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Abstract 19 

Stratigraphic forward modelling (SFM) provide the means to produce geologically coherent and 20 

realistic models. In this paper, we demonstrate the possibility of matching lithological variability 21 

simulated with a basin-scale advection-diffusion SFM to a data-rich real-world setting, i.e. the 22 

Holocene Rhine-Meuse fluvio-deltaic system in the Netherlands. SFM model calibration to real-world 23 

data in general has proven non-trivial. This study focuses on a novel inversion process constrained by 24 

the top surface and the sand proportion observed at specific pseudo-wells in the study area. Goodness-25 

of-fit expressed by a new fitness function, gives the error calculated as the average of two calibration 26 
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constraints. Computational efficiency was increased significantly by implementing a new 27 

optimization process in two hierarchical steps: a) optimization in terms of sediment load and 28 

discharge, which are the most influential parameters having the largest uncertainty and b) 29 

optimization with respect to the remaining uncertain parameters, these being sediment transport 30 

parameters. The calibration process described allows for the most optimal combination of achieving 31 

acceptable levels of goodness-of-fit, feasible runtimes and multiple (non-unique) solutions to obtain 32 

synthetic stratigraphic output best matching real-world datasets. 33 

By removing model realizations which are geologically unrealistic, calibrated SFM models provide a 34 

multiscale stratigraphic framework for reconstructing static models of reservoirs which are consistent 35 

with the palaeogeographic layout, basin-fill history and external drivers (e.g. sea level, sediment 36 

supply). The static reservoir models that are matched with highest certainty therefore contain the 37 

highest geological realism and may be used to improve deep subsurface reservoir or aquifer property 38 

prediction. 39 

The new methodology was applied to the well-established Holocene Rhine-Meuse dataset which 40 

allows a rigorous testing of the optimization and the calibrated SFM allows investigation of controls 41 

of the Holocene development on the sedimentary system. 42 

 43 

Keywords: Stratigraphic forward modeling; basin modeling; fluvio-deltaic; inverse algorithm; model 44 

calibration 45 

Nomenclature 46 

SFM: Stratigraphic forward modeling 47 

sl: Sediment load 48 

q: Discharge 49 

es: Exponent of slope 50 

cs: Stream transport coefficient 51 

NA: Neighborhood algorithm 52 

ns: Initial population 53 

ndim: Number of uncertain parameters 54 



maxH: Maximum reservoir thickness 55 

N: binary parameter 56 

d.o.f.: degree of freedom  57 

 58 

1. Introduction 59 

Reservoirs with complex sedimentary heterogeneities such as low net-to-gross channelized deposits 60 

hold significant amounts of energy resources worldwide. Despite locally good reservoir quality, the 61 

estimation of reservoir properties in these heterogeneous deposits remains highly uncertain. The 62 

inherent heterogeneities in these deposits necessitate geological reservoir models, which are typically 63 

based on stochastic geometric and interpolation methods (Deutsch, 2002). Such methods generate 64 

solutions which are locally optimal, capturing the overall setting but are not constrained by the large-65 

scale geological setting of the reservoir (Weltje et al., 2013) nor include processes associated with 66 

sediment dispersal and deposition. Stratigraphic forward models (SFMs), that combine topographic 67 

diffusion and advective transport equations, are well suited for investigating the morphodynamic and 68 

resulting stratigraphic evolution of sediment dispersal systems over a wide range of spatial and 69 

temporal scales (Granjeon and Joseph, 1999; Paola, 2000; Meijer, 2002; Hajek and Wolinsky, 2012). 70 

Using SFM’s inherent holistic approach and geological results, they provide attractive tools for 71 

incorporating basin-scale information at the reservoir scale through the conditioning of geological 72 

data in a variety of ways (Cross and Lessemger, 1999; Wijns et al., 2004; Imhof and Sharma, 2006; 73 

Charvin et al., 2009; Falivene et al., 2014).  74 

Efficiency in matching the data is essential because it determines the applicability of SFMs in real 75 

field cases (Bertonello et al., 2013). Karssenberg et al. (2001, 2007) demonstrated the possibility of 76 

conditioning SFMs to well data using a simple 3D alluvial architecture model characterized by a 77 

single channel belt moving by avulsion over an aggrading floodplain. Sacchi et al. (2015, 2016) 78 

implemented the method proposed by Weltje et al. (2013) for conditioning the stratigraphic output 79 

derived from SimClast (Dalman and  Weltje, 2008, 2012), a basin-scale advection-diffusion model of 80 

fluvio-deltaic systems, in which the channels are represented by sub-grid elements. This SFM  81 

provides a more efficient sediment transport algorithm for reproducing channelized flow as opposed 82 



to conventional linear diffusion models (Meijer, 2002; Dalman and Weltje, 2008; Falivene et al., 83 

2014; Karamitopoulos et al., 2014; Sacchi et al., 2016).  84 

This workflow has been shown to work in a synthetic setting. The simulated channel occurrences 85 

were: a) fitted (conditioned) to synthetic seismic and local well data and b) integrated as soft 86 

constraints in geostatistical reservoir modelling. The static reservoir models that were constrained to 87 

maintain the quantitative coherence with the synthetic large-scale geological setting improved 88 

predictive power relative to the models using local well data only. 89 

In this case study, we conditioned SimClast (output/channel occurrences) to a data-rich real-world 90 

setting, i.e. the Holocene Rhine-Meuse fluvio-deltaic system. The calibration dataset consists of 91 

detailed lithological information obtained from GeoTOP, a high-resolution 3D voxel model that 92 

captures the distribution of channel bodies and overbank fines of the fluvial-deltaic deposits in the 93 

shallow subsurface down to 50 m below mean sea level (Stafleu et al., 2011; 2012; Van der Meulen et 94 

al., 2013; Maljers et al., 2015: Stafleu and Dubelaar, 2016; Stafleu and Busschers 2017). 95 

The applicability of a new workflow is demonstrated to a real-world setting through the 96 

implementation of a hierarchical optimization approach. This approach significantly differs from the 97 

one proposed by Sacchi et al. (2015, 2016), which adopted a less efficient Quasi-Monte Carlo 98 

approach with systematic sampling to explore the SFM parameter space. In fact, matching the SFM 99 

output to a real-world dataset requires a highly complex suite of parameters and calibration 100 

constraints compared to synthetic datasets. Therefore, a more efficient matching routine was required 101 

to minimize the number of runs to find the most optimal solution or solutions. Moreover, Sacchi et al. 102 

(2015) used a well calibration fitness functions based on well tops and lithological logs which turned 103 

out to be less effective for the inversion process. Therefore, in this study the well calibration function 104 

is based on the average net-to-gross values at wells to manage the scale difference between well 105 

(meter scale) and SFM (kilometer grid scale) information, which can be problematic when calibrating 106 

well data (Sacchi et al., 2016), This is in line with Falivene et al (2014), who observed that the 107 

representativeness problem could be mitigated by averaging over relatively large intervals.  108 

By using the data-rich Holocene-Rhine Meuse GeoTOP model the robustness of the workflow is 109 

illustrated and expanded where necessary. The predictive capabilities by incorporating synthetic 110 



stratigraphy created by the SFM through the sedimentary processes are shown. Lessons learned may 111 

be taken to future applications in deeper subsurface examples for accurate resource estimation. In 112 

addition to testing hypotheses on the controlling parameters of the sedimentary system in question, the 113 

matched/calibrated basin-scale model allows further use in constraining static models of channelized 114 

reservoirs. 115 

 116 

 117 

 118 

2. Method 119 

The proposed methodology may be summarized as follows (Figure 1): 120 

 Pre-processing 121 

 Characterization of the reference case: Holocene Rhine-Meuse fluvio-deltaic system 122 

 Definition of the constraints used for the calibration process 123 

 Sensitivity analysis to extrapolate the range of the input parameters used for SFM 124 

 Inversion process for SFM calibration 125 

 Stratigraphic forward modeling using SimClast 126 

 Application of the Neighborhood Algorithm to explore the domain of the unknown 127 

input parameters of SFM 128 

 Result analysis 129 

 Comparison between the calibrated models from SimClast and the reference GeoTOP 130 

model 131 

 132 

Our approach builds on the workflow proposed by Sacchi et al. (2015, 2016), but improves the 133 

methodology for both the definition of the fitness function expressing the calibration constraints and 134 

in the algorithm which explores the parameter space for optimal model calibration. Each step is 135 

described extensively in the following sections. 136 

 137 



 138 

 139 

Figure 1: Stratigraphic Forward Model calibration workflow. The dashed box indicates the inversion 140 

stage represented in fig. 6. 141 

 142 

 143 

 144 

2.1 Holocene Rhine-Meuse dataset  145 

TNO-Geological Survey of the Netherlands systematically produces detailed 3D geological models of 146 

the Dutch subsurface (Van der Meulen et al., 2013). One of these models is the voxel model GeoTOP, 147 

which describes the geometry of the shallow subsurface to a maximum depth of 50 m below mean sea 148 

level (Stafleu et al., 2011; 2012; Van der Meulen et al., 2013; Maljers et al., 2015: Stafleu and 149 

Dubelaar, 2016; Stafleu and Busschers 2017). The model is freely available online from the Survey’s 150 

web portal (www.dinoloket.nl/en). A major component of this static model are the Holocene Rhine-151 



Meuse fluvial deposits in the central part of the Netherlands (figure 2a). These fluvial sediments were 152 

deposited during the Holocene sea level rise, which started in the western part of the area at ~9000 153 

years BP, allowing base level rise and a complex of sand rich fluvial channel belt systems encased in 154 

floodplain fines to be deposited.  The channel belt positions in the GeoTOP model were taken from 155 

the channel belt maps of Utrecht University (Berendsen and Stouthamer, 2001; Cohen and 156 

Stouthamer, 2012). Base-level rise made that the tops of the younger channel belts occur at shallower 157 

depths. Controlling parameters such as sea-level (Hijma and Cohen, 2010) and discharge/sediment 158 

rates (Erkens et al., 2006; Koster et al., 2016) have been well studied and allow an estimate for the 159 

boundary conditions to be made for the SFM. 160 

This high-resolution 3D model has a grid discretization of 100 x 100 x 0.5 m and each voxel contains 161 

subsurface information, including estimates of lithostratigraphy and lithology. The grid discretization 162 

adopted, coupled with the very high borehole data coverage, allows GeoTOP to be used as a reference 163 

scenario due to its accurate representation of the channel body geometries and associated spatial 164 

lithological heterogeneity. 165 

In the present study, the focus is on the, non-anthropogenically influenced, Holocene (9000-1000 BP) 166 

fluvial deposits of the Zuid-Holland, Utrecht and Gelderland region, in the central part of the 167 

Netherlands’ subsurface. The 1000 year timeframe was chosen as younger deposits are influenced 168 

heavily by anthropogenic dyke, dam construction and land reclamation. This region extends over 169 

approximately 80 by 145 km and mainly consists of a complex fluvial channel system subdivided into 170 

five distinctive Holocene channel belts deposits, each identified by a unique code number. The 171 

channel belt complexes are classified from younger (shallower) to older (deeper): AEC, BEC, CEC, 172 

DEC, EEC. (Figure 2a). 173 

 174 

2.2 Definition of the calibration constraints 175 

Two calibration constraints were extracted from the GeoTOP model: (1) the top surface, analogous to 176 

a 3D surface derived from seismic interpretation and time-depth conversion, covering the area 177 

influenced only by fluvial and alluvial processes in the Rhine-Meuse delta; (2) the net-to-gross values 178 

at four synthetic wells, arbitrarily located in order to uniformly investigate a hypothetical reservoir 179 



area. The base surface was also used as an input constraint for the SFM simulation and it will be 180 

described in paragraph 2.3.2. 181 

The first calibration constraint was obtained by upscaling the GeoTOP model top surface, 182 

corresponding to 1000 years BP (prior to anthropogenic influences), to a grid size of 1 x 1 km 183 

conformable to the grid-resolution of the SFM grid size.  184 

In order to obtain the net-to-gross at wells (the second calibration constraint) the GeoTOP model 185 

(figure 2a) was indicator-coded into a channel-overbank depositional facies model (figure 2b). The 186 

facies differentiation was performed by assigning a value of 1 net-to-gross to channel belt cells and 0 187 

to overbank cells. Subsequently, net-to-gross data at four synthetic well locations was extracted from 188 

the net-to-gross model (figure 3a and 3b).  189 

 190 

 191 
 192 

Figure 2: (a) Map view of the GeoTOP model with channel belt classification indicating relative ages 193 

(from younger to older: AEC, BEC, CEC, DEC, EEC); the (b) indicator-coded depositional model 194 

showing channel deposits only (Coordinate reference system: RD coordinates). In both models, the 195 

overbank fines have been made transparent. 196 



197 
Figure 3: Calibration constraints. (a) Top surface (1000 years BP) of GeoTOP model  with indication 198 

of the reservoir area and well locations (Coordinate reference system: Netherlands – RD – New); (b) 199 

depositional facies logs at the synthetic wells of the GeoTOP model (left column) and simplified 200 

indicator-coded depositional model which differentiates between channel and overbank facies (right 201 

column). 202 



 203 

2.3 SFM description and setup 204 

2.3.1 Model description 205 

A basin-scale model of river-shelf evolution (Meijer, 2002) combined with a sub-grid 206 

parameterization of fluvio-deltaic processes and stratigraphy (SimClast: Dalman and Weltje, 2008, 207 

2012) was used to simulate the stratigraphy. While the grid size (1 by 1 km in this study) used for 208 

basin simulations does not allow the model to resolve sedimentary structures on the scale of 209 

individual channel belts, the implicit (subgrid) sedimentary processes included do allow a more 210 

realistic sedimentary architecture to develop as compared to diffusive basin scale models. 211 

Sedimentary processes relevant for this study are included by sub-grid parameterization of avulsions 212 

and mouthbar-induced bifurcations. Avulsions occur as a consequence of channel belt aggradation 213 

and superelevation whereas mouthbar-induced bifurcations dominate the terminal parts of the 214 

sediment dispersal system where delta lobes grow and topographic gradients are low or the system 215 

enters the marine domain. In order to adequately test the new optimization routine (see paragraph 2.4) 216 

and keep the parameter space within feasible dimensions the numerical experiments in this study did 217 

not include sedimentary processes associated with coastal and backwater dynamics (e.g. waves and 218 

tides). This model version adequately represents sedimentary processes shaping the stratigraphy, as 219 

the area of interest is influenced only by fluvial and alluvial processes in the Rhine-Meuse deposits 220 

during the Holocene.   221 

 222 

2.3.2 Setup 223 

The well studied Rhine-Meuse deposits allows a multitude of controlling parameters to be used. 224 

Incorporating all would result in a high dimensional parameter space, thereby resulting in an order of 225 

magnitude increase of number of computational runs. Therefore simplifications were made by 226 

assuming space differential subsidence, temporal variations in sediment supply and water discharge 227 

out of scope for this study.  228 

From the available dataset, several input parameters were extracted to be used in SimClast. 229 

Simulation time was set to 8000 years (9000 to 1000 years BP) corresponding to the main 230 



accumulation phase of sediment in the Holocene Rhine-Meuse delta (Erkens et al., 2006; Hijma et al., 231 

2009; Hijma et al., 2011). The initial topography, representing the top of the Rhine-Meuse fluvial 232 

paleovalley systems and its flanks at the onset of Holocene relative sea-level at ~9000 years BP, was 233 

taken from Koster et al. (2016) (figure 4). The surface represents an up-scaled version of a high-234 

resolution (100 by 100 m) grid that is used internally in the GeoTOP model workflow. The surface 235 

extends over an area of 78 by 178 km and has a topographic elevation ranging from 13 to -27 m with 236 

an average slope of about 0.01° dipping to the west. The grid discretization used is 1×1 km as this 237 

scale is a good balance between data resolution and computer runtime. Two river inlet locations were 238 

used, for the Rhine and Meuse river systems, and values of sediment supply (sl) and water discharge 239 

(q) rate were assigned accordingly. The SimClast setup also required stream and diffusive transport 240 

set coefficients, representing sediment transport efficiency. Both the environmental parameters (sl and 241 

q) and the coefficients were investigated with preliminary sensitivity analyses meant to investigate the 242 

impact of each single unknown separately. To this end, a preliminary uncertainty range was assigned 243 

to the environmental parameters and the coefficients. The fixed ratio assumed between Meuse and 244 

Rhine environmental parameters was also object of sensitivity.  245 

Starting from a base case, obtained by choosing for each unknown the mid value of its uncertainty 246 

range, SFM simulations were performed by varying only one unknown at a time, covering the 247 

uncertainty range with a loose sampling interval. The relative influence of each unknown was 248 

analyzed in terms of top surface elevation, average net-to-gross as well as channel layout. These 249 

sensitivity analyses showed that the sediment load, discharge, exponent of slope and stream 250 

coefficient had the most impact on the simulation results. These four parameters were assigned a 251 

range to explore the associated uncertainty while the other parameters were assigned a fixed value. In 252 

addition, from the results of the sensitivity analysis a ratio of 1/3 between Meuse and Rhine was 253 

individuated. Table 1 shows the fixed values assumed and the ranges explored for the main 254 

parameters of basin simulations used in the sensitivity analysis and in the subsequent stages. A 255 

mismatch exists between the sediment load and discharge values from literature (section 2.1) and the 256 

individuated used in SimClast. Therefore, the matching of SFM to real world results may show a 257 

strong non-uniqueness for the various outcomes. Nonetheless, the main objective of our work focused 258 



on the matching routine, therefore further study should be addressed in improving the SimClast 259 

matching of the environmental parameters. 260 

 261 

The river entry points were positioned along the eastern boundary of the initial surface and they were 262 

assumed to be fixed in time, a feature that is reasonable based on geological observations (Stouthamer 263 

et al., 2011). The sediment-supply consists of two discrete classes: sand and clay. Both the sediment 264 

entry locations and the sediment and water rates were time invariant for each simulation. The 265 

variation of the sea level was defined through the relative sea-level curve from Hijma and Cohen 266 

(2010) which describes the groundwater change over the considered simulation time.  267 

 268 

 269 
Figure 4: Model base surface (9000 years BP; Koster et al., 2016) used for basin simulations. The 270 

river inflow locations are indicated on the eastern boundary of the surface. 271 

 272 

Table 1: Values and ranges of the main input parameters used for basin simulation. 273 



 274 

Rhine sediment load (kg/s) sl  70-120 
Rhine discharge (m3/s) q 100 - 1500 
Exponent of slope [-] es 1 - 5 
Stream coefficient [-] cs 0.1 - 8 

Exponent of discharge [-] ed 1 
Transport length deposition/erosion [-] tl 1500 

Threshold discharge [m/yr] td 12.5 
 275 

 276 

 277 

 278 

 279 

2.4 Matching routine 280 

2.4.1 Neighborhood Algorithm 281 

A variation of the direct-search gradient-free Neighborhood Algorithm (NA) (Sambridge 1999, 2001, 282 

Imhof and Sharma, 2006, 2007) was used to calibrate the SFM. This iterative sampling algorithm is 283 

applicable to a wide range of inversion problems, particularly those where the relationship between 284 

the observations and the unknowns (a finite number of model parameters) is complex and non-linear 285 

(e.g. Imhof and Sharma, 2006; Sambridge, 2001).  286 

At the initial stage, the implemented algorithm generates nS sets of uncertain model parameters by 287 

randomly sampling each parameter inside a user-specified range following a uniform distribution 288 

(table 1) and the corresponding stratigraphic models are simulated. The magnitude of the initial 289 

population (nS) is generally set based on the number of searching dimensions (i.e. number of uncertain 290 

parameters, n). We set nS= n3.5, according to the empirical saturation value from Sambridge (2001), 291 

i.e. the minimum value of samples allowing the NA to perform well. Successively, for each sampled 292 

model output, the associated fitness is evaluated, based on the calibration constraints described in 293 

section 2.4.2. In optimization terminology, the initial set of sampled models is called initial 294 

population; the parameter space is a multidimensional domain delimited by the range of values for 295 

each uncertain parameter, where each parameter represents a searching dimension. 296 



At each iteration, the entire parameter space is partitioned into a set of n-dimensional Voronoi cells, 297 

where n is the number of uncertain parameters characterizing the model. Each cell delimits the nearest 298 

neighbor region of an element of the current population, which is the cell centroid. Voronoi cells are 299 

ranked according to the corresponding fitness, which is assumed to be constant within the cell and 300 

equal to the fitness of the cell centroid (Sambridge 1999a). New parameter sets are sampled from both 301 

low fitness cells and random ones; this allows the algorithm to shift the search to new areas of the 302 

parameter space once low-error-model regions have been oversampled (i.e. local minima). This is a 303 

strong point of the technique because it allows non-unique outcomes. For each of the selected 304 

Voronoi cells new samples are generated by uniform random walk within the cell (Sambridge, 1999a, 305 

1999b). 306 

The new samples generated at each iteration are added to the population; the corresponding 307 

stratigraphic models and fitness functions are calculated. As more models are added and evaluated, 308 

the NA focusses on low-error areas of parameter space and densely sample these. The inversion 309 

algorithm is run for several iterations until a stop criterion (a maximum number of iterations reached 310 

or stagnation in the fitness function) is met.  311 

The outcome of the inversion is an ensemble of diversified calibrated models rather than the lowest 312 

error model.  313 

The methodology is not well suited for high number of uncertain parameters because the 314 

neighborhood search via the Voronoi approach loses efficiency; in fact, a high dimensionality results 315 

in the data space being sparsely populated with data points. However, the NA has several advantages: 316 

 it is a good compromise between exploration and exploitation 317 

 it can manage multimodal functions (i.e. escape from local minima)  318 

 it can obtain a plurality of calibrated models instead of a single best fit 319 

 it considers all the previously attempted parameter combinations to produce new candidate 320 

solutions 321 

 it allows for straightforward parallelization 322 

 323 

 324 



2.4.2 Fitness function 325 

The outcome of SimClast simulations conducted for each sampled set of uncertain parameters is 326 

compared with the GeoTOP constraints. Two calibration constraints are considered (section 2.2): (1) 327 

the 1000 years BP top surface analogous to a seismic 2D surface information covering the area 328 

influenced only by fluvial and alluvial processes in the Rhine-Meuse delta; (2) the net-to-gross data at 329 

four synthetic wells, extracted from the GeoTOP model, located within a hypothetical reservoir area.  330 

The cumulative goodness of fit is quantified by the total misfit with respect to these constraints, 331 

expressed by: 332 

 333 

𝐸𝑟𝑟𝑜𝑟 =
ோெௌாೞೠೝ೑ೌ೎೐ାோெௌாೢ೐೗೗ೞ

ଶ
     (1) 334 

 335 

where 𝑅𝑀𝑆𝐸௦௨௥௙௔௖௘ is the root mean square error between the elevation of GeoTOP top 336 

surface ( 𝑍ீ௘௢்ை௉௜) and the corresponding surface obtained by the stratigraphic forward model 337 

described in paragraph 2.3 (𝑍ௌிெ௜); the quote difference was normalized with respect to the maximum 338 

reservoir thickness (maxH = 8 m): 339 

𝑅𝑀𝑆𝐸௦௨௥௙௔௖௘ =

ඨ∑ ൬
ೋಸ೐೚೅ೀು೔షೋೄಷಾ೔

೘ೌೣಹ
൰

మ೙೛೚೔೙೟ೞ
೔సభ

௡೛೚೔೙೟ೞ
    (2) 340 

 341 

where npoints is the number of grid points discretizing the surface. 342 

The normalizations applied make the contribution of such calibration constraints comparable with the 343 

well calibration and allowed to summarize them into a single fitness function. 344 

Eq. 2 slightly differs from the fitness function based on top surfaces presented in Sacchi et al. 2014; 345 

no tolerance was considered here due to the relatively thin layer of sediment in the case study. 346 

The root mean square error relative to well calibration reads: 347 

 348 

𝑅𝑀𝑆𝐸௪௘௟௟௦ =
ට∑ ( ேಸ೐೚೅ೀು೔ିேೄಷಾ ೔)మ೙ೢ೐೗೗ೞ

೔సభ

௡ೢ೐೗೗ೞ
    (3) 349 

 350 

where N is a binary parameter arising from the comparison of the average net-to-gross value at 351 

calibration wells ( 𝑁𝑇𝐺തതതതതത) with a threshold value (=0.3):  352 



𝑁 = ቊ
 1 𝑖𝑓 𝑁𝑇𝐺തതതതതത ≥  

0 𝑖𝑓 𝑁𝑇𝐺തതതതതത < 
     (4) 353 

 354 

 𝑁ீ௘௢்ை௉௜
 is calculated by averaging the arithmetic mean of the net-to-gross values at each calibration 355 

well (i) in the GeoTOP dataset ( 𝑁𝑇𝐺ீ௘௢்ை௉ప
തതതതതതതതതതതതതതതത), while 𝑁ௌிெ ௜ is calculated by averaging the net-to-356 

gross value at each calibration well (i) in the modeled stratigraphy (𝑁𝑇𝐺ௌிெ ప
തതതതതതതതതതതത). 357 

The above fitness functions (eq. 3) differ from the well calibration fitness functions proposed by 358 

Sacchi et al., 2015, which were based on well tops and lithological logs. To manage the scale 359 

difference between representativeness of the well (meter scale) and SFM (kilometer grid scale) 360 

information the comparison at the wells is made here in terms of N (eq.4) instead of lithological log or 361 

net-to-gross. In fact, Falivene et al (2014) observed that the representativeness problem could be 362 

mitigated by averaging over relatively large intervals. However, in the presented case the reservoir 363 

thickness is quite thin (8m in the thickest part) and the averaging was not sufficient to account for the 364 

uncertainty associated with well calibration data and the simplifications inherent to the SFMs, thus a 365 

threshold was introduced on the averaged values. 366 

Figure 5 shows the application of the threshold to the net-to-gross map of the GeoTOP model in 367 

which only the cells containing net-to-gross above the threshold are considered channels. 368 

 369 

 370 

 371 

 372 



Figure 5: (a) Net-to-gross map derived from GeoTOP by upscaling the 100 m cells in Figure 2b to the 373 

1 km cells of the model; (b) corresponding map with the threshold applied (Coordinate reference 374 

system: Netherlands – RD – New). 375 

 376 

2.4.3 Two-stage optimization approach 377 

The optimization process was performed over two hierarchical steps through the implementation of 378 

the NA. Preliminary sensitivity analyses (see section 2.3.2) were performed in order to identify the 379 

model parameters with the greatest influence on the outcome. Sediment load (sl) and discharge (q) 380 

turned out to dominate the SFM response in terms of fitness function value and visual inspection of 381 

the channel layout. Two other parameters showed a minor but significant impact on sediment 382 

transport efficiency in SimClast: the exponent of slope (es) and the stream transport coefficient (cs) . 383 

This suggested the adoption of a 2-stage optimization approach: the problem is decomposed by first 384 

optimizing over a subset of the uncertain parameters that most significantly influence the model 385 

realization and then optimizing over the remaining significant uncertain parameters, thus reducing 386 

complexity: 387 

 388 

 Step 1: optimization with respect to the uncertain parameters with highest impact on level of 389 

fitness (sl and q) 390 

 Step 2: optimization with respect to the remaining uncertain parameters (es and cs), in this step 391 

sl and q values from the previous step are assumed constant  392 

 393 

This approach allows us to mitigate the main disadvantage of NA, i.e. the loss of performance related 394 

to the gradually increasing size of parameters space. 395 

The comparison between the 1-stage and 2-stage approaches is illustrated in figure 6. 396 

In order to locate multiple acceptable regions in parameter space and thereby addressing the inherent 397 

non-uniqueness in geological synthetic models; Step 2 was run for a number of different promising sl 398 

and q combinations identified in Step 1. In order to identify clusters of potentially valid parameters 399 

combinations from the final population of Step 1, along with the best sampled solution, two other 400 



samples were selected based on a trade-off between the corresponding error and the parameter 401 

diversity from the best solution. This selection process was manually done by visual inspection of the 402 

Voronoi diagram of the fitness map (fig. 7); automation of the selection of promising parameters sets 403 

will be part of future developments.  404 

The proposed 2-stage NA approach with 4 parameters optimized sequentially in groups of 2 (i.e. 2 405 

parameters optimized at each step) was compared with the 1-stage NA approach, with four parameters 406 

optimized simultaneously. In both cases, the explorative feature of the algorithm was emphasized by 407 

spreading the samples over several NA cells: at each iteration, new models in number equal to half of 408 

the initial population were generated, each extracted from a different Voronoi cell. In order to avoid 409 

trapping in local minima, 1/4 of the resampled cells were chosen from the fitness ranking, while 3/4 410 

were chosen randomly from the remaining cells. The above relationships were calibrated against 411 

analytical multidimensional multimodal test functions: Styblinski–Tang function (Styblinski and 412 

Tang, 1990), Rosenbrock function (Rosenbrock, 1960), Holder table (Mishra, 2006), Bukin function 413 

n°6 (Bukin, 1997) in a preliminary validation phase. 414 

 415 

 416 

 417 



 418 
 419 

Figure 6: Comparison between the flowchart of (a) 1-stage with 4 degrees of freedom (d.o.f.) and (b) 420 

2-stage optimization approach with 2 degrees of freedom. The dashed boxes refer to the inversion 421 

process box in figure 1. 422 

 423 

 424 



 425 

 426 

 427 

Figure 7: Example of qualitative Voronoi map with identification of local minima (red dots). A fixed 428 

ratio between the Meuse and Rhine values is assumed. The forward model appears to be more 429 

sensitive to the sediment load but the water discharge has a significant impact as well.  430 

 431 

 432 

 433 

3. Results 434 

The first part of the work concentrated on the comparative analysis of the proposed 2-stage NA 435 

approach with respect to the 1-stage NA approach, (paragraph 2.4.3) evaluating their capability to 436 

sample a range of valid models that are consistent with typical calibration constraints. The 437 

optimization results were compared in terms of evolution of the fitness function with the number of 438 

models sampled during the iterative process. The error evolution is obtained by selecting the error at 439 

each iteration corresponding to the element of the current population exhibiting the best fitness, and 440 



plotting it against the population cardinality (i.e. number of sampled models). Figure 8 illustrates an 441 

example of the evolution of fitness function (gray line) compared with the evolution of each 442 

calibration constraint (well calibration, green line, and top surface calibration, orange line) for the first 443 

step of 2-stage NA approach. The fitness function (grey line) consistently decreases as the population 444 

grows with iterations, while the evolution of each calibration constraint is not necessarily consistently 445 

decreasing (e.g. orange line) because one of the two calibration constraints can decrease in fitness if it 446 

is compensated by a significant improvement of the other calibration constraint.  447 

 448 
Figure 8: Evolution of the fitness function (gray line) compared with the evolution of each calibration 449 

constraint (well calibration, green line, and top surface calibration, orange line) for the first step of the 450 

2-stage NA approach; squares represent the iterations. 451 

Figure 9 shows the comparison between the error convergence curves produced by the two 452 

optimization approaches. The 1-stage approach is represented by a unique blue dotted line. The 2-453 

stage approach, instead, shows a branch from the first step, characterized by a single red line, to the 454 

second step, characterized by three different lines (yellow, orange and brown) associated with the 455 

three sets of fixed environmental parameters (sediment load and discharge), named Case A, Case B 456 

and Case C respectively, selected among the final population of Step 1 based on the trade-off between 457 

error value and parameter diversity from the best solutions (section 2.4.3). Notice that Case A shows 458 

continuity of the error convergence curve between Step 1 and Step 2 because this scenario starts from 459 

the set of parameters that exhibits the lowest error among the population of Step 1. Conversely, for 460 



Case B and Case C a discontinuity is observed on the error convergence curve between Step 1 and 461 

Step 2 because these scenarios start from two different sets of parameters explored in Step 1, which 462 

are promising (i.e. higher error than the best solution of step1) but characterized by a higher error with 463 

respect to the best solution of Step 1. 464 

As described in paragraph 2.4.3, the initial number of the sampled models (i.e. initial population) is 465 

calculated as a function of the parameters that are used in the inversion algorithm (i.e. number of 466 

searching dimensions) and this explains why this number is much higher in the 1-stage (100) 467 

compared to the 2-stage approach (11). The cardinality of the initial population, in turn, affects the 468 

initial error value, which corresponds to the fitness of the best sample among the initial population. As 469 

more models are added and evaluated through the iterations, all the curves converge towards low error 470 

areas of the parameter space.  471 

Table 2 shows the set of environmental parameters and coefficients used to simulate both the 1-stage 472 

and  the 2-stage scenarios.  473 

Table 3 shows the average net-to-gross values at each well location for the 1-stage and 2-stage 474 

approaches while table 4 shows the average top surface misfit for the 1-stage and 2-stage approaches. 475 

The top surface misfit is obtained by calculating the differences in altitude at each grid surface map 476 

location along the vertical direction. The results show that the 2-stage Case C scenario has the lowest 477 

average net-to-gross misfit with respect the reference GeoTOP while the average surface misfit is 478 

comparable in all the cases. The matching of the wells seems to have a random behavior, in fact we 479 

did not observe a systematic problem in matching specific wells. As a way of example the top surface 480 

misfit maps for the 1-stage and 2-stage scenarios are shown in figure 10.  481 

Figure 11 shows net-to-gross maps of the reference case as well as of the simulated scenarios for both 482 

the 1 and 2-stage approaches (Case A-B-C).  All simulated maps show realistic representation of 483 

convergent and divergent fluvial channel patterns typical of a distributary network. 484 

 485 

 486 

Table 2: Set of optimal environmental parameters and coefficients obtained from the 1-stage and  the 487 

2-stage scenarios. 488 



 489 

 1-stage 
2-stage 
(Step 1) 

2-stage 
(A) 

2-stage 
(B) 

2-stage 
(C) 

Rhine sediment load (kg/s) 58 54 54 49 66 
Rhine discharge (m3/s) 1110 689 689 774 327 
Exponent of slope [-] 3.85 2.38 1.95 2.64 3.92 
Stream coefficient [-] 5.84 5.78 1.54 2.66 7.51 

 490 

 491 

 492 
 493 

Figure 9: Comparison between the error convergence curves produced by the 1-stage approach (blue) 494 

and the 2-stage approach which is composed by a first step (red) and a second step, characterized by 495 

three different lines (yellow, orange and brown) associated to the 3D set of fixed environmental 496 

parameters (sediment load and discharge). 497 

 498 

Table 3: Average net-to-gross at wells for the 1-stage and 2-stage approaches 499 

 500 

 Well 1 Well 2 Well 3 Well4 
GeoTOP 0.5 0.42 0.51 0.5 

1-stage 0.38 0.36 0.39 0.41 



2-stage_Case a 0.48 0.38 0.39 0.4 
2-stage_Case b 0.38 0.39 0.37 0.43 
2-stage_Case c 0.48 0.44 0.43 0.46 

 501 
Table 4: Average top surface misfit for the 1-stage and 2-stage approaches with respect to GeoTOP 502 

 Average Misfit (m) 
1-Stage 2.96 
2-stage_Case a 3.02 
2-stage_Case b 3.6 
2-stage_Case c 3.2 

 503 

 504 
Figure 10: Surface misfit for the 1-stage (left) and the 2-stage Case C scenarios. The misfit map is 505 

obtained by vertically subtracting the altitude at each grid location. The red polygon indicates the 506 

hypothetical reservoir area. 507 

 508 



 509 

Figure 11: (a) Upscaled GeoTOP net-to-gross map (1 km grid); (b) simulated net-to-gross map using 510 

the 1-stage approach; (c) (d) (e) three best net-to-gross map scenario obtained using the 2-stage 511 

approach (from left to right Case A, Case B and Case C). The color scale ranges between 0.3 and 0.6 512 

net-to-gross in order to highlight the channel belts geometries. The well locations are indicated with 513 

red dots while the contour line of the GeoTOP top surface is indicated with the red line.  514 

 515 

 516 

3.1 Stratigraphic expression of calibrated simulations 517 

The SFM records very high resolution vertical stratigraphic intervals (averaged over grid cells of ~1 518 

mm thickness). In order to compare with the GeoTOP data this stratigraphy is upscaled. Figure 12 519 

shows both the actual synthetic stratigraphy with net-to-gross property of one example gridcell after a 520 

typical simulation and the upscaled net-to-gross. Although upscaled net-to-gross property is used to 521 

compare with the GeoTOP model at well locations, actual high resolution net-to-gross stratigraphic 522 



expression output by the SFM may still be used for other purposes such as detailed constraining of 523 

reservoir models. 524 

 525 

 526 

Figure 12: Example of synthetic stratigraphy in one gridcell generated by the SFM (left) showing the 527 

low net-to-gross units at base and top, sandy units in yellow and mixed units in orange. Upscaled 528 

stratigraphy as extracted from the high resolution stratigraphy (right). 529 

 530 

The stratigraphic output of the SFM is highly variable. The misfit of the 1-stage example run and the 531 

best 2-stage run  (Case C) is shown in map view in figure 10.  This shows that there is a significant 532 

variability in realizations after calibration of further parameter sets.   533 

 534 

 535 

 536 

4. Discussion and conclusions 537 

4.1 Matching optimization 538 

The results outlined above show the possibility of matching lithological variations simulated with a 539 

basin-scale SFM to real data. In this numerical framework, accurate estimation of the SFM input 540 

parameters, especially initial topography and sediment entry points, ensured a reliable prediction of 541 

the spatial distribution of channelized deposits (Sacchi et al., 2015).  542 



The results demonstrate that a significant improvement is obtained by implementing the novel two-543 

step optimization approach as compared to the approach using four variables simultaneously. In fact, 544 

with the same number of sampled models the error is significantly lower (Case B and C) or nearly 545 

equal (Case A) to the one produced by the 1-stage approach; moreover the 1-stage approach did not 546 

succeed in obtaining results comparable with Case B or C even with a significantly larger number of 547 

samples. This demonstrates that a hierarchical exploration of the variable space can be very efficient. 548 

A small variation in one of the two leading parameters can have a greater impact on the fitness 549 

function value than a variation of one of the two other parameters, thus masking possible progress due 550 

to explorations in the remaining directions. On the other side the search space of each optimization 551 

step of the 2-stage approach is much reduced with respect to the 1-stage, thus allowing better 552 

exploration. The choice of using multiple starting points for the second step of the 2-stage approach 553 

proved to be valuable to escape from the local minimum at the end of Step 1. In fact, Case A, which 554 

uses the optimum arising from Step 1 to fix values of sediment load and discharge is trapped in the 555 

local minimum while Case B and C are able to further improve the sampling.   556 

 557 

4.2 The stratigraphic variability in model output 558 

The outcome of the inversion process is an ensemble of diversified calibrated models, which 559 

inherently capture a range of uncertainty. The uncertainty range largely depends on the amount and 560 

type of data available as calibration constraints (i.e. well logs, well tops, seismic data). As illustrated 561 

in figure 10 the difference in output of the model runs shows the strong non-uniqueness of the fluvial 562 

sedimentary architecture despite only varying two parameters. This gives rise to the idea that the 563 

diversified calibrated models may be combined to construct a set of probability density cubes of likely 564 

net-to-gross occurrence to be used as a soft conditioning, as proposed by Sacchi et al. (2016), for 565 

constraining reservoir scale models. Moreover, a Monte Carlo style post processing routine perturbing 566 

the calibrated models outcome may be added to account for the natural variability inherent in the 567 

sedimentary record which a deterministic SFM cannot capture. The interpretation of ancient deposits 568 

is many faceted, this is shown by the mismatch between the best fit sediment loads and discharge 569 

values in the model results (table 2) with the reference case (Figure 10). The outcome of our work in 570 



matching SFM to real world results may show a strong non-uniqueness for the various outcomes. 571 

However, the focus of this study is on optimizing the matching routine. Further optimization to match 572 

the N/G maps (see Figure 10) and expanding on this subject is proposed for further study. 573 

 574 

4.3 Geological constraints 575 

Wave reworking enhances large-scale depositional connectivity by producing laterally extensive 576 

sandy plains and beach-ridge complexes (Reynolds, 1999; Hampson, 2000). Similarly, tidal currents 577 

tend to increase depositional connectivity by forming elongated sand bodies perpendicular to the 578 

shoreline. However, the net effect of tidal activity becomes difficult to predict because it regulates 579 

local accumulation of fine-grained sediments, which may affect the morphodynamic evolution of the 580 

entire delta (Edmonds and Slingerland, 2010).  These coastal processes will have a direct influence on 581 

upstream fluvial processes in the modelled area by effectively changing the baselevel and sediment 582 

transport capacities of the channels in question.  583 

The mixing of sand with clay, peat formation and post-depositional processes (i.e. differential 584 

subsidence) complicate further predictions of incision and sedimentation patterns in tidally influenced 585 

distributary channels. Despite these potential problems, groundwater regime in the studied part of the 586 

Holocene Rhine-Meuse was river-dominated (Koster et al., 2016). Thus, based on sedimentological 587 

evidence it is not unreasonable to assume that our modelling approximations represented the 588 

sedimentary evolution in the study area fairly well as the area in question was influenced to a lesser 589 

extent by major peat deposition or tidal influence but was purely fluvial at time of deposition. Peat 590 

deposition has been shown to stabilize the channel belts further, decreasing lateral migration and 591 

increase the rate of filling by peat growth. 592 

 593 

4.4 Future work 594 

The workflow proposed in this study may be applied to deep, data sparse, reservoir or aquifers in 595 

order to populate static geological models with sedimentary properties derived from the calibrated 596 

SFM output. An additional use of SFM matched to real world data sets is by allowing conceptual 597 

theories to be tested and quantified. i.e. the current model may be used to test models of avulsion 598 



frequency in the Holocene Rhine Meuse fluvial system (Stouthamer et al 2011). 599 

The challenge of predicting reservoir-quality distribution in channelized reservoirs requires detailed 600 

knowledge about sediment-body geometry and heterogeneity at different scales (Martinius et al., 601 

2014). From this viewpoint, large-scale depositional connectivity which may be captured using the 602 

basin-scale SFM needs to be complemented by quantifiable information about the 3D geometry of 603 

architectural elements (i.e. channels, point bars, levees and crevasse splays) and their degree of 604 

amalgamation (sensu Peter et al., 2017). In addition, the spatial distribution of geological properties 605 

(e.g. petrophysical) need to be well described in order to more accurately predict reservoir-quality 606 

distribution. In that respect, future developments should focus on integrating post-depositional 607 

processes in SFMs, and in particular differential subsidence, tectonic control and early diagenetic 608 

alterations by means of reactive transport modelling. Further study should also focus on the automatic 609 

identification of the number of potential local minima that can be retained in the first stage of the 610 

optimization procedure (Step 1). A possible approach could be to use a density-based clustering 611 

algorithm, such as DBSCAN or OPTICS (Ester et. al, 1996; Ankerst et al., 1999) on a subsample of 612 

the sampled population obtained by applying cut-off values to the objective functions based on the top 613 

surface calibration (eq. 2) and well calibration (eq. 3) or to the combined error function (eq. 1). 614 

 615 

 616 

Computer code availability 617 

The related code is written in MATLAB 2018. The file name of related code is “NA_Basin”. To 618 

access the source file of the code, one can visit the repository on GitHub (https://github.com/REDD-619 

PoliTO/Optimization). 620 
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