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Abstract:
When sampling independent observations drawn from the uniform distribution on the unit interval, the

asymptotic behavior of both the empirical distribution function and empirical quantile function (as the
sample size gets large) is well known. In this paper we study analogous asymptotic results for the function
that is obtained by composing the empirical quantile function with the empirical distribution function. Since
the former is the generalized inverse of the latter, the result will approximate the identity function. We define
a scaled and centered version of this function – the empirical identity process – and prove it converges to
a highly irregular limit process whose trajectories are not right continuous and impossible to study using
standard probability in metric spaces. However, when this process is integrated over time, and appropriately
rescaled and centered, it becomes possible to define a functional limit theorem for it, which then converges
to a randomly pinned Brownian motion. By applying these theoretical results, a new goodness-of-fit test
is derived. We demonstrate that this test is very efficient when it is applied to data which come from a
multimodal or mixture distribution, like the classic old faithful dataset.
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1. INTRODUCTION

The asymptotic behavior of both the uniform empirical process and the uniform quantile process
is well known (e.g., Csörgő and Révész (1981), Csörgő (1983), Shorack and Wellner (1986)).
Such processes are defined as centered and scaled versions of the empirical distribution function
and the empirical quantile function,respectively. To the best of our knowledge this is the first in-
vestigation of the process resulting from applying the empirical quantile function to the empirical
distribution function itself. Intuitively, such a back-and-forth operation approximates the identity
function. We introduce a centered and scaled version of this process which we define as the em-
pirical identity process (EIP). The asymptotic properties of the EIP are somewhat unexpected:
the EIP converges in distribution to a white noise process whose finite dimensional distributions
are products of exponential distributions (or Laplace distributions, see the discussion around The-
orem 1). This limiting process is very irregular and in particular it is not right-continuous. It is
therefore impossible to build a proper weak convergence theory in any metric space. In the hope
of gaining regularity, we study the integral of the EIP. The resulting limit theorem is a functional
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version of a classical result by Moran (1947) on the asymptotic behavior of the sum of squared
spacings.

Our results provide some unexpected asymptotic properties of a process related to the uni-
form empirical and quantile function. Moreover, we demonstrate that these asymptotic results
have interesting applications from a statistical point of view. Based on the asymptotics of the EIP,
we propose a new test statistic that can be used in goodness-of-fit problems. The new method-
ology is not always superior to other methods based on the empirical distribution function, but
it performs better when the true distribution is multimodal or a mixture. Using simulations, we
identify cases in which this new statistic outperforms existing alternatives and also provide a
relevant application to the popular old faithful dataset.

2. EMPIRICAL IDENTITY PROCESSES, AND ASYMPTOTIC RESULTS

Let U1, U2 . . . , Un be independent random variables from a uniform distribution on [0, 1].
Let Un,1 ≤ . . . ≤ Un,n be their order statistics, Un,0 = 0 and Un,n+1 = 1. Let Fn(t) =
1
n

∑n
i=1(Ui ≤ t), 0 ≤ t ≤ 1, denote the empirical distribution function and Qn(u) = inf{t ∈

[0, 1] : Fn(t) ≥ u} the empirical quantile function, 0 < u ≤ 1.Qn(·) is the left-continuous gen-
eralized inverse function of Fn(·).

Define the lower empirical identity function as

RL
n(t) = Un,nFn(t) =

{
0 if 0 ≤ t < Un,1

Qn(Fn(t)) if Un,1 ≤ t ≤ 1 ,

the upper empirical identity function as

RU
n (t) = Un,nFn(t)+1 =

{
Qn

(
Fn(t) +

1
n

)
if 0 ≤ t < Un,n

1 if Un,n ≤ t ≤ 1

and the empirical identity function as their average

Rn(t) =
RL

n(t) +RU
n (t)

2
.

The trajectories of Rn(t), RL
n(t), and RU

n (t) for a specific sample of size n = 2 are shown in
Figure 1. By the Glivenko-Cantelli theorem, as n→∞, the three random sequences, Rn(t),
RL

n(t), and RU
n (t), converge almost surely in the uniform norm to the identity function. It is

therefore interesting to study their second order asymptotics by defining the lower and upper
empirical identity process

Y L
n (t) = (n+ 1)(RL

n(t)− t) and Y U
n (t) = (n+ 1)(RU

n (t)− t),

and the empirical identity process (EIP)

Yn(t) = (n+ 1)(Rn(t)− t) =
1

2
(Y L

n (t) + Y U
n (t))

for 0 ≤ t ≤ 1. We use the scaling factor n+ 1 instead of n to make notation easier in the follow-
ing sections.

Theorem 1. For any positive integer k and points 0 < u1 < · · · < uk < 1, the random vector(
Y U
n (u1), · · · , Y U

n (uk),−Y L
n (u1), · · · ,−Y L

n (uk)
)

converges in distribution to a vector of 2k
independent exponential random variables, as n→∞.
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2017 THE EMPIRICAL IDENTITY PROCESS 3

In other words, the joint finite dimensional distributions (FDDs) of the bivariate processe(
Y U
n (·),−Y L

n (·)
)

converge to those of two independent exponential variates. As a consequence,
for the EIP itself we can conclude that

Corollary 1. For any positive integer k and points 0 < u1 < · · · < uk < 1, the random vec-
tor
(
Yn(u1), · · · , Y U

n (uk)
)

converges in distribution, as n→∞, to a vector of k independent
random variables with the so called Laplace density f(z) = exp(−2|z|).

The proof of Theorem 1 is long and requires some preliminary lemmas. It is sketched
in the Appendix. A process with independent finite-dimensional distributions cannot be right-
continuous (see the criterion in Theorem 13.6 of Billingsley (1999)). Therefore the theory of
weak convergence in the usual space of cadlag paths D(0, 1) does not apply. The conclusion is
that such limit processes are fairly intractable objects and for any statistical application we need
to regularize them.

3. THE INTEGRATED EMPIRICAL IDENTITY PROCESS

The anti-derivative of a function is always more regular then the function itself. Therefore, in the
hope of obtaining a more regular limit process, it is natural to look at the asymptotic behavior of
the integrals of the processes defined in the previous section.

Since it turns out that the asymptotic behaviors of the lower and upper EIPs are equivalent
(see section 3.2 for further details), it is simpler and notationally convenient to study only the
integrated lower EIP defined as

In(t) = −
∫ t

0

Y L
n (u)du = (n+ 1)

∫ t

0

[u−RL
n(u)]du, t ∈ [0, 1] (1)

(the minus sign is to make it non-negative), called simply the integrated process hereafter.

3.1. The integrated process an its relation with spacings
A simple geometric inspection of Figure 1 shows that the integrated process is strictly related to
the uniform spacings, defined as

Dn,i = Un,i − Un,i−1, i = 1 . . . n+ 1. (2)

We obtain

In(t) =(n+ 1)

∫ t

0

[u−RL
n(u)] du

=(n+ 1)

nFn(t)∑
i=1

∫ Un,i

Un,i−1

(u− Un,i−1) du+ (n+ 1)

∫ t

Un,nFn(t)

[u− Un,nFn(t)]du

=
n+ 1

2

nFn(t)∑
i=1

D2
n,i +

n+ 1

2
(t−RL

n(t))
2 (3)

In particular, the integrated process evaluated at t = 1 equals

In(1) = (n+ 1)

∫ 1

0

[u−RL
n(u)] du =

n+ 1

2

n+1∑
i=1

D2
n,i.
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This is the well-known Greenwood statistic, for which a classical theorem due to Moran states
convergence to normality in the following way:

Theorem 2. (Moran 1947.) The following convergence in law holds

Mn =
√
n+ 1(In(1)− 1) =

√
n+ 1

(
n+ 1

2

n+1∑
i=1

D2
n,i − 1

)
⇒ N(0, 1). (4)

Theorem 2 refers to the convergence of In(1), the value taken by the integrated process at the final
coordinate t = 1. More can be said about the convergence of In(·) as a process in the functional
space D(0, 1). In other words, we are in a position to extend Moran’s theorem into a functional
version. To do so, we need some technical steps which involve so called strong approximation
theorems. The rest of this section can be skipped by those not interested in probabilistic details;
the important result is Theorem 4 of the next subsection.

Recall first the following strong approximation results of Aly (1983) and Aly (1988):

Theorem 3. (Aly 1983, 1988) There exists a probability space on which both

• a two dimensional Wiener process (W1(·),W2(·)) with zero mean and autocovariance matrix

E

[(
W1(s)

W2(s))

)
(W1(t) W2(t))

]
= min{s, t}

(
1 4

4 20

)
, t, s > 0

• and a vector {Dn,i}i=1...,n+1 of random variables of arbitrary size n with the same law as the
uniform spacings (2)

are defined, such that the two processes En(t) and Vn(t), 0 ≤ t ≤ 1, defined as

En(t) =

0 if 0 ≤ t < 2
n+1

√
n+ 1

(
(n+ 1)

∑b(n+1)tc
i=1 D2

n,i − 2t
)

if 2
n+1 ≤ t ≤ 1

Vn(t) =
1√
n+ 1

[W2((n+ 1)t)− 4tW1(n+ 1)] (5)

are so close to each other that the following condition holds: for every ε > 0 there are constants
A,B such that

P

[
sup

0≤t≤1
|En(t)− Vn(t)| > A

log(n+ 1)√
n+ 1

]
≤ B(n+ 1)−ε. (6)

Theorem 3 was first stated in Aly (1983), but a minor step of the proof was not fully justified.
This led the author to write a second paper (Aly (1988)) with a rigorous proof of Theorem 3,
based on a multivariate Hungarian construction due to Einmahl (1989). However, the rate of
convergence in Einmahl (1989) is suboptimal and not fast enough to allow for the rate log(n+
1)/
√
n+ 1 in Equation (6). Theorem 3 is then provided in Aly (1988) with a rate slowed to

(log(n+ 1))2/
√
n+ 1. We here conclude that the statement in Aly (1983) is actually correct.

The reason is that a stronger multivariate Hungarian construction is now available that allows us
to prove Theorem 3 with the same proof as in Aly (1988), as long as Zaitsev (1998) is cited in
place of Einmahl (1989). The process Vn(·) defined in Equation (5) is constructed by applying
such bivariate Hungarian construction. Different processes arise for different n, but their law is

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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actually the same irrespective of n, since they are all centered Gaussian processes with covariance
function given by

E(Vn(t)Vn(s)) = 20 min(t, s)− 16 s t.

Moreover, each of the Vn has the same law as the process

V (t) = 2
√
5W (t)− 2(

√
5− 1) tW (1), 0 ≤ t ≤ 1, (7)

where W (·) is a standard one-dimensional Wiener process. A consequence of Theorem 3 and of
the previous remarks is the following corollary

Corollary 2. The process En(·) converges weakly in D(0, 1) to the process V (·) defined by
Equation (7).

3.2. A new functional version of Moran’s theorem
Since the statistic Mn introduced in Equation (4) equals En(1)/2, the previous corollary may
already be considered a functional version of Moran’s theorem. However, it involves the process
En(·) and not the process In(·) which is of interest here. We therefore need another functional
version of Moran’s theorem which provides the asymptotics for the process In(·) directly.

Theorem 4. The process 2
√
n+ 1 ( In(·)−Fn(·) ) converges weekly in D(0, 1) to the Gaus-

sian process V (·) of Equation (7).

A full proof is given in the Appendix.
Due to the continuous mapping theorem and to the continuity of the sup operator and of the

absolute value, we can deduce the following corollary, which will be used in the next sections to
build a new goodness-of-fit test.

Corollary 3. The random variable 2 sup0≤t≤1
√
n+ 1 |ILn (t)−Fn(t)| converges weakly to

sup0≤t≤1 |V (t)|.

At the beginning of Section 3 we introduced the integrated process focusing on the integral
of the lower EIP. However it is legitimate to consider what would happen if we instead used the
integral of the upper EIP

IUn (t) =

∫ t

0

Y U
n (u)du = (n+ 1)

∫ t

0

[RU
n (u)− u]du, t ∈ [0, 1]

or if we considered the joint distribution of the two. To give a satisfactory answer a more for-
mal proof would be required, but it can be seen from Figure 1 that the difference between In(t)
and IUn (t) is uniformly bounded by (n+ 1)/2 times the squared maximal spacing. Therefore
one can apply the classical results in Slud (1978) on the almost sure rate of converence to
zero of the maximal spacing to show that the difference between

√
n+ 1 (In(t)−Fn(t)) and√

n+ 1 (IUn (t)−Fn(t)) is almost surely vanishing when the sample size tends to infinity. Con-
sequently, the couple (

√
n+ 1 (In(t)−Fn(t)),

√
n+ 1 (IUn (t)−Fn(t))) converges weakly to

a couple of identical copies of the process V (·) defined in Equation (7).

3.3. Characterization of the limit process and the asymptotic distribution of the
maximum
To use Corollary 3, we need to explicitely compute the distribution of the sup of the limit pro-
cess. We are able to derive an explicit distribution in Theorem 5.

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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Let W (·) be standard Brownian motion and B(t) =W (t)− tW (1), t ≥ 0 be a Brownian
bridge. For every t, B(t) is independent of W (1) and it has the distribution of Brownian mo-
tion which is constrained to visit zero (or “pinned to 0”) at time 1. A process B(t) + ty, t ≥ 0
also represents Brownian motion pinned to y when t = 1 (cf. Revuz and Yor (1999), page 37).
The limit process V (·) defined in Equation (7) admits therefore the equivalent representation
V (t) = 2

√
5
(
B(t) + tW (1)√

5

)
, t ≥ 0. It can be seen as Brownian motion which at time 1 is

pinned to a random positionW (1)/
√
5, scaled by a factor 2

√
5. We can derive the so-called two-

sided maximal probability distribution for V (t) from that of the pinned Brownian motion (cf.
Beghin and Orsingher (1999), Equation 4.12 or Borodin and Salminen (2002), Part II, Chapter
1, Equation 1.15.8(1)).

Theorem 5. The distribution function of the maximum of the absolute value of the stochastic
process V (·) is given by

P
(

sup
0≤t≤1

|V (t)| < b

)
=

∞∑
h=−∞

(−1)he−
4
50h

2b2 (8)

A detailed proof is given in the Appendix.

4. A NEW GOODNESS-OF-FIT TEST

Let X1 . . . Xn be a sample of independent continuous random variables, not necessarily with
identical distributions. Under the null hypothesis H0 that the distribution functions of the Xi are
some given Fi(x), i = 1, . . . , n, the transformed sample {Ûi = Fi(Xi)}i=1···n is composed of
independent uniform random variables. The integrated process of the transformed sample can be
used to construct a new goodness-of-fit test of H0 in the same spirit as the Kolmogorov-Smirnov
goodness-of-fit test.

4.1. A statistic derived from the sup of the integrated EIP
Let F̂n(t) be the empirical distribution function of the transformed sample and let În(t) be the
related integrated process (Equation (1)). We define the test statistic

dn = 2 sup
0≤t≤1

√
n+ 1 |În(t)− F̂n(t)|. (9)

Under H0, the sequence dn converges weakly to sup0≤t≤1 |V (t)|, whose distribution is given by
Equation (8). Let us remark that the distribution of dn is the same, irrespective of the distributions
Fi(x) of the single observations.

Define now a new goodness-of-fit test which rejects the null hypothesis if the value of dn is
larger then a critical value. An asymptotic critical value can be derived by numerically invert-
ing Equation (8), e.g. the 95% percentile of sup0≤t≤1|V (t)| equals b = 6.790494. Numerical
simulations show that the convergence is slow. For intermediate values of n (e.g n = 100) the
0.95 quantiles of dn are not well approximated by the asymptotic values, but they can easily be
derived using Monte Carlo methods. Results are summarized in Table 1.

4.2. Numerical simulations
We have run some numerical experiments to benchmark the performance of these new tests just
against other well-known goodness-of-fit tests like that based on the original statistic Mn of
Moran (Equation (4)). Other competitors are the classical Kolmogorov-Smirnov test, which is

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:



2017 THE EMPIRICAL IDENTITY PROCESS 7

based on the statistic

Dn = sup
t

√
n|Fn(t)− F (t)| = sup

t

√
n|F̂n(t)− t|

and the Anderson-Darling test, which belongs to the Cramer-von Mises family of tests and is
based on the statistic

An = n

∫ 1

0

w(u)
(
F̂n(u)− u

)2
du

with the weight function w(x) = 1/[x(1− x)], designed to pick up possible dissimilarities in
the tails.

For goodness-of-fit tests of this kind, the alternative hypothesis is completely nonparametric.
For data not generated according to the null distribution, the power of the test is strongly influ-
enced by the choice of the alternative distribution from which they are drawn. For example, if
we test normality of a sample which was generated from a Student-t distribution with the same
mean, we expect a test based on An to have higher power than one based on Dn, due to the
difference between the null and alternative distribution in the tails.

Now, if the dataset is generated from a mixture of normal distributions having the same vari-
ance σ2 but different means µ1 and µ2, we expect that a test based on the empirical distribution
may not easily find significant dissimilarities between the data and a normal distribution with
mean equal to a linear combination of µ1 and µ2, and variance somewhat larger then σ2 (say, the
variance of the mixture). However a test based on the spacings, such as the one using dn, could
achieve greater power. The intuitive justification is that the gap in the uniformized data between
the two modes would easily give rise to some large spacings that could make dn significantly
larger than in the uniform case.

We therefore check the power of the different tests by simulation in situations where the data
come from mixture distributions. This is first to highlight situations where dn performs better
than existing tests. For completeness, we also study a second set of examples in less favorable
conditions.

In all cases the power of the test is approximated by simulation as the ratio between the
number of rejections and the number of simulated samples, since the generating distribution is
always different from the null.

All numerical experiments are done using the R environment for statistical computing (R
Core Team (2017)). We use built-in functions to generate samples and to compute the value of the
test statistic Dn. For An we use the goftest package. To compute Mn and dn we use our own
code. Our R scripts are included as Supplementary Material in order to ensure reproducibility
and to allow the reader to try new cases.

We perform Monte Carlo calculations of the 0.95 quantiles for the different test statistics
over 106 uniform samples of lengths 30, 50, 100, 200, and 272 respectively. Such values are then
used as critical values for the tests, in order to make a fair comparison of the methodologies. The
quantiles are displayed in Table 1. Note that while the quantiles of An and Dn are already very
close to their asymptotic values when n = 30, this is not true for dn and Mn, their convergence
is much slower.

We next evaluate the power of the different tests for some examples.
In particular we choose a first set of examples whose common feature is that data are sim-

ulated from a mixture distribution, while the null hypothesis is that they come from a single
component:

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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• The null hypothesis is that our sample is taken from the standard normal distribution. The
10000 simulated samples of size 100 are generated from a mixture of two normal distributions
with equal weights, common standard deviation 0.45 and means 0.88 and−0.88. Numbers are
chosen so that the mixture distribution has approximatively zero mean and unit variance. We
call this alternative distribution a symmetric normal mixture.
• The null hypothesis is that our sample is taken from the standard normal distribution. The

10000 simulated samples of size 30 are generated from a mixture of two normal distributions.
The weights of the mixture are p1 = 1/5 and p2 = 4/5, the means are µ1 = 1.68 and µ2 =
0.42 and the standard deviations σ1 = 0.2 and σ2 = 0.6. Again, numbers are chosen so that
the mixture distribution has approximatively zero mean and unit variance. We call such an
alternative distribution an asymmetric normal mixture.
• The null hypothesis is that our sample is taken from the uniform distribution on (0, 1). The

10000 simulated samples of size 100 are generated from a mixture of two beta distributions
with parameters (2, 8) and (8, 2) and equal weights.

The results are summarized in Table 2. Both the dn and Mn statistics, which are based on
spacings, outperform the tests based on the empirical distribution. Moreover, the test based on
dn has the best power in all three examples.

Of course no test is uniformly best again all types of alternatives. In more standard situations
we do not expect our methodology to be superior to the classical methods based on the empirical
distribution function. A second group of examples follows. The null hypothesis is always that
our sample is taken from the standard normal distribution while the alternative is listed below:

• the 10000 simulated samples of size 100 are drawn from a Cauchy distribution with scale
parameter 0.5;
• the 10000 simulated samples of size 100 are generated from a Student’s t distribution with 2

degrees of freedom;
• the 10000 simulated samples of size 100 are generated from a normal distribution with mean

0.3.

The results are summarized in Table 3. Both the dn and Mn statistics, based on spacings, are
inferior to An which has the best power in all three examples.

The critical values in Table 1 are obtained by simulating from the uniform distribution. There
might be a loss in accuracy when data are generated from other distributions and transformed
through the cumulative distribution function. To check for such a possibility we perform the
following consistency check: we test the goodness of fit with respect to the true distribution of
the data, looking for the rate of occurrence of type I errors (see the code in the supplementary
material). We do not report the values here, but we noted no relevant discrepancies with respect
to the nominal level of 0.05.

4.3. An application to the Old Faithful dataset
Old faithful is a geyser in Yellowstone National Park, Wyoming, USA. For centuries it has been
erupting several times a day, spewing streams of hot water high into the sky. A popular dataset,
consisting of records of waiting times between eruptions and of their durations, is distributed
with R (R Core Team (2017)). The dataset contains 272 observations of both waiting times and
durations. We focus on the waiting times, which show a bimodal distribution as illustrated in
Figure 2. The data are in minutes (integers) and in order to avoid ties we jitter the data by adding
Gaussian noise with zero mean and standard deviation 0.4. The sample mean (before jittering) is
70.90 and the sample standard deviation is 13.59. All tests reject normality of the sample if the
null mean is fixed to 71 and the null standard deviation to 14. We do not report p-values, but the

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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code is available as Supplementary Material. If subsamples of size 50 are taken from the dataset,
then rejection of the same null hypothesis is not obvious anymore. We have selected at random
10000 subsamples of size 50 and run all four tests on each one. The results are summarized in
Table 4. The test based on dn seems to be able to reject the null hypothesis of normality with a
higher power.

5. CONCLUSIONS

We have defined the lower EIP and found that it converges to a process which has highly irreg-
ular trajectories. In the hope of gaining regularity we have studied the limiting behavior of its
integral, obtaining Theorem 4 as our main result. We have also computed the explicit limiting
distribution of the running sup of the integrated process given in Theorem 5. This result has an
important statistical application in the construction of a new goodness-of-fit test based on spac-
ings, as illustrated in Section 4. An application to the classic old faithful dataset supports the
conclusion that this new test is useful for multimodal data, coming for example from mixtures of
distributions.

6. FIGURES AND TABLES

TABLE 1: Approximate values of the 0.95 quantile of the distributions of dn, Mn, Dn and An for
different sample sizes n computed by Monte Carlo simulations. In the last column their asymptotic values.

HH
HHHstat

n
30 50 100 200 272 ∞

dn 5.857 6.127 6.349 6.493 6.536 6.790

Mn 1.449 1.559 1.637 1.679 1.684 1.645

An 2.493 2.497 2.495 2.494 2.490 2.492

Dn 1.322 1.332 1.341 1.346 1.346 1.358

TABLE 2: First group of examples (with mixtures). Power of the test at 5% significance level for the new
test based on dn = 2 sup0≤t≤1

√
n+ 1 |În(t)− F̂n(t)| in comparison with the Moran test based on Mn,

the Kolmogorov Smirnov test based on Dn and the Anderson Darling test based on An.

H0 true distribution power of dn power of Mn power of Dn power of An

Normal symmetric Normal mixture 0.698 0.644 0.618 0.521

Normal asymmetric Normal mixture 0.553 0.527 0.232 0.179

Uniform Beta mixture 0.858 0.788 0.792 0.753
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TABLE 3: Second group of examples (without mixtures). Power of the test at 5% significance level for the
new test based on dn = 2 sup0≤t≤1

√
n+ 1 |În(t)− F̂n(t)| in comparison with the Moran test based on

Mn, the Kolmogorov Smirnov test based on Dn and the Anderson Darling test based on An.

H0 true distribution power of dn power of Mn power of Dn power of An

Normal Cauchy 0.657 0.769 0.261 0.998

Normal Student t 0.346 0.383 0.252 0.982

Normal Shifted Normal 0.554 0.207 0.732 0.824

TABLE 4: Results of the analysis of subsamples of the waiting times between the eruptions of the old
faithful geyser.

Total samplesize 272

Number of subsamples 10000

Size of subsamples 50

Rejections by dn 6692

Rejections by Mn 6282

Rejections by Dn 4369

Rejections by An 2976
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APPENDIX
This Appendix contains proofs of the theorems found in the body of the paper.

Proof of Theorem 1.
Theorem 1 states that the FDDs of the bivariate process

(
Y U
n (·),−Y L

n (·)
)

converge weakly to
the FDDs of two independent exponential white noise processes. Before proving the theorem,
two useful lemmas are proven.

Consider k fixed distinct numbers u1 < u2 < . . . < uk in the interval (0, 1) and let u0 = 0
and uk+1 = 1 be the extreme points. We will be working with the k + 1 bins induced by these
points and with the order statistics from the uniform i.i.d. process U1, U2, . . . falling into the
different bins. In particular, let

Cn = Cn(u1, u2, . . . uk) = (Cn,1, Cn,2, . . . , Cn,k, Cn,k+1)
′

= n · (Fn(u1), Fn(u2)− Fn(u1), . . . , Fn(uk)− Fn(uk−1), 1− Fn(uk))
′

be the sequence of the vectors of counts of i.i.d. uniform observations
U1, U2, . . . , Un falling into the different bins, n = 1, 2, . . . ,. In order to keep the notation
simple, the dependence of Cn on u1, u2, . . . uk will be understood. It is well known that the
distribution of Cn is multinomial with parameters n, u1, u2 − u1, . . . , uk − uk−1, 1− uk; i.e.
the probability mass function of the vector (Cn,1, Cn,2, . . . , Cn,k)

′, evaluated at the vector of
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FIGURE 2: Estimated density of the Old Faithful dataset. Bimodality is clearly visible.

non-negative integers (c1, . . . , ck), with
∑k

j=1 cj ≤ n, is

n!

k+1∏
j=1

(uj − uj−1)cj
cj !

(1)

where ck+1 = n−
∑k

j=1 cj .

Appendix Lemma 1 Let U1, . . . , Un, be a sequence of i.i.d. uniform random variables on
[0, 1]. Let Un,1 ≤ . . . ≤ Un,n be their order statistics. The constants 0 = u0 < u1 < u2 <
. . . < uk < uk+1 = 1 induce a partition of the interval (0, 1) into bins. The order statistics
Un,1, . . . , Un,n may be subdivided into groups belonging to the different bins. The counts of
the order statistics falling into each of the bins are summarized into the multinomial vector Cn.
The vectors of order statistics falling into each bin are conditionally independent given Cn Each
of these vectors has a conditional distribution equal to the distribution of the order statistics of
Cn,j i.i.d. uniform observations on the interval (uj−1, uj).

Proof.. The density of the order statisticsUn,1 ≤ . . . ≤ Un,n evaluated at 0 < x1, . . . , xn <
1 is n! · (0 < x1 < x2 . . . < xn < 1). In order to write the joint density of the order statis-
tics and the vector Cn = (c1, . . . , ck, ck+1)

′, a compatibility factor
∏k

j=1(xc1+...+cj < uj <
xc1+...+cj+1

) has to be included. The conditional density of Un,1 ≤ Un,2 ≤ . . . Un,n given
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Cn = (c1, . . . , ck, ck+1)
′ is, letting c0 = 0,

n!(0 < x1 < . . . < xn < 1)
∏k

j=1(xc1+...+cj < uj < xc1+...+cj+1
)

n!
∏k+1

j=1 (uj − uj−1)cj/cj !

=

k+1∏
j=1

cj !

(uj − uj−1)cj
(uj−1 < xc0+...+cj−1+1 < . . . < xc0+...+cj < uj)

which is seen to factor into the k + 1 marginal densities of the vectors of adjacent order statistics
falling into the k + 1 bins. It is apparent that their distributions are as described in the statement
of the theorem. �

The following lemma is a corollary of the previous one:

Appendix Lemma 2 The conditional density of the bidimensional vector
(RU

n (uj−1), R
L
n(uj))

′ given Cn = (c1, . . . , ck, ck+1)
′, evaluated at (x, y), is

cj(cj − 1)(y − x)cj−2

(uj − uj−1)cj
(uj < x < y < uj−1), (2)

provided cj > 1, for each j = 1, . . . , k + 1.

Proof.. Given Cn, by the previous lemma RU
n (uj−1) and RL

n(uj) have the same distribu-
tion as the minimum and the maximum, respectively, of cj uniform observations on the interval
(uj−1, uj). It is easy to check that their density is given by formula (2). �

Proof of Theorem 1. Consider the moment generating function

φY U
n (u1),...,Y U

n (uk),−Y L
n (u1),...,−Y L

n (uk)(v1, . . . , vk, w1, . . . , wk)

of the vector (Y U
n (u1), . . . , Y

U
n (uk),−Y L

n (u1), . . . ,−Y L
n (uk))

′ evaluated at
(v1, . . . , vk, w1, . . . , wk)

′. Its asymptotic expression as n→∞ will be discussed. For
each n an explicit form is found by conditioning on Cn:

φY U
n (u1),...,Y U

n (uk),−Y L
n (u1),...,−Y L

n (uk)(v1, . . . , vk, w1, . . . , wk) =

= E

exp
 k∑

j=1

[
vjY

U
n (uj)− wjY

L
n (uj)

]
= E

E

exp
 k∑

j=1

[
vjY

U
n (uj)− wjY

L
n (uj)

] ∣∣∣∣∣ Cn


= E


k+1∏
j=1

E
[
exp

(
vj−1Y

U
n (uj−1)− wjY

L
n (uj)

) ∣∣Cn

]
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where v0 = wk+1 = 0 for the sake of obtaining a compact notation. To derive the last line, the
conditional independence property of Appendix Lemma 1 has been used and random variables
relative to the different bins have been grouped.

Now we apply Appendix Lemma 2 to obtain an explicit form for the random variable
E
[
exp(vj−1Y

U
n (uj−1)− wjY

L
n (uj))|Cn

]
.

By the strong law of large numbers, for every ε there exist a set Aε such that P(Aε) = 1 and
for all ω ∈ Aε there exist an N(ω, ε) such that for all n > N(ω, ε)

min
j=1···k+1

Cn,j

n
(ω) > uj − uj−1 − ε.

On any such set for all n > max{N(ω), 1
uj−uj−1−ε} we have

min
j=1···k+1

Cn,j(ω) > 1.

Without loss of generality, we can work on the set Aε as long as only asymptotic results are of
interest. Then, on this set Aε, for any large enough n, we have

E
[
exp(vj−1Y

U
n (uj−1)− wjY

L
n (uj))|Cn

]
=

∫ uj

uj−1

∫ uj

x

exp(vj−1(n+ 1)(x− uj−1)− wj(n+ 1)(y − uj))

Cn,j(Cn,j − 1)(y − x)Cn,j−2

(uj − uj−1)Cn,j
dydx

=

∫ 1

0

∫ 1−s

0

exp(vj−1(n+ 1)(uj − uj−1)s+ wj(n+ 1)(uj − uj−1)t)

Cn,j(Cn,j − 1)(1− s− t)Cn,j−2dtds

= 1 + Ij1 + Ij2 + Ij3

after the change of variable s = (x− uj−1)/(uj − uj−1) and t = (uj − y)/(uj − uj−1) and a
few integrations by parts, where

Ij1 = vj−1(n+ 1)(uj − uj−1)
∫ 1

0

exp(vj−1(n+ 1)(uj − uj−1)s)(1− s)Cn,jds

Ij2 = wj(n+ 1)(uj − uj−1)
∫ 1

0

exp(wj(n+ 1)(uj − uj−1)t)(1− t)Cn,jdt

Ij3 = vj−1 wj (n+ 1)2(uj − uj−1)2∫ 1

0

∫ 1−t

0

exp (vj−1(n+ 1)(uj − uj−1)s+ wj(n+ 1)(uj − uj−1)t) (1− s− t)Cn,jds dt.

Now, by the law of large numbers we have Cn,j/(n+ 1)→ uj − uj−1 a.s., as n→∞, for each
j = 1, . . . , k + 1. Thus on the set Aε introduced before((

1− s

n+ 1

)n+1
)Cn,j/(n+1)

≤ exp(−s)uj−uj−1−ε. (3)
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After the changes of variable s = z
n and t = r

n , we can apply the dominated convergence theorem
and it follows that, as n→∞ and for |vj | < 1, j = 0, 1, . . . , k + 1:

Ij1 = vj−1(uj − uj−1)
∫ n

0

exp[vj−1(uj − uj−1)z]

[(
1− z

n+ 1

)n+1
]Cn,j

n+1

dz

→ vj−1(uj − uj−1)
∫ ∞
0

exp[(vj−1 − 1)(uj − uj−1)z]dz

=
vj−1

1− vj−1
almost surely (a.s.)

Ij2 →
wj

1− wj
a.s.

Ij3 = vj−1 wj n
2(uj − uj−1)2

∫ n

0

∫ n(1−r)

0

exp[vj−1(uj − uj−1)z + wj(uj − uj−1)r]

[(
1− z + r

n+ 1

)n+1
]Cn,j

n+1

dz dr

→ vj−1
1− vj−1

wj

1− wj
a.s.

Now, after some algebra we have that as n→∞:

k+1∏
j=1

(1 + Ij1 + Ij2 + Ij3)→
k+1∏
j=1

1

1− vj−1
1

1− wj
=

k∏
j=1

1

1− vj
1

1− wj
a.s.

since we had set v0 = wk+1 = 0. Moreover, since (3) also ensures uniform integrability, we have
that

φY U
n (u1),...,Y U

n (uk),−Y L
n (u1),...,−Y L

n (uk)(v1, . . . , vk, w1, . . . , wk) =

= E

k+1∏
j=1

(1 + Ij1 + Ij2 + Ij3)

→ k∏
j=1

1

1− vj
1

1− wj

which concludes the proof of Theorem 1. �

Proof of Theorems 4 and 5.
Theorem 4 can be seen as a consequence of Theorem 3, by a suitable application of the continu-
ous mapping theorem. The detailed proof is below.

Proof of Theorem 4. For every t, there are nFn(t) observations in our sample of size n
which are smaller then t and the value of the last one is exactly equal to

RL
n(t) = Un,nFn(t) = Qn(Fn(t)).

By Equation (3), we have In(t) = n+1
2

∑nFn(t)
i=1 D2

n,i +
n+1
2 (t−RL

n(t))
2. Then

n+ 1

2

nFn(t)∑
i=1

D2
n,i ≤ In(t) ≤

n+ 1

2

(n+1)Fn(t)∑
i=1

D2
n,i.
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Since b(n+ 1)Fn(t)c = nFn(t) for all 0 ≤ t < Un,n and b(n+ 1)Fn(t)c = nFn(t) + 1 for all
Un,n ≤ t ≤ 1, we have that the difference between 2

√
n+ 1 ( In(t)−Fn(t) ) and En(Fn(t))

is uniformly bounded by (n+ 1)(maxiDn,i)/2. By Slud (1978) we have that maxiDn,i =

O
(

logn
n

)
almost surely as n→∞, and

2
√
n ( ILn (t)−Fn(t) ) = En+1(Fn(t)) +O

[(
(log n)2√

n

)]
with probability one. Accordingly En(Fn(t)) and 2

√
n+ 1 ( In(t)−Fn(t) ) have the same

limit distribution. Now, Fn(·) converges to the identity function id(·) (which of course is de-
terministic) and En(·) converges weakly to V (·). As a result, the pair (En(·),Fn(·)) converges
weakly in D2(0, 1) to (V (·), id(·)), and by the continuity of the composition map, applying the
continuous mapping theorem (see Billingsley (1999), page 151), we can conclude that

2
√
n+ 1 ( In(t)−Fn(t) )⇒ V (t), t ∈ [0, 1].

�

Proof of Theorem 5. We can derive the two-sided maximal probability distribution for V (t)
from that of the pinned Brownian motion (cf. Beghin and Orsingher (1999), Equation 4.12 or
Borodin and Salminen (2002), Part II, Chapter 1, Equation 1.15.8(1) page 174) as follows

P
(

sup
0≤t≤1

|V (t)| < b

)
= E

[
P
(

sup
0≤t≤1

∣∣∣∣B(t) + t
W (1)√

5

∣∣∣∣ < b

2
√
5

) ∣∣∣∣W (1)

]
.

Based on Equation 4.12 in Beghin and Orsingher (1999) or Part II, Chapter 1, Equation 1.15.8(1)
page 174, in Borodin and Salminen (2002), we know that

P
(

sup
0≤t≤1

|B(t) + ty| < a

)
=

∞∑
h=−∞

(−1)he−2ha(ha−y)

then

P
(

sup
0≤t≤1

|V (t)| < b

)
=E

[ ∞∑
h=−∞

(−1)he−2h
b

2
√

5

(
h b

2
√

5
−W (1)√

5

)]
=

=

∞∑
h=−∞

(−1)he−
h2b2

10 E
(

e
hb
5 W (1)

)

=

∞∑
h=−∞

(−1)he−
4
50h

2b2 .

�
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