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Chapter 1

Set Membership Fault Detection for Nonlinear
Dynamic Systems

Milad Karimshoushtari, Luigi Spagnolo, Carlo Novara’

In this chapter, an innovative approach to fault detection for nonlinear dynamic sys-
tems is proposed, based on the recently introduced quasi-local Set Membership iden-
tification method, overcoming some relevant issues proper of the “classical” tech-
niques. The approach is based on the direct identification from experimental data
of a suitable filter and related uncertainty bounds. These bounds are used to detect
when a change (e.g., a fault) has occurred in the dynamics of the system of inter-
est. The main advantage of the approach compared to the existing methods is that
it avoids the utilization of complex modeling and filter design procedures, since the
filter/observer is directly designed from data. Other advantages are that the approach
does not require to choose any threshold (as typically done in many “classical” tech-
niques) and it is not affected by under-modeling problems. An experimental study
regarding fault detection for a drone actuator is finally presented to demonstrate the
effectiveness of the proposed approach.

1.1 Introduction

Consider a discrete-time nonlinear system in state-space form:

2% = f7 (Zk—1,up—1) +di
Yk = Zik

(1.1

where z; € R" is the state, y; € R is the output, z; is a component of zz, u; € R"™
is the input, d; € R"™ is a bounded disturbance and k = 0,1,2,... is the discrete
time index. Assume that the input u; and the state z; are measured. Note that the
assumption of measuring the state is not strictly necessary: the fault detection ap-
proach proposed in the following can be applied with minor modifications using an
input-output system representation, see Remark 1 below.

A “classical” approach to fault detection is to identify a model of the system
(1.1) and to design a filter/observer on the basis of the identified model. The designed
filter/observer is then used to generate on-line a suitable residual signal. The fault
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is detected when the residual exceeds a given threshold, see e.g. [1, 2, 3, 4, 5, 6,
7, 8,9, 10]. However, the design of the filter/observer may be hard in the presence
of nonlinear and/or uncertain dynamics. Indeed, designing an optimal filter from a
nonlinear model is in general not possible, and approximate filters only, such as the
Extended Kalman filters, can be actually obtained. These kind of filters may often
be inaccurate and not even guarantee the estimation error stability. Moreover, the
choice of the threshold may be critical, especially when poor prior information on
the system is available. Another relevant issue is that, in real-world applications, the
system (1.1) is unknown and only approximate models can be identified from finite
data; evaluating the effects of the modeling error on the estimation error of the filter
designed from the approximated model is a largely open problem.

Set Membership fault detection methods have been introduced to efficiently deal
with modeling errors, [11, 12, 13, 14, 15, 16, 17]. These methods have been mainly
developed for linear systems, while only few of them deal with nonlinear systems,
[15, 16, 17]. Typically, in Set Membership methods, a suitable estimation interval is
computed online and the fault is detected when one or more measured variables fall
outside this interval.

In this chapter, following this Set Membership philosophy, an innovative ap-
proach to fault detection is considered, allowing us to overcome the above issues.
The main advantage of this approach compared to the existing methods (“classical”
and Set Membership) is that it avoids the utilization of difficult filter design proce-
dures, since the filter/observer is directly designed from data. Other advantages with
respect to the “classical” methods are that the approach does not require to choose
any threshold and it is not affected by modeling errors since no model is used. A
further interesting feature is that the approach is computationally simple, in both the
design and implementation phases.

The method proposed in this chapter represents an improvement with respect to
the one of [18]. Indeed, in [18], filter design is performed by means of the so-called
local nonlinear Set membership identification method, where the filter is obtained
in the form of a linear combination of given basis functions. In this chapter, a so-
called quasi-local method is presented, where no filter parametric form needs to be
assumed. The filter is obtained directly from experimental data in a non-parametric
closed form, thus not requiring the choice of a suitable set of basis functions. Such a
quasi-local approach is similar to the so-called global approach of [19] but leads to
the derivation of significantly less conservative uncertainty bounds.

The chapter is organized as follows. In section 1.2 the fault detection problem is
formulated in the set membership framework, defining the types of assumptions and
optimality concepts considered. In sections 1.3 and 1.4, the nonlinear set member-
ship identification method of [19, 18] is summarized. Two versions of this method
are discussed: the global one, where the filter is obtained in closed-form, and the
local one, where the filter is obtained in the form of a linear combination of given
basis functions, solving a convex optimization problem. In section 1.5, the quasi-
local approach is presented. In section 1.6, two algorithms are presented to find the
model parameters and an algorithm to build an adaptive set membership model. In
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section 1.7 a summary of the fault detection procedure is given. Finally, in section
1.8, the method is tested on a drone propeller in a real experimental setting.

1.2 Nonlinear Set Membership Fault Detection

Suppose that the function f“ in (1.1) is not know but a set of noise corrupted data is
available, given by

D= {%, N}, (1.2)

where X = (Zx_1,ix—1). The proposed fault detection approach consist of the fol-
lowing main steps. First, a Set Membership filter for the system (1.1) is defined from
the dataset (1.2) which gives us tight bounding functions f and f, such that

f (%) < f7 () < f (%), Vk.

Then, a fault detection system F is defined, on the basis of the bounding functions f
and f. The inputs of F' is Xx = (Zx—1,0x—1), the outputs are the following:

Vi = f (%) + &
TR }k>L. (1.3)

where & is a bound on the noise d; affecting the system. It will be shown in the
following sections how to construct the functions f and f and to properly choose the
involved parameters (e.g., &). The rationale behind this fault detection scheme can
be explained as follows.

Since J = f7 (Xk) +di, we have that 5 < ¥y, Vk. Similarly, it holds that j; > Yo
Vk. It follows that J; > ¥, or 7 < y, only if the function f“ has changed, i.e. only if
some structural change has occurred in the system (1.1). On the basis of this result,
fault detection is performed by checking on-line if §; > y; or i < Vi@ fault is
detected as soon as one of these two inequalities is satisfied.

Remark 1. [fthe system state is not measured, the following input-output represen-
tation can be considered:

Yi = f° (xx) +d (L4)
X = (k1 oes Yoy s Uk— 15 o Uk, ) '

where y, € R™ is the measured output, uy, € R™ is the measured input and dj, € R™ is
an unknown bounded disturbance. Note that the function f° in (1.4) is different from
the one in (1.1). The proposed fault detection approach can be applied considering
this representation without significant modifications.

Remark 2. The proposed fault detection approach can be applied to each state
component (or output component, in the case where the input-output representation
(1.4) is used), in order to obtain a multi-dimensional fault detection system, allowing
us to improve the detection performance with respect to a mono-dimensional case.
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1.2.1 Problem Formulation
Consider a nonlinear function f° defined by
y=/r"(x) (1.5)

where x € X C R™, X" is a compact connected set and y € R. Suppose that f° is not
known but a set of noise-corrupted data D = {fk,f/k}é:l is available, described by

ye=J" (%) +dp, k=1,2,...,L (1.6)
where dy is a noise. Assume that the noise sequence d = (d;,da,...,d;) is unknown
but bounded:

||, < u (1.7)

where ||-||, is the vector £, norm. A general formulation is developed in the follow-
ing, allowing us to deal with the most important cases (i.e. ¢ = 2,c0) in a unified
framework. As well known, the ¢, norm is related to the energy of the considered
signal, while the £, norm to its amplitude. The choice of this norm can be carried
out on the basis of the prior knowledge on the energy or amplitude of the involved
noise (if available) or by means of a trial and error procedure.

In the following sections, the problem of deriving from the available data an
approximation f of f° and evaluating tight estimate bounds on f° is considered.
The approximation is required to be accurate on the whole domain &X' . The accuracy
is measured by means of the following approximation error:

e(f) == Fll (1.8)

where ||-||, is a functional L, norm, defined as

x)|P dx]V/P, ,00
||fpz||f(-)||p£{[fX|f( )P dx]'/P,p € [1,00) (1.9)

esssupc x [ f(x)], p = .

For a given estimate f, the related L), error is given by (1.8). This error cannot be
exactly computed since f* is not known. It is only known that f° € FF'S, where FF'S
is called the Feasible Function Set, that is, the set of all possible functions consistent
with the available prior information and measured data. The formal definition of
FFS will be given in the next sections, for three relevant specific cases. This moti-
vates the following definition of identification error, often indicated as worst-case or
guaranteed error.

Definition 1. Worst-case approximation error of f

If=fllp- O (1.10)

EN(f) = sup
fEFFS

An optimal approximation is defined as a function f°” which minimizes the
worst-case approximation error.

Definition 2. An approximation f°P is optimal if

~

EN(f*) = inf EN(f) = Ry.
n
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Rz is called the radius of information and is the minimum worst-case error that can
be achieved on the basis of the available prior and experimental information. 0

Finding optimal approximations may be hard or not convenient, and sub-optimal
solutions can be looked for. In particular, approximations called interpolatory are
often considered in the literature, see e.g. [20], [21].

Definition 3. An approximation f! is interpolatory if
fleFrs. O

A fundamental property of an interpolatory approximation is that it guarantees
a worst-case error degradation of at most 2, [20], [21]. An approximation with this
property is called almost-optimal.

Definition 4. An approximation f* is almost-optimal if

~

EN(f*) <2infEN(f). O
;

In this chapter, the following problem is considered.

Problem 1. From the data set (1.2), find an approximation f of f°
(i) optimal or almost-optimal; 7
(ii) equipped with tight interval estimates f, f for f°. O

Remark 3. In the SM and approximation theory literature, two optimality concepts
are typically considered: local and global optimality, [20, 19]. The worst-case error
(1.10) is a local error, since it depends also on the function f° and the data D,
i.e. EN(f)=EN(f,f° D). A global identification error is also often considered,
defined as:

ENS(f)=  sup  EN(f,f°,D).
JoeF ()
Defd:||d| <u}
An approximation f8 is called globally optimal if EN8(f8) = inffENg(f). This
is the optimality concept usually investigated in the SM context and approximation
theory literature, [20]. Note that a locally optimal algorithm f°P is globally optimal,
but f8 is not in general locally optimal. Therefore, the local optimality concept
investigated in this chapter is stronger and thus less conservative than the global
optimality concept investigated in the above mentioned literature.

1.3 Nonlinear Set Membership Identification: Global Approach

In order to ensure a bound on the approximation error (1.8), some assumptions have
to be made on the noise affecting the data and on the unknown function f°. In this
chapter, the noise sequence d = (d;,da,...,d;) in (1.6) is assumed to be bounded
according to (1.7). Differently from [22], where f° is assumed to be parametrized
by a finite set of basis functions, a mild regularity assumption is made here on f°,
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not requiring any knowledge on its parametric form. In particular, we assume that
the function f* is Lipschitz continuous on X:

ffeF (@ (1.11)
for some I' < o, where
FI)=A{f:1f &)= f&)| <T[x—x[|,,Vx,x€ X}
This allows us to introduce the Feasible Function Set (FFS).

Definition 5. The Feasible Function Set is
FFS={feF:|5- @, <n} (1.12)
Wherey: 6717"'33}1) andf(;{) = (f(kvl)77f(5ch)) O

According to this definition, FF'S is the set of all functions consistent with the
prior assumptions and data. If the prior assumptions hold, then f° € FFS, that is an
important property for evaluating the accuracy of any estimate.

In the Set Membership framework, the validation of prior assumptions is a fun-
damental step. It is usual to introduce the concept of prior assumption validation as
consistency with the available data: the prior assumptions are considered validated
if at least one estimate consistent with these assumptions and the data exists, i.e. if
FFS is not empty, see e.g. [21] and [23].

Definition 6. Prior assumptions are validated if FFS # & O

The following theorem gives a necessary and a sufficient condition for the vali-
dation of prior assumptions. Let us define the following functions:

T = min (g T flv—Fil)

o _ (1.13)
f(x) = max (hy —Tllx—xl5)
k=1,...,.L
where Ek =Yi+ & and hy =y, — &.

Necessary and sufficient conditions for checking the assumptions validity are
now given.

Theorem 1. (i) A necessary condition for prior assumptions to be validated is:
&%) 2 by f(%) < hy, k=1, ..., L.
(ii) A sufficient condition for prior assumptions to be validated is: f(Xi) > by, f (%) <

Iy, k= 1,...,L.
Proof.  see [19]. O

Note that the fact that prior assumptions are validated, i.e., that they are consis-
tent with the present data, does not exclude that they may be invalidated by future
data. In the reminder of chapter, it is assumed that the sufficient condition holds. If
not, values of the constants appearing in the assumptions on function f° and on the
noise dy have to be suitably modified. The above validation Theorem can be used for
assessing the values of such constants so that sufficient conditions holds.
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Now let the function f, be defined as

1 =
£ =51 (x) + 7 (x)] (1.14)
where f(x) and f(x) are given in (1.13). The next result shows that the estimate f*
is optimal according to definition 2 for any L, norm.

Theorem 2. Assume that:

(i) The noise affecting the measurements {fk,fzk}ézl is bounded according to (1.7).
(ii) The function f° is Lipschitz continuous according to (1.11).

Then, for g = oo and for any p € [1,00]:

(i) The approximation f¢ defined in (1.14) is optimal.

(ii) The worst-case approximation error of f€ is given by

1 , A
E(f‘)=5I\f—i\|p="}fEN(f)=Rz. (1.15)

Proof.  see [19]. O

1.3.1 Interval estimates

The interval estimates £, S of the unknown function f are now given for the cases
where the noise is bounded in /. norm (i.e. ¢ = e in (1.7)).

Theorem 3. Assume that:

(i) The noise affecting the measurements {fk,f)k}ﬁ: 1 is bounded according to (1.7).
(ii) The function f° is Lipschitz continuous according to (1.11).

Then, for g = oo and for any x € X, f°(x) is tightly bounded as

S0 < %) < f) (1.16)

Proof.  see [19]. O

f and [ are also called optimal bounds since they are tightest upper and lower
bounds of f°.

1.4 Nonlinear Set Membership Identification : Local Approach

Suppose that a preliminary approximation f* of the function f° has been obtained
using any method. This approximation is of the form

N
[ x) =Y aig; (x) (1.17)
i1

where ¢; : X — R are Lipschitz continuous basis functions and a; € R are parameters
identified by means of some suitable algorithm (two algorithms will be presented in
Section 1.4.2). The choice of the basis functions ¢; is clearly an important step of
the identification process, see e.g. [24, 25, 26]. In several cases of practical interest,
the basis functions are known a priori to belong to some “large” set of functions, see
e.g. the example presented in [22]. The sparse approximation algorithms presented
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below can be applied in these cases to select within this “large” set the functions
which are important for providing an accurate description of the system under inves-
tigation. In other cases, the basis functions are not known a priori and their choice
can be carried out considering the numerous options available in the literature (e.g.
gaussian, sigmoidal, wavelet, polynomial, trigonometric). See [24] for a discussion
on the main features of the most used basis functions and for indications for their
choice.
Define the following residue function:

fa () =12 (x) =" (x). (1.18)

From (1.11) and from the Lipschitz continuity of ¢;, it follows that fa is Lipschitz
continuous over the set X’:

fa € F(Th). (1.19)

for some I'p < oo. Note that the Lipschitz constant I’y can be estimated by means of
the algorithm presented in section 1.6.

Remark 4. The inclusion (1.19) corresponds to assume a global maximum rate of
variation for fa but a local maximum rate of variation for f°. Indeed, for every
x,X € X, the following inequalities hold:

< BOA®
Fa< 5=, <Ta

*(x)—f*(x) ?(x)—f° (%) *(x)—f*(x
g == HEn? < L5241
We can observe that, as expected, the maximum rate of variation of fa is constant
and equal to Tz for any X € X. Instead, the maximum rate of variation of f° is I'p
plus a quantity that depends locally on the point X. For this reason, when f* =0 and
thus fan = f°, the approach is called global Set Membership approach which was
discussed in section 1.3. Otherwise, the approach is called local Set Membership
approach.

|
=
I

Under the above assumptions and, in particular, under (1.19) and (1.7), we have
that f° € FFS, where FFS is the Feasible Function Set defined as follows.

Definition 7. The Feasible Function Set is
FES={f:f=f"+/fa Ja€ F(La), Iy-f®)I, <u}
where y = (y1,...,y.) and f(X) = (f (X1),...,f (XL))- O

According to this definition, FF'S is the set of all functions consistent with the
prior assumptions and data. In the Set Membership framework, the validation of
prior assumptions is a fundamental step. It is usual to introduce the concept of prior
assumption validation as consistency with the available data: the prior assumptions
are considered validated if at least one estimate consistent with these assumptions
and the data exists, i.e. if FF'S is not empty, see e.g. [21] and [23].

Definition 8. The prior assumptions are validated if FFS # &. O
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The following theorem gives a necessary and sufficient condition for the valida-
tion of prior assumptions.

Theorem 4. FFS # & if and only if the optimization problem (1.30) is feasible.
Proof.  See [18]. ]

The following theorem shows that the approximation f* in (1.17) is interpola-
tory (and thus almost-optimal). The theorem also provides an explicit bound on the
worst-case approximation error. Let us define the following functions:

fa(x,8) = kIliliHL(5k (a*) + & +Tallx—Xll,)

k=L o ~ 1.20
£y (68) = max (8(a") & Talx—5il) (-2

?('xag) :f* (x)+?A (X,S)
fx,e)=f"(x)+ [, (x€)
where & (a*) =y — f* () (see (1.31)) and & > 0,k=1,...,L.

(1.21)

Theorem 5. Assume that:

(i) The noise affecting the measurements {fk,yk}ﬁzl is bounded according to (1.7).
(it) The function f° is Lipschitz continuous according to (1.11).

Then, for g =2, and for any p € [1,00|:

(i) The approximation f* defined in (1.17) is interpolatory (and thus almost-optimal).
(ii) The worst-case approximation error of f* is bounded as

o~

EN(f*) < max H?A("g)*IA('f)H — 2infEN(J). (1.22)
l[€ll,<u P 7
ll€ll,<m
Proof.  See [18]. O

Suppose that €* = €* = &, where € = (€),...,€.) is obtained as described in
Section 1.4.1. Now let the function f¢ be defined as

F@ =70+ g [Falee)+ £, (e (1.23)

where f, f are given in (1.20). The following result shows that this function f* is
an optimal approximation of f°.

Theorem 6. Assume that:

(i) The noise affecting the measurements {fkjk}ﬁzl is bounded according to (1.7).
(ii) The function f° is Lipschitz continuous according to (1.11).

Then, for g =2, and for any p € [1,00|:

(i) The approximation f¢ defined in (1.23) is optimal.

(ii) The worst-case approximation error of f* is given by

o~

ENG) = 3 [Tat0 -1, o) =N () (124

p

Proof.  See [19]. O
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In summary, we have shown that the function f*(x) is an almost-optimal ap-
proximation, whereas the function f€(x) = f* (x) + [f4 (x,€) + [, (x,€)]/2 is an
optimal approximation of f°. The correction term [f, (x,€) + f, (x,€)]/2 can be
useful to check how close is f* to the optimum: The two approximations can be be
evaluated off-line on a set of data not used for identification. If the errors of the two
approximations on these data are similar, it can be concluded that f* is practically
optimal. Otherwise, this comparison allows us to quantify the suboptimality level of
f* with respect to f€.

Remark 5. A subcase of the general theory presented here is when f* =0, in which
we have the so-called global Set Membership approach, previously presented. Oth-
erwise, if f* # 0, we have the so-called local Set Membership approach. See also
Remark 4 for an explanation of this terminology.

1.4.1 Interval estimates

Interval estimate on the unknown function f° are now derived. A general formulation
is developed, allowing us to deal with the cases where the noise is bounded in ¢; or
lo norm (i.e. g =2 or g = o in (1.7)).

1.4.1.1 Noise bounded in ¢, norm

Theorem 5 does not allow the evaluation of interval estimates, since the assumption
that the noise sequence d = (dj,d>,...,dr) is bounded in ¢, norm gives no infor-
mation on how the single elements dy are bounded. In order to overcome this issue,
some additional assumption has to be made on the element-wise boundedness of the
noise sequence d. This kind of assumption can be obtained as follows.

Since f* is an almost-optimal approximation of f°, we have that f* (x;) =
f° (%) and, consequently, that dy. = y; — f° (xx) = Yk — f* (Xk) = & (a*). It is then
reasonable to assume the following relative plus absolute error bound:

|di| < & =€ |6 (a¥)|+€% k=1,...,L (1.25)

where the term € | (a*)| accounts for the fact that dj ~ & (a*) and €% accounts for
the fact that di and & (a*) are not exactly equal. The parameters €”,€% > 0 have to
be taken such that €"p + eI < . Indeed, if this inequality is satisfied, (1.25) is
consistent with (1.7): [|d||, < €"u +&*V/L < u. Following this indication, £” and &
(together with I'y) can be chosen by means of the procedure presented in [19].

In order to satisfy the assumption (1.25), the following additional constraints
have to be inserted in Algorithm 1 (in particular, in (1.30) and on line 5 of (1.32)):

Vi — P (k) a| < &, k=1,...,L (1.26)

where @y (X;) is the kth row of the matrix ®.
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1.4.1.2 Noise bounded in /.. norm

If the noise is bounded in /. norm, the required interval estimates can be obtained
without introducing any further assumption. Indeed, in this case,

lde| <& =p, k=1,...,L. (1.27)

0

The following theorem, holding for both the ¢, and /.. cases, provides tight

point-wise interval estimates for f°(x) and gives an expression of the worst-case

error bound computable for any dimension #n, (a computationally tractable algorithm
for this computation is presented in [27]).

Theorem 7. Assume that:

(i) The noise affecting the measurements {fk,f)k}ﬁ: | is bounded according to (1.25)
or(1.27).

(it) The function f° is Lipschitz continuous according to (1.11).

Then, for g = 2,00 and for any p € [1,00]:

(i) The worst-case approximation error of f* is bounded as

EN(F) < |[Fa o)~ £, ()| =2infEN ().
f

(ii) For any x € X, f°(x) is tightly bounded as
fx,e) < f(x) < flxe). (1.28)

Proof.  See [18]. O

1.4.2  Local Approach - identification algorithms

In this section, two algorithms for the identification of the parameters a; in (1.17) are
proposed.

In order to ensure suitable regularity properties of the approximation, limiting
well-known issues such as overfitting and the curse of dimensionality, we require the
vector a = (ay,ay,...,ay) € RV of the coefficients in (1.17) to be sparse. Hence,
under assumption (1.7), a solution to the identification Problem 1 could be found by
solving the following optimization problem:

0 _ .
a” = arg min |lall,

) acRN (1.29)
subject to ||y —Pal|, < .

where

5; i(’)\;la"wj\;L)
¢ (x1) - v (x)
b = : :

¢ (x) - ov ()
LoD - (@ ],
01 (X) = (¢1(x1),...,91 (x2)), and |||, is the ¢y quasi-norm of a, defined as the
number of non-zero components of a. In fact, minimizing the ¢y quasi-norm of
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a vector corresponds to minimizing the number of its non-zero elements, i.e. to
maximizing its sparsity. On the other hand, the constraint ||y —®al|, < y ensures
that the identified coefficient vector is consistent with the measured data (1.6) and
the prior assumption on noise (1.7).

However, the optimization problem (1.29) cannot be easily solved, since the ¢
quasi-norm is a non-convex function and its minimization is an NP-hard problem.
The classical approach to overcome this issue is to replace the ¢y quasi-norm with its
convex envelope, i.e. the | norm, see e.g. [28], [29], [30]. The identification Prob-
lem 1 can thus be solved efficiently by means of the following convex optimization
problem.

Algorithm 1. Function identification 1

a* = arg min ||al|
acRV (1.30)
subjectto ||y —Pal|, < p

where W can be chosen as a positive number slightly larger than u™™, the minimum
value for which the problem is feasible (this choice is theoretically motivated by the
validation Theorem 4). Provided that u > ™", the value of | can be tuned to
suitably manage the trade-off between accuracy and sparsity. U

Another interesting ¢; algorithm, completely based on convex optimization, is
now presented. As discussed below, this algorithm provides sparser solutions with
respect to the standard algorithm (1.30), which is based on simple ¢;-norm mini-
mization.

Without loss of generality, assume that the columns of & are normalized:
|¢;(X)|l2=1,i=1,2,...,N. Define the following quantity:

18 (a)]; +16(a)lk,
e C)

where Ky = 2||al|,, o (®) is the minimum non-zero singular value of ® and

5 (a)=5—®a
wlg = | X (W76 ()7, (1.31)
ielk

being I the set of the K largest inner products |w” ¢; (¥)|. Let card(-) denote the set
cardinality.

Algorithm 2. Function identification 2

1. Solve the optimization problem (1.30) and set a' := a*.
2. Letr(a') = {il,...,ij & () > |al-1]| >...>|al } and let ry (a') denote the

J
subset of r(a') with indices in A. Compute the coefficient vector a* as follows:
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fork=1:card(r(a"))

ck = arg min ||y — ®a
g min [ @l
subjectto a; =0, Vi€ ry(a')
A ={k,...,card(r(a"))}
e (1.32)
- oc], < u
a*:=ct
break
end

end
O

The rationale behind Algorithm 2 can be explained as follows: In step 1., an op-
timization problem similar to (1.29) is solved, where the ¢y quasi-norm is replaced
by the ¢; norm. The ¢; norm is the convex envelope of the ¢y quasi-norm, and its
minimization yields a sparse vector a' [28], [29], [30]. However, it is not guaranteed
that all the non-zero elements of a! are necessary to have ||y — ®a'||, < p. In step
2., only the elements of a' larger than & (a') are kept (indeed, & (a') discriminates
between “important” and “less important” vector components, [22]), while the re-
maining ones, ordered by decreasing amplitude, are progressively included to form
the vector a*. The algorithm stops when ||y — ®c¥||, < u. The solution provided by
step 2. is thus a vector a* where the number of non-zero elements is further reduced
with respect to the initial sparse solution a'. The sparse approximation is given by
(1.17), with a; = a?, Vi.

1.5 Nonlinear Set Membership Identification : Quasi-Local
Approach

In this section, the so-called quasi-local Nonlinear Set Membership approach is pre-
sented, capturing the advantages of the global and local approaches of Section 1.3,
1.4 and avoiding some drawbacks of these two. On one hand, the quasi-local ap-
proach allows the derivation of significantly less conservative uncertainty bounds
with respect to the global approach of Section 1.3. On the other hand, the quasi-
local approach does not require to choose a suitable parametric form for the filter,
as done in the local approach of Section 1.4. The filter is obtained directly from the
data in a non-parametric closed form.

Based on assumption (1.11), we can define the following quantity, called the
quasi-local Lipschitz parameter:

= su |fo(x)_f0(5€\)‘
y(x) = sup T, (1.33)

XEX XX
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Obviously, the Lipschitz constant of f on X is given by
" = sup y(x). (1.34)

xeX

Lemma 1. For any x € X, a y(x) exists, such that

fo(x) = fo()| < ¥(x) lx =%, Vxe X.
Proof.  The statement follows directly from (1.33). O

Let us now suppose that the quasi-local Lipschitz parameters y(x;), k= 1,...,L,
are known or can be estimated (a method for performing such an estimation is given
in Section 1.6.1). Assume also that the noise is bounded in /. norm according to
(1.7), with g = oo and € = p. On the basis of this information, we can define the
following function set:

Fg = {Fl1fx) = fE)| < y@&e) |x—Xkll,,Vxe X, k=1,...,L}. (1.35)
This allows us to define the Feasible Function Set as follows.

Definition 9. The Feasible Function Set is
FFS={f e Fy: |5~ 1@, <u} (1.36)

wherey = (y1,...,y1) and f (X) = (f (x1),..., f(XL)). |

As discussed in Section 1.4, FF'S is the set of all functions consistent with the
prior assumptions and data. The prior assumptions are considered validated if at least
one estimate consistent with these assumptions and the data exists, i.e. if FFS is not
empty, see e.g. [21] and [23].

Definition 10. The prior assumptions are validated if FFS # &. O

The following theorem gives a necessary and a sufficient condition for the vali-
dation of prior assumptions. Define the functions

flx) = Juin L(Ek +y(x) []x — Xll,)
o _ . (1.37)
flx) = kgaXL(hk —Y(%) IIx —Xkll,)

where hy = i + & and hy =y — €.

Theorem 8. (i) A necessary condition for prior assumptions to be validated is
F(&) > hy () <o k=1,
(ii) A sufficient condition for prior assumptions to be validated is f(Xi) > by, f(X;) <

h, k=1,...,L.
Proof.  see [31]. O

Let us now define the function

1

fO@) = )+ 7 (0] (1.38)
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where f(x) and f(x) are given in (1.37). The next result shows that the approxima-
tion € is optimal for any L, norm. The theorem also provides an explicit bound on
the worst-case approximation error.

Theorem 9. Assume that:

(i) The noise affecting the measurements {x, yi }fc‘zl is bounded according to (1.7).
(ii) The function f° is Lipschitz continuous according to (1.11).

Then, for g = o and for any p € [1,0|:

(i) The approximation f¢ defined in (1.38) is optimal.

(ii) The worst-case approximation error of € is bounded as

EN(f¢) = % Hf—iH,, = i%fEN(fA) =Ry (1.39)

Proof.  see [31]. O

1.5.1 Interval estimates

The interval estimates of the unknown function f° are now given for the cases where
the noise is bounded in /., norm (i.e. ¢ = o in (1.7)).

Theorem 10. Assume that:

(i) The noise affecting the measurements {fk,f)k}i:l is bounded according to (1.7).
(ii) The function f° is Lipschitz continuous according to (1.11).

Then, for g = oo and for any x € X, f° (x) is tightly bounded as

fx) < f7(x) < fx). (1.40)
Proof.  see [18]. O

Remark 6. The point-wise bounds (1.40) provide an interval estimate of the un-
known value f°(x). Interval estimates allow us to quantify the uncertainty associ-
ated with the identification process, and are thus important in system and control
applications. Indeed, these estimates can be used e.g. for robust control design,
[32], [33], prediction interval evaluation, [34], and fault detection, see the follow-
ing sections.

Remark 7. A study on the relation between the representativeness and length of the
available data and the quality of the approximation can be found in [27]. This study
relies on the computation of the radius of information R (see Definition 2), repre-
senting the minimum worst-case error that can be achieved from the available prior
and experimental information. Based on this concept, a methodology is proposed in
[27], where Rz is used to evaluate the “level of information” provided by a given
data set and to obtain precise indications on the quality of the approximation that
can be obtained.

Fig 1.1 shows the comparison between the global and quasi-local Set Member-
ship bounds for a nonlinear function. In figure 1a, a global lipschitz constant I" was
assumed for the function f. In figure 1b, a quasi-local lipschitz parameter y(x) was
assumed. It can be noted that the resulting uncertainty bounds are clearly tighter in
the quasi-local case, especially in regions where the function is relatively “flat”.
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Figure 1.1 (a) global bounds, (b) quasi-local bounds; f° ﬁx) red line;
measurements: black cross; f¢(x): blue line; f(x), f(x): grey line.

1.6 Parameter Estimation and Adaptive Set Membership Model

1.6.1 Parameter Estimation

Estimates of the noise bound u, Lipschitz constants I', I', and the quasi-local lip-
schitz parameter y(x) such that the assumptions are validated can be obtained by
means of two algorithms given in [35] and reported in the following. The first al-
gorithm is directly taken from [35], while the second one is a generalization of the
corresponding one in [35].

Algorithm 3. noise bound estimation [

1. Choose a “small” p > 0. for example:
p =0.0lmaxg,—1, . 11 ||%k —%|.
2. Find the set of indexes: I, ={k: ||xy — x| < p}. if k=0 forallk=1,....L—1,
go to step 1 and choose a larger p.

3. Fork=1,...L—1 compute §y; = mc}x|§7k =il If [ = 0, set Oy = oo.
1€l

4. Obtain the estimate [i of the noise bound | as

~

I = 5% Yreo O
where Q ={k € {l,...,L—1}: 8y < oo} and N = card(Q)

Algorithm 4. Lipschitz parameter estimation T, Ta, Y(x)
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1. Fort,k=1,...L—1 and x; # X;, compute

0 otherwise.

Pr—de| 28 .o 5 _ =
{ sl o De—yl>20 (1.41)
2. Fort,k=1,....L—1 and X} # X;, compute

‘gk*gt‘*zﬁ

Ta= max { T o |1&—&1>20 (1.42)
kt=1,....L-1 0 otherwise.
3. Fork=1,..,L—1 and x; # X;, compute
Bi—%|+20 -0 |15 5 m
@) = max { Toah ¥ [V yf_‘ > 21 (1.43)
1=1,...L—1 0 otherwise.

O

The following theorems show that, under reasonable density conditions on the
noise, the estimates given by these two algorithms converge to the corresponding
true values.

Theorem 11. (Theorem 2 of [35]) Let the set {X, dk}ézl appearing in (1.2) be dense
on X X Bg as L — . Then,

lim [I = u. O

L—so0
Theorem 12. (Theorem 3 of [35]) Let the set {X, dk}ézl appearing in (1.2) be dense
on X X Bg as L — . Then,

imC=T. O

L—o0

1.6.2  Adaptive Set Membership Model

In many applications, it may happen that the dynamics of the system changes over
time or the model is not accurate enough in the whole domain of X. One of the
advantages of nonlinear Set Membership (global and quasi-local approach) is that it
can be easily made adaptive since no optimization problem needs to be solved online.

As discussed in section 1.2, in the set membership framework, the model accu-
racy is defined by the radius of information and it can be computed in a deterministic
way [27]. In the global and quasi-local approaches, the model is basically defined
by the measurement set D, noise bound pt and lipschitz parameters I or ¥(x). There-
fore, the model can be made adaptive by updating online the measurement set and
the lipschitz parameters.

Let us define the error function as follows:

740 = 5 [7) — £ (1.44)
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This function allows us to write the radius of information as

Rz =[fe()lp- (1.45)

Suppose that a model with a desired radius of information R is looked for, where
Ra < Rz. If, at time instant ¢, f¢(x;) > Ry, it means that the model error in that
point is larger than the desired radius. Therefore, the new measurement can be added
to the set D in order to increase the model accuracy.

In the case where the dynamics of the system changes over time, a time label can
be assigned to each element of the set D as D(L) = {%, V%, % }x_, Where z; indicates
the time each measurement was taken. Then, since the model is running online, at
each time instant #, we can eliminate the measurements which were taken at ¢ — dt,
where 8¢ is a desired value which depends on the system dynamics variation.

Algorithm 5. Online Update of the Set Membership Model

1. Define the measurement set D as D(L) = {fkjk,tk}ézl.
2. At time step t, compute the vector x; and measure the system output yy.
3. If f°(x) > Ry. Then,

D(L+1)=D(L)U{Xr4+1 = X1, Y141 = Yi,t1+1 =1}

1.46
L=L+1. (1.46)
4.  Find the set of indexes I, = {k : ty € D,t; <t — Ot}. Then,
D(L—N) = D(L)\ {Fe, .1,
( ) = D(L)\ Xk, Vst e, (147)

L=L—-N

where N = card(Iy,).
5. If D is changed, update the model lipschitz parameters according to algorithm
4.

O

1.7 Summary of Set Membership Fault Detection Procedure

The main steps of the proposed Set Membership fault detection method are now
summarized.

Offline operations

1. Define the measurement set D according to (1.2).

2. Estimate the noise bound | according to Algorithm 3.

3. Inthe case of local approach, estimate a preliminary approximation f* accord-
ing to Algorithm 1 or 2.

4. Estimate the Lipschitz parameters according to Algorithm 4. In the case of
global approach, compute T; in the case of quasi-local approach, compute Y(x);
in the case of local approach fA.
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Online operations

1. At each time step:

If Ve > f(X)+ & or Vi < f(%)— &
Then Fault=1
Else Fault=0

2. In the case of adaptive algorithm, update the Set Membership model accord-
ing to Algorithm 5 if no fault has accrued in the system and the system is not
recovering from a fault.

Regrading the online operations, since the Set Membership model describes the
normal dynamic behaviour of the system, it has to be updated when no other dy-
namics are involved. In other words, during a fault or immediately after a fault the
measurements correspond to an abnormal behaviour of the system and therefore they
are not suitable for updating the model.

1.8 Example: Fault Detection for a Drone Actuator

In this example, the proposed fault detection algorithms was tested on a real drone
actuator, in a laboratory experimental setup. The actuator is composed of three main
components: a Brushless DC motor, a driver and a propeller. The motor makes the
propeller rotate and this rotation produces the required thrust and torque to drive a
drone. The torque produced by the motor is given by

T =K,(I—-1) (1.48)

where T is the motor torque, [ is the input current, Iy is the current when there is no
load on the motor and K; is the torque constant of the motor. The voltage across the
motor is given by

dr
V=Rl + Ly o +Ke® (1.49)

where V is the voltage drop across the motor, R, and L,, are the motor resistance and
inductance, respectively, and K, is the motor speed constant. The motor is attached
to a propeller, and therefore we have

dw
dr
where B, is the motor friction, @ is the motor angular speed, J,; and J), are the motor

and propeller moments of inertia, respectively, and Tp is the propeller drag torque,
given by

T =B,o+ (y+Jp)— +Tp (1.50)

Tp = C,pD’ »* (1.51)

where C,, is the propeller power coefficient, p is air density and D is the propeller
diameter. The power coefficient C}, is a nonlinear function of the propeller speed,
which is difficult to derive from the geometric shape of the propeller [36].



20  Running head verso book title

1.8.1 Experimental Setup

A brushless DC motor (RIMFIRE.10) attached to a propeller (APC 10x4.7p) is con-
nected to a driver and a 200 watt power supply. The input command of the driver
is a PWM signal with a duly cycle proportional to the voltage across the motor. An
encoder is attached to the back of the motor, to measure the angular speed of the
propeller. The input command signal and the encoder are connected to a PC run-
ning MATLAB through a National Instrument data acquisition device (PCI-6289).
Data acquisition and online fault detection were carried out using the SIMULINK
Desktop Real-Time. The drone actuator system is shown in Figure 1.2.

Figure 1.2 Drone Actuator

1.8.2 Nonlinear Set Membership Fault Detection

In order to identify a model, an experiment was carried out, where an amplitude
modulated pseudo random binary sequence (APRBS) command input with a dura-
tion of 100 seconds was applied to the actuator. From this experiment, a set of data
was collected, using a sampling time of 7y = 0.05s. The dataset was divided into
an identification set, composed by the first 1000 data and a validation set, composed
by the remaining 1000 data. See Figure 1.4 (a). The measurement set was defined
according to (1.2) as follows:

~ ~ 1000
D= {xkayk}k=4

I - - - (1.52)
Ye=Dk-1 Y2 U2 Ug—3]

To evaluate the performance of the fault detection algorithm, a second experiment
was carried out using another APRBS input command that was not used for iden-
tification nor validation. This second experiment had a duration of 30 seconds and
during this experiment, in order to introduce a fault scenario, a sheet of paper was
placed between the blades, approximately every 3 seconds, for a total of 8 times. In
Figure 1.3 (b), the fault occurrences are denoted by the circles. During this experi-
ment, the following fault detection algorithms were running online.
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(a) First experiment used for identification, (b) Second experiment
online fault detection test (Black circles are where the faults has
occurred)

1.8.2.1 Global Approach

A nonlinear set membership model was obtained assuming a global constant bound
on the function gradient according to section 1.3. A constant lipschitz parameter
I'=0.7 and a noise bound u = 15 were estimated according to Algorithms 3 and 4.
The model was tested in simulation on the validation set and the root mean square
simulation error (RMSE) was 42 RPM. Then, the fault detection algorithm was ap-
plied online, as discussed above. Figure 1.4 shows the model intervals and the bound
violations. The model was able to detect 7 out of 8 faults.
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Global Approach; Black lines, f+ L, f— 1. Red line, y. Circles, bound
violation
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1.8.2.2 Quasi-Local Approach

A nonlinear set membership quasi-local model was obtained according to section
1.5. A quasi-local lipschitz parameter Y was derived according to Algorithm 4. The
model was tested in simulation on the validation set and the RMSE was 30 RPM.
Then, the fault detection algorithm was applied online, as discussed above. Figure
1.5 shows the model intervals and the bound violations. The model was able to detect
all the 8 faults.
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Figure 1.5 Quasi-Local Approach; Black lines, f + U, f — U. Red line, y. Circles,
bound violation

1.8.2.3 Local Approach

A preliminary approximation f* was derived according to Algorithm 1, using poly-
nomial basis functions up to degree 5. No improvements were observed considering
higher degrees. The number of basis functions in (1.30) is 81 where, due to ¢; spar-
sification, only 33 have a non-null coefficient. The nonlinear set membership local
model was obtained according to section 1.4. A lipschitz parameter I'y = 0.2 was
derived according to Algorithm 4. The model was tested in simulation on the valida-
tion set and the RMSE was 23 RPM. Then, the fault detection algorithm was applied
online, as discussed above. Figure 1.5 shows the model intervals and the bound
violations. The model was able to detect all 8 faults.
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1.9 Conclusions

A novel fault detection approach, based on Set Membership interval estimates, has
been presented, allowing us to overcome several problems of the standard tech-
niques. Its effectiveness has been demonstrated in a laboratory study, related to
fault detection for a real propeller. The possibility of extending the approach to fault
isolation is currently under investigation.
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