be used to de- 

ermine if the low-volume assembly process is in a state of con- 

rol, i.e. stable, with variations coming only from sources common 

o the process. In other words, the prediction interval limits can 

e used to distinguish common causes of variation from special 

auses of variation ( Montgomery, 2012 ). Specifically, the methodol- 

gy requires that, once the prediction model has been developed, 

efects detected in each workstation, over a specific period of time, 

re divided by the number of units inspected in order to obtain the 

bserved DPU values. Then, a diagnostic test is performed to verify 

hether such observed DPU values fall within the prediction inter- 

al. A special cause of variation occurring in any workstation of the 

ssembly process can be detected if the observed DPU i falls above 

he upper limit or below the lower limit of the corresponding 95% 

rediction interval. It should be noted that if the DPU i is higher 
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Fig. 2. (a) Surface plot of DPU against Cf P and Cf D : theoretical model and nominal DPU ; (b) Normal Probability Plot and (c) Residuals vs Order Plot for residuals between 

nominal DPU and predicted DPU . DP U i ± 2 . 055 ·
√ 

VAR ( DP U i ) + S 2 (12). 
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1

han the upper prediction limit, it means that an abnormal defec- 

iveness is occurring in such workstation. In the same way, a DPU i 

elow the lower prediction limit should be signaled, as it could 

e due to an arbitrary reduction of the DPU detected by operators 

uring quality inspections. The diagnostic method, therefore, aims 

t signaling abnormal workstations after having collected defects 

or a certain period of time. In this view, the tests carried out may 

e seen as in-progress controls, to be performed whenever DPU 

alues are available on each workstation. 

The proposed method was tested by collecting the defects oc- 

urring in each workstation over a period of 6 months (corre- 

ponding to 28 pre-stretch devices). Starting from the observed de- 

ects, the DPU in each workstation were derived and are reported 

n Table 1 . As can be easily assessed, in workstations 10 and 26 

he observed DPU i values, written in bold, are higher than the up- 

er limit of the prediction interval, whereas no DPU i observed is 

ower than the corresponding lower limit. In order to investigate 

he causes leading to the anomalous defectiveness found in the 

wo workstations, specific and accurate checks were carried out. As 

ar as the workstation 10 is concerned, the critical assembly oper- 

tion was found to be the finishing of the frame plate holes, per- 

ormed by the operator with a manual grinding machine. The inad- 

quate training of the operator was, therefore, the variation cause. 

n the other side, the root cause of the workstation 26 was a batch 

f an out-of-tolerance mechanical component purchased from an 

xternal supplier used for assembling the spindle release lever. 

. Conclusions 

In low-volume assembly processes, the non-applicability of tra- 

itional statistical process control techniques and the scarcity of 

istorical data available make process control and monitoring a re- 

arkable issue. This paper proposes a new approach based on the 

ormulation of a probabilistic model for defect prediction in low- 

olume assembly processes, which can be exploited as a diagnostic 
152 
ool for the identification of critical workstations. The workstations 

hose defectiveness deviates, at a certain confidence level, from 

he predicted value can be easily identified, by verifying whether 

he observed DPU value does not fall within the prediction inter- 

al. By discerning the common causes of variation from the special 

auses of variation, the proposed approach represents a powerful 

ool for improving the assembly process. In fact, by identifying the 

auses leading to significant non-conformities, appropriate correc- 

ive actions to improve the process can be readily implemented. 

n application concerning the assembly of a real-life low-volume 

roduction of wrapping machines was presented. 

The proposed approach may be exploited for low-volume as- 

embly manufacturing processes in similar industrial fields of the 

resent case study, where the occurrence of defects is of the same 

rder of magnitude. In fact, the DPU values estimated through the 

rediction model derived using wrapping machines data can be 

onsidered a good approximation of the average defects per unit 

here historical data or expert estimates are not available. 

A limitation of the proposed method has to be discussed. The 

btained prediction model, and therefore the nominal DPU val- 

es and the related prediction intervals, are derived from historical 

ata and estimates provided by the expert. Future research will be 

imed at refining the model by including more accurate data that 

re being collected experimentally. 
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