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Abstract—Goal: In this paper we investigated the use of
smartphone sensors and Artificial Intelligence techniques
for the automatic quantification of the MDS-UPDRS-Part Ill
Leg Agility (LA) task, representative of lower limb bradyki-
nesia. Methods: We collected inertial data from 93 PD sub-
jects. Four expert neurologists provided clinical evalua-
tions. We employed a novel Artificial Neural Network ap-
proach in order to get a continuous output, going beyond
the MDS-UPDRS score discretization. Results: We found a
Pearson correlation of 0.92 between algorithm output and
average clinical score, compared to an inter-rater agree-
ment index of 0.88. Furthermore, the classification error
was less than 0.5 scale point in about 80% cases. Con-
clusions: We proposed an objective and reliable tool for
the automatic quantification of the MDS-UPDRS Leg Agility
task. In perspective, this tool is part of a larger monitoring
program to be carried out during activities of daily living,
and managed by the patients themselves.

Index Terms—Atrtificial neural networks, bradykinesia,
leg agility, parkinson’s disease, smartphone.

Impact Statement—We propose an estimation of the
MDS-UPDRS Leg-Agility score using sensors embedded
in smartphones. On 93 patients, Pearson correlation with
averaged four clinical assessments was 0.92, compared to
inter-rater agreement 0.88.

l. INTRODUCTION

ARKINSON’S disease (PD) is one of the most common
P neurodegenerative disorders [1], with 7-10 million affected
people worldwide and a prevalence exceeding 1.9% over the age
of 80 [2]. It is characterized by both motor and non-motor signs
and symptoms, related to the degeneration of dopamine neurons,
particularly in the area of the brainstem called substantia nigra
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pars compacta. After more than forty years since its introduction
in the clinical practice, Levodopa (L-dopa) is still the gold
standard for the control of PD motor symptoms [3]. Yet, L-dopa
has introduced an additional source of features into the natural
evolution of PD through its potential to induce involuntary
movements (i.e. dyskinesias) and motor response fluctuations. A
timely, objective monitoring of motor fluctuations can represent
a precious piece of information for the clinicians, because it
enables a drug posology adaptation to the specific response of
each single patient. However, motor fluctuations are difficult to
appreciate in a medical office. Outpatient visits are scheduled
once a year and have limited duration, hence only gross varia-
tions are appreciated. Moreover, the visit itself may affect the
actual patient status, which is conditioned by the time interval
elapsed since the last drug administration, the general health
conditions and many other subtle factors [4]. This makes it
hardly possible for the neurologist to appreciate short-term vari-
ations in order to plan fine adjustments of the pharmacological
treatment. Our work finds its ultimate motivation in the necessity
of an electronic diary for quantitative assessment of the motor
conditions of PD patients. We believe that this tool, in order to
achieve large-scale application, should make use of cheap, easy-
to-use and widespread instrumentation, such as smartphones.
It could enable a better follow-up and provide effective and
supportive treatment, accessible to all patients also in a context of
overall cost reduction. This fits the Digital Health Pathways [4],
a pipeline defining guidelines for a patient-centered platform
exploiting wearable devices to monitor disease progression not
only in controlled clinical environment. At present, the MDS-
UPDRS (Movement Disorder Society — Unified Parkinson’s
Disease Rating Scale) [5], [6] is universally employed to assess
the course of PD after diagnosis. The evaluation encompasses
six parts. Part III, which is the most relevant for this work, is
the clinical evaluation of several motor skills. The objective of
our work is to face the following questions. Is it possible to
automatically evaluate (at least a subset of) MDS-UPDRS-part
[T items using inertial data gathered from the sensors embedded
in a common smartphone? What is the achievable precision of
this estimation? As a starting point, in this paper we focus on
Leg Agility (LA), a task included in the MDS-UPDRS scale
for motor evaluation of lower limbs (task 3.8). LA consists of
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raising and stomping the foot on the ground at least 10 times, as
high and fast as possible, starting from a sitting posture. Each leg
is tested separately.We have selected this item due to its simple
and safe execution and relatively easy assessment. Nevertheless,
LA is correlated to bradykinesia and to the fluctuating patient’s
response to drugs [7]. Hence, the automatic estimation of LA
task yields intrinsically useful clinical information. We use a
dedicated smartphone to collect accelerometer and gyroscope
data during the execution of LA, and evaluate several Machine
Learning (ML) techniques with respect to the capability of
replicating the clinical MDS-UPDRS score. In this preliminary
stage, we have gathered data in controlled conditions, i.e. during
pre-scheduled outpatient visits. However, the achieved results
allow us to proceed with the evaluation in non supervised
environments. Considerations on MDS-UPDRS scoring could
be find in Section V-A. Several papers address data mining and
Artificial Intelligence (Al) techniques to recognize the severity
of PD cardinal motor signs, using data derived from wearable
sensors. In Section V-C, main information about dataset, meth-
ods and results of most relevant works are briefly described.
All the considered studies present some limitations: reduced
sample dimension (maximum 44 PD subjects), dedicated hard-
ware (only one study employs smartphones), number of sensors
(most studies use three sensors). Furthermore, some relevant
dataset details (e.g. cardinality of MDS-UPDRS classes) are
not reported. The rest of this paper is organized as follows. In
Section II we describe the experimental setup and the cohort
of people with PD enrolled for this experiment, as well as the
ML algorithms implemented. In Sect III the achieved results
are described and discussed, and in Section IV conclusions are
drawn.

Il. MATERIALS AND METHODS

The experiments have been carried out at the University
Hospital Citta della Salute e della Scienza, Turin (Italy), which
hosts the Regional Reference Center for Parkinson’s Disease
and Movement Disorders. The study has been conducted in
accordance with the Declaration of Helsinki and approved by the
local Ethics Committee (Ethics approval number 1534-2019).
Participants received detailed information on the study purposes
and execution, and written informed consent for observational
study was obtained. Demographic and clinical data were noted
anonymously. Patients agreed to the video-taping of the proce-
dure after receiving suitable explanations and being guaranteed
that he/she cannot be identified (only the patient’s legs were
video-captured, as in Fig. 1) and the videotapes are not made
available to persons different of the authorized ones. The exper-
iments were carried out in hospital during the periodically sched-
uled outpatient visits; hence, the patients’ safety was guaranteed
by the presence of the medical staff.

A. Data Collection

A total number of 93 people with PD were recruited in
the study. The inclusion criteria were: a clinical diagnosis of
Parkinson’s disease with motor signs and symptoms [8], no
major cognitive impairment or other conditions preventing the

Fig. 1. Smartphone position adopted for the LA task scoring.

TABLE |
DEMOGRAPHIC AND CLINICAL CHARACTERISTICS OF PD POPULATION

Years

# patients Age from diagnosis Hoehn and Yahr LA score
(mean + SD) (mean + SD) (mean + SD) (mean + SD)
93 (70% male) 69 + 10 9.0 £ 6.5 2.5+ 08 2+1

patient from correctly accomplishing the task. Given that data ac-
quisition was performed during pre-scheduled outpatient visits,
most patients were in daily on condition, i.e. they had taken their
usual drug dose, even though different time intervals had elapsed
since then, and the next scheduled dose was not imminent.
In few, particular cases (visit scheduled late in the morning
— about 4%), some of them showed some end-of-dose effect.
Yet, the number of these patients was not enough to perform
differential analysis, thus we chose not to differentiate patients
based on motor condition. We believe that this does not affect in
either sense the system performance, due to the small number
of subjects. The population characteristics are summarized in
Table I.

During their visit, the subjects were asked to sit in a straight-
backed chair and place the foot on the ground in a comfortable
position. Then, after being properly instructed by an expert
neurologist as recommended in the MDS-UPDRS guidelines,
they performed LA with each leg separately. A simple Velcro
armband equipped with the smartphone was placed around the
patient’s thigh, with the y-axis parallel to the femur direction.
The smartphone recording application was started before and
stopped after the execution of the task, thus each recording
included a signle LA execution. A preliminar analysis on LA
data from young control subjects is reported in Section V-B,
meant to verify the suitability of smartphone for the specific
data acquisition task. Experiments were video recorded in order
to allow multi-rater evaluation. Fig. 1 shows the experimental
setup. Globally, we have measured 184 LA test (2 patients were
able to perform the test with a single leg only).
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Fig. 2. Distribution of the MDS-UPDRS scores assigned to the LA

tasks. 0: normal. 1: slight. 2: mild. 3: moderate. 4: severe.

The LA task was scored by four expert neurologists according
to the MDS-UPDRS scale, either directly or after inspection of
the video sequences. The rounded average ratings have been
employed as the class labels for the supervised classification
algorithms. Fig. 2 shows the distribution of the assigned MDS-
UPDRS scores. It is worth noticing that the dataset encom-
passes few cases in classes MDS-UPDRS-3 and 4. Actually,
the clinical conditions of patients belonging to such classes
are severe, and may even prevent them from executing the
task. In particular, even though we have been actually able to
test five MDS-UPDRS-4 patients, the usefulness of including
them in a monitoring system is questionable. Therefore, as also
suggested by the expert clinicians, we excluded MDS-UPDRS-4
patients from the subsequent analysis, and reported exclusively
for visualization. Acceleration, angular velocity and orientation
data have been collected by means of SensorLog App, stored
locally on a SD card, exported in CSV format and processed
offline using MATLAB, version 2018a for Windows 10.

B. Feature Extraction and Selection

Once the data have been registered, signals have been recali-
brated in order to compensate for deviations from the ideal posi-
tioning (i.e. gravity acting only on the vertical component, i.e. the
z-axis of the accelerometer). The method proposed in [9] was ap-
plied, consisting of 3-axis accelerometer orientation correction
by applying a quaternion rotation transformation to the device
raw data. After mean value removal, pitch, acceleration and
angular velocity have been lowpass filtered in order to remove
high frequency noise. A 2-order zero-lag low-pass Butterworth
filter with a cutoff frequency of 4 Hz was chosen, in order to keep
atleast 90% of the signal power (computed using the Fast Fourier
Transform — FFT — on all data). Then, a set of 36 kinematic
features (reported in Table II) have been extracted from each
signal, representative of the major traits that distinguish motion
in people with PD and unaffected controls. Insights provided
by the literature on other similar studies [10]-[14] have been
taken into account.Besides cross-correlation, which provides
information in the spectral domain, we also computed signal
Fast Fourier Transform (FFT), and we extracted features as
frequency, amplitude and width of the dominant harmonic, total
number of harmonics, power ratio between principal and other

TABLE I
LIST OF FEATURES EXTRACTED IN THIS WORK, ALONG WITH THE
SELECTED COMPONENTS

Selected component | Extracted features

Oz, wz, 0z Dominant frequency
Entropy
/ Minimum
Wy, Oy Maximum
Wy Oy Root Mean Square
Wg, Oz Range
W, Oz Spectral Entropy
Wy Oz Mean amplitude
W, 0z Regularity
o Dominant Ratio
/ Standard deviation
/ Mean peak value

0. Pitch Signal Around x-axis. w,: Angular Velocity
Around x-axis. c, : Acceleration Along Vertical Direction.
/ Indicates That None of the Components Have Been
Selected

Pearson coefficient

5 10 15 20 25 30 35
Feature

Fig. 3. Feature ranking based on Pearson’s correlation coefficient (r).
C1, C2, C3identify gaps in r-values of adjacent features.

harmonics. Then we further combined some features, in order
to increase their discriminating power (e.g. ‘Mean peak value’
feature takes in consideration the number and the amplitude of
harmonics in the FFT).

In order to identify the most meaningful features, we per-
formed a feature selection based on the correlation between
feature values and target. Fig. 3 reports the Pearson’s correlation
coefficient for each feature.

The optimal features subset, i.e. that containing the most
informative features while mantaining a reduced dimension,
is obtained as follows. We first sorted features in descending
order of Pearson correlation value, and features exhibiting a
correlation lower than 0.4 (i.e. weak correlation) were discarded.
Then, we set three thresholds, referred in Fig. 3 as C1, C2 and
C3, corresponding to gaps in correlation value between adjacent
features. The three resulting feature subgroups were given as
input to common ML algorithms (listed in Section II-C). The
final subset was that leading the higher accuracy; C2 turned
out to be the optimal value, yielding to 16 selected features
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(see Table II). We also checked that the correlation between the
selected features was not higher than the correlation with the
target, in order to not include redundant features in the final set.
A brief description of some features is provided below.

Dominant frequency. It is the frequency value corresponding
to the highest peak of the Fast Fourier Transform (FFT) function.

Spectral Entropy. It is the Shannon entropy computed on the
FFT of the signal.

Regularity. It is the amplitude of the first positive peak of
the autocorrelation function, normalized to the maximum of
correlation function, as described in [15].

Dominant Ratio. It is the ratio of the dominant frequency
band power to total power.

C. Addressed ML Algorithms

Due to the many factors affecting the performance, actually
no ML algorithm outperforms the others for every problem
at hand [16]. Hence, a sound approach is to test several ML
methods and select the best one for the specific problem to be
solved. We employed common ML algorithms to compare with
other studies (e.g. [14], [17], [18]). Moreover, we decided to also
implement a novel Artificial Neural Network approach, yielding
a continuous output. To identify the best combination of each
ML model parameters, we employed a bayesian optimization
algorithm. We set the cross-validation error as objective function
to minimize in a Leave-One-Subject-Out (LOSO) validation. As
for the hyperparameters to optimize, we selected main param-
eters from all eligible in each model, namely: kernel function,
kernel scale and boxconstraint for one-vs-one SVM; number
of neighbors, distance metric and distance weight for KNN;
maximum number of splits and split criterion for DT. As for
ANN, we set stop conditions to max 2000 iterations and gradient
value to 107°, starting learning rate to 0.01, increasing and
decreasing values to 10% and 20%, respectively. Then, we
tuned the number of hidden layers, number of hidden neurons
per layer and transfer function. Finally, we selected the ANN
architecture returning the lowest misclassification error (i.e. that
providing the best accuracy). The final parameter selection for
each addressed algorithm turned out to be as described below.

e SVM. Kernel function: linear, boxconstraint: 36.

e kNN. Number of neighbors:5, distance metric: euclidean,
distance weight: equal.

e DT. Split criterion: Gini-Simpson diversity index [19],
maximum number of split equal: 4.

e ANN. Number of hidden layers: 2, number of neurons per
layer: 16, transfer function: hyperbolic tangent sigmoid.

lll. RESULTS AND DISCUSSION

In this section, we present the classification results achieved
by the various ML algorithms addressed in Section ?? for
MDS-UPDRS LA score estimation. Furthermore, we focus on
the inter-rater variability issue, and propose a possible solution.

A. Classification Results

The feature set, identified as discussed in Section I1, is input to
each classification algorithm. A LOSO validation criterion has

TABLE Il
PERFORMANCE OF SEVERAL ML METHODS IN
CASE OF DISCRETE OUTPUT

Method | Accuracy (%) AUC
DT 59.1 0.53
kNN 60.3 0.82
SVM 60.9 0.80
ANN 71.7 0.92
0.45
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Fig. 4. Histogram of distance between mean clinicians score and ANN

outcomes. Continuous values were taken into account for assessment.

been employed, i.e. each element of the data set is used to test
the performance of each algorithm, trained using the remaining
elements.

Table III summarizes the performance of each model in terms
of accuracy and Area Under the Curve (AUC).

It can be appreciated that the ANN model exhibits the best
performance among the implemented ML classifiers (accuracy
77.7%), outperforming the results reported in literature (i.e.
in [14], [17] an accuracy of 43% is reported). In order to get
further insight in the behaviour of the proposed classifiers,
we computed the Cumulative Distribution Function (CDF) as
a function of the absolute error, i.e. the absolute difference
between the MDS-UPDRS class yielded by the algorithm and
the rounded average MDS-UPDRS class provided by the neu-
rologists. All methods, except DT, classify incorrectly only by
maximum one step on the MDS-UPDRS scale, i.e. classification
error is < 1 in 100% of cases. Such an error is comparable
with the inter-rater variability, as also discussed in [14]. In fact,
the MDS-UPDRS evaluation performed by several neurologists
is often non homogeneous, especially due to the difficulty in
discriminating between adjacent classes in cases of intermediate
gravity. In this study, the inter-rater agreement index turned out
to range in [0.74 — 0.88].

The ANN behaviour can be considered very good, signifi-
cantly outperforming SVM and kNN. As for discrete scoring
classification, the ANN error is < 1 in 100% of cases. Hence,
ANN seems a good candidate to mimic the MDS-UPDRS clini-
cal evaluation as for LA, with comparable reliability. As for the
continuos output, the error histogram shown in Figure 4 reports
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TABLE IV
COMPARISON WITH STATE-OF-THE-ART ALGORITHMS
Study Year Device #PD  #isensors  #raters r RMSE ICC
[20] 2012 MU 42 5 3 0.79 0.46 -
[14] 2015 IMU 34 3 3 0.79 - -
[21] 2015  Smartphone 14 1 0* 0.5 - -
[22] 2018  Smartphone 44 1 0* - - 0.88
[18] 2019 IMU 19 2 3 0.83 0.53 0.89
[23] 2019 MU 50 2 2 nr. ** nr. ** nr. **
Proposed 2019  Smartphone 93 1 4 0.92 0.42 0.88

*Dedicated Application-Performed Evaluation. ** Values not Explicitly Reported Within
the Text.

an error < 0.5 in more than 80% of the istances. This makes us
to claim than a finer discretization (i.e. 0.5 instead of unit steps)
could certainly improve the algortihm performance. For the sake
of completeness, the Bland-ALtman Plot reported in Figure 5
show the difference between outcomes of the implemented ANN
model compared to the average of the four clinicians scores.
Finally, in Table IV we compare our results with similar studies
published in literature. As accuracy is a not sufficient measure
of classification performance when dealing with unbalanced
classes, we report other classification metrics previously intro-
duced, namely Pearson’s correlation coefficient r, Root Mean
Square Error RM S E, Intra-Class correlation /C'C'. Moreover,
these latter allow for a comprehensive comparison with other
works.

From Table IV it can be noticed that the present work employs
the largest patient cohort, as well as the higher number of clin-
icians; this ensures greater meaningfulness to the results. Fur-
thermore, two out three performance metrics (i.e. 7 and RM SFE)
outperform literature studies, while the I C'C' coefficientis in line
with the other studies. Specifically, higher Pearson’s coefficient
guarantees greater correlation with mean clinical score and a
lower RMSE is suggestive of a better concentration of data
around the line of best fit. Finally, it is worth underlining that
the correlation between our output and the mean clinical score

is higher than the best clinicians agreement (i.e. 0.92 vs 0.88).
The issue of inter-rater variability is discussed in the following.

B. Discussion

The MDS — Task Force on Technology has recently published
a document containing guidelines related to the correct use of
technology for PD patient’s monitoring and follow-up [24]. They
strongly affirm that the actual state-of-the-art clinical assessment
of this pathology, based on pre-scheduled medical examinations,
leaves significant room for improvement. In fact, besides the spo-
radicity of outpatient visits, clinical scales, which are presently
considered as the gold standard for PD monitoring, are prone to
inter- and intra-rater variability, and their accuracy may be even
outperformed by ML methods. Actually, clinicians could greatly
benefit from reliable longitudinal data, collected in unsupervised
environment during ADL, despite such data may be affected
by several confounding variables. In order to make technology
effective for patients, clinicians and caregivers, they propose a
roadmap whose main objectives are diagnostic support, better
patient’s follow-up, and detection of subtle yet significant signs
and symptoms of disease progression. An extended discussion
on inter-rater variability and on the benefits that an objective
tool could bring both to clinicians and patients, can be find in
Section V-D. At present, data acquisition was performed during
pre-scheduled outpatient visits. Most patients had taken their
usual drug dose, even though different time intervals had elapsed
since then, and the next scheduled dose was not imminent. In
few, particular cases (visit scheduled late in the morning — about
4%), some of them showed some end-of-dose effect. Yet, the
number of these patients was not enough to perform differential
analysis, thus we chose not to differentiate patients based on
motor condition. A possible alternative could be not to consider
these few patients for analysis. Again, we believe that this does
not affect in either sense the system performance, due to the
small number of subjects.

IV. CONCLUSION

In this paper, we have investigated the application of smart-
phone sensors for the evaluation of the LA task on people with
PD. We have employed several ML algorithms for the task
classification. At present, 93 patients have been evaluated by
four neurologists during their scheduled outpatient visit, and
their clinical assessment used to train the algorithms, as well as to
benchmark their performance. The achieved results, in particular
those yielded by ANN, are very promising, and make possible to
devise a tool capable of monitoring fluctuations in the patient’s
motor conditions. We believe that a key feature of the proposed
method is the fact that a common smartphone is employed.
Due to its simplicity of use, large availability, low cost, this
system can be self-managed by patients in his/her domestic
environment, as also verified in a preliminary test. Moreover,
exploiting a continuous score, physicians could monitor slight
patient’s fluctuations in more realistic conditions. Even though,
at present, the processing is performed offline on a laptop, the
low computational burden allow an easy integration in the same
portable instrument.
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Other future developments concern the acquisition of more
training data, especially for the patients with severe conditions
(MDS-UPDRS-3) and in non supervised conditions. Moreover,
acquiring new data from a larger cohort of neurologists would
allow an even stronger validation of the present results, enabling
the use of the proposed tool in a clinical environment. Finally,
we believe that phenotyping grouping (e.g. Tremor Dominant,
PIGD, ID) would lead to interesting results. At present, we have
not collected this kind of information, which goes beyond the
goals of the study. Nevertheless, we plan to collect much more
detailed clinical information in future works. Furthermore, we
plan to perform data acquisition in both ON and OFF medication
and to compare the results in different patients subgroups (e.g.
based on drug posology or treatment type). As for an extreme
practical use, we plan to test our tool in an experimental trial
addressing the new drug opicapone [25], in order to measure to
what extent this drug is able to limit daily fluctuations in people
with PD.

At last, we also believe that, even though these results only
address the LA, similar tests based on specific MDS-UPDRS
items can be integrated in the same device, providing a more
thorough surveillance of the patient’s conditions (the electronic
diary).

V. SUPPLEMENTARY MATERIALS
A. Considerations on MDS-UPDRS Scoring

The MDS-UPDRS [5], [6] is universally employed to assess
the course of PD after diagnosis. The evaluation encompasses
six parts. Part I refers to mental state, behavior, mood, pain and
autonomic dysfunctions. Part II is a patient self-assessment of
several daily activities. Part IV addresses possible complications
such as dyskinesias, whereas Part V and VI score the severity
of the disease (Hoehn and Yahr scale!). Part ITT, which is the
most relevant for this work, is the clinical evaluation of several
motor skills: speech ability, facial expressiveness, tremor,
rigidity, sensitivity of the fingers, hand mobility, leg agility,
ability to get up from a chair, posture and postural stability, gait
characteristics, bradykinesia and hypokinesia. The clinician
assigns an integer score between 0 and 4 according to the severity
of the considered sign. This approach is not free of criticism,
as it is know to lack repeatability, being affected by intra-
and inter-rater variability [14]. Moreover, it only encompasses
integer values, whereas a finer discretization could catch subtle
variations (MDS recommendations, [26]). One of the key
elements of this work is the definition of a proper ground truth
for the classification task. According to the MDS guidelines, LA
should be evaluated focusing the attention on speed, amplitude,
slowing, hesitations and interruptions. However, a large margin
of subjectivity does exist, leading to the already mentioned
inter-rater variability issue: the same patient, examined by
different clinicians, is likely to be scored differently [14]. The
MDS recommendations suggest that the patient should be

!'The Hoehn and Yahr scale is acommonly used method to evaluate the disease
progression and disability degree. It includes 5 integer plus 2 intermediate stages,
with 5 being the worst case.

scored by at least three independent clinicians, even though
this approach is seldom feasible in practical conditions. In our
experiments, we obtained the clinical scores of each patient
from four different neurologists (either directly or by inspection
of video recordings), in order to provide a reliable data labelling
to train and test the ML models. Another main novelty of this
paper is that we have implemented an Artificial Neural Network
(ANN) approach to face the discretization of LA, achieving a
continuous index to be compared with the MDS-UPDRS score,
averaged with respect to the four independent raters.

B. Smartphone Sensors Evaluation

In our experiments, a Samsung S5 mini smartphone was em-
ployed. The characteristics of the embedded inertial sensors have
been evaluated in order to assess their suitability for the specific
data acquisition tasks. Whereas the dynamic range required for
inertial sensors to match several human activities is well defined,
no similar data can be found in literature related to LA or similar
tasks. Hence, we have carried out a preliminary check, involving
ten voluntary young male adults (age: 26.1 + 3.2, body mass
index: 22.8+ 2.1). This is a conservative case, as we expect
elderly persons to perform the task with a lower movement
intensity. They have been equipped with a SensorTile ™ module
from STMicroeletronics™, mounted on each thigh [27]. This
state-of-the-art IMU exhibits a settable full scale range up to
4+ 16 g and + 2000 dps for accelerometer and gyroscope
respectively, and a 16 bit resolution. After being instructed,
participants performed the LA task twice. The acceleration and
angular velocity peaks turned out to be 1.13 g & 0.35 and 236
dps =+ 31 respectively. The 3D-accelerometer and 3D-gyroscope
included in the Samsung S5 mini smartphone were found to have
a sample frequency of 200 Hz, range £ 2 g and + 2000 dps,
resolution 40 mg and 60 mdps, respectively. Thus, embedded
inertial sensors meet the data acquisition requirements. It can be
noticed that most mid-range modern smartphones satisfy these
(quite lossy) requirements. In any case, the sensor characteristics
can be easily assessed prior to recommend the use of a given
smartphone model for data acquisition. For the sake of com-
pleteness, also sample frequency and resolution are reported. We
have checked that reported values were not limited neither by
the Operative System nor the application employed. To this end,
we have checked that no samples are lost, and we have visually
inspected the signals, ensuring that no saturation occurred.

C. Related Work

In recent years, thanks to the progress in the communication
and information technology and the availability of low-cost
sensors, the estimation of PD motor signs has received a lot
of attention. A thorough review can be found in [28].

Several papers address data mining and Artificial Intelligence
(AI) techniques to recognize the severity of PD cardinal motor
signs, using data derived from wearable sensors. In 2015, [14],
[17] enrolled 34 and 24 subjects respectively. Three Inertial
Measurement Units (IMUs) were mounted on patient’s chest
and on each thigh in order to assess the LA task in clini-
cal environment. Time- and frequency-domain features were
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extracted and selected in order to feed classification algorithms,
i.e. Support Vector Machine (SVM) and k-Nearest Neighbors
(kNN). Accuracy resulted in 43% in both studies; moreover,
in [29] a correlation coefficient » = 0.49 is reported between
the automatic scoring system and clinical MDS-UPDRS eval-
uation. Bradykinesia was evaluated in [21] through a specific
smartphone application tested on 14 people with PD. Different
MDS-UPDRS part-III items were addressed, i.e. 3.4, 3.6 and
3.8. Focusing on the LA task, the best correlation with the
clinical MDS-UPDRS score was found with leg movement
power (r = —0.5, p = 0.015). No classification was performed.
Recently, in [22] a six-month clinical trial is reported, conducted
on 44 people with PD to assess many MDS-UPDRS motor tasks
by means of a smartphone in home environment. Despite LA was
not included into the study, the gait task may be partially consid-
ered an indicator of bradykinesia; authors found an Intra-class
Correlation Coefficient (I C'C') of 0.88 with gait score. Moreover,
in [18] 19 PD subjects were monitored with ankle-mounted iner-
tial sensors for LA evaluation and treatment response. Time- and
frequency-domain features were computed to feed different clas-
sifiers, i.e. SVM, Decision Tree (DT), linear regression model.
Performance were expressed in terms of IC'C), correlation co-
efficient and Root Mean Square Error (RA S E) with respect to
the MDS-UPDRS bradykinesia score (item 3.14); ICC' = 0.89,
r =0.83 and RM SFE = 0.53 were reported. At last, in [23] 50
people with PD were tested while wearing IMUs on each ankle
for LA quantification. A fuzzy logic inference model was built
exploiting both the most meaningful features and rules based
on MDS-UPDRS item 3.8 recommendations. Unfortunately,
classification results in terms of accuracy, r, ICC and RM SE
are not reported. It is worth noticing that all the aforementioned
studies present some limitations: reduced sample dimension
(maximum 44 people with PD), dedicated hardware (only one
study employs smartphones), number of sensors (most studies
use three sensors). Furthermore, some relevant dataset details
(e.g. cardinality of MDS-UPDRS classes) are not reported.

D. Inter-Rater Variability

The possible disagreement in assigning MDS-UPDRS scores
can be justified by the complexity in discriminating between
adjacent classes, given that the clinicians are required to pay
attention to several different aspects. Hence, it is worth ques-
tioning whether differences between clinical and automatic
scores is due to non-proper feature selection or is intrinsic in
the data. This dilemma is also addressed in [24], where the
authors conjectured that automated methods may turn out to
be more reliable than clinicians themselves for this reason. To
this end we have investigated the neurologists agreement per
MDS-UPDRS class. The pie charts reported in Fig. 6 show the
distribution of scores for each clinician. This suggests that the
discordance between the clinical score and that provided by our
algorithm may be mainly due to this inter-rater variability. As
discussed in Section III-A, the correlation between the ANN
continuous score and the average clinical score provided by four
neurologists by examining each patient either directly or via
the videotaped leg movement is higher than the best clinicians

(a) Clinician 1 (b) Clinician 2

1%

20%
36%
32%

I CLo cL1 [ cl2 [ JcL3

36%

__CLO [mcL1 CL2 CL3

(c) Clinician 3 (d) Clinician 4

14%

41%
20%

25%

I CLo NcL1 [ cl2 [ JcL3

18%

32%

.y

__CLO [mcL1 CL2 CL3

Fig. 6. For each evaluating clinician, score distribution among
UPDRS-part Ill Leg-Agility score (CLx stands for score x, x = LA score)

agreement. Given that automated score performed better than
each single clinician, we suggest that a continuous score given
by a ML-based tool could be used as a tool to overcome intra-
and inter-rater variability.

1) The Patient’s and Caregiver’s Points of View: Achiev-
ing a fine monitoring of the disease progression, without re-
quiring the patient to face stressing, costly and impractical
movements from home, represents the obvious main advantage
for patients. A fine drug posology adjustment can extend the
years of good disease control, yielding an improved quality of
life. The patient feels safer and under control, and this promotes
more stable mood and more residual autonomy in a pathology,
which exhibits a large incidence of depression and anxiety. As
for acceptance, have interviewed about 100 patients, and the
large majority of them agrees that a noninvasive, easy-to-use,
unobtrusive, low-cost technology would be greatly appreciated.
Using the smartphone as a data collector exhibits pros and cons
from the patient’s point of view. It is a relatively high weight
device, but on the other hand, it is widespread and does not
imply significant additional cost. This task has demonstrated to
be feasible and little bothersome.

2) The Professional Point of View: Neurologists are well
aware that yearly, pre-scheduled visits do not enable an ade-
quate patient’s follow-up, especially in intermediate stages of
the disease, and are willing to adopt technological support. On
the other hand, the relevant information should be condensed
in very concise periodic reports. It must be noticed that, at
present we lack a standardized protocol and infrastructure able
to transmit and store this information [24]. Hence, the design
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of scalable, web-based architectures, managing heterogeneous
types of information and standards, compliant with regulatory
and security rules for medical data, is a crucial issue. The cost
effectiveness of such an infrastructure, in terms of improved
health and reduction of hospital admissions, needs also to be
quantified.
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