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BESOV AND TRIEBEL-LIZORKIN SPACES ON LIE GROUPS

TOMMASO BRUNO, MARCO M. PELOSO, AND MARIA VALLARINO

ABSTRACT. In this paper we develop a theory of Besov and Triebel-Lizorkin spaces on general
noncompact connected Lie groups endowed with a sub-Riemannian structure. Such spaces are
defined by means of hypoelliptic sub-Laplacians with drift, and endowed with a measure whose
density with respect to a right Haar measure is a continuous positive character of the group.
We prove several equivalent characterizations of their norms, we establish comparison results also
involving Sobolev spaces of recent introduction, and investigate their complex interpolation and
algebra properties.

In memory of Elias M. Stein

1. INTRODUCTION

Besov and Triebel-Lizorkin spaces have attracted considerable attention in the last decades,
for they encompass several classical function spaces, such as Lebesgue, Sobolev, Hardy and BMO
spaces. As such, they have a paramount role in describing the regularity of solutions to differential
equations. Following the complete and well-understood theory in the Euclidean setting, see e.g. [37],
several have been the attempts of generalisation to wider contexts, including Riemannian manifolds
with bounded geometry [32, 3], Lie groups endowed with a left-invariant Riemannian structure [35,

], doubling metric measure spaces with a reverse doubling property [15, 23, 39, 18, 25], doubling
metric measure spaces [13, 14]. A theory of Besov spaces has also been developed on Lie groups
endowed with a sub-Riemannian structure, first on groups of polynomial growth [10], see also [11],
then recently extended on unimodular groups [7]. The aim of the present paper is to develop
a satisfactory theory of Besov and Triebel-Lizorkin spaces on general noncompact Lie groups,
potentially nondoubling, endowed with a sub-Riemannian structure. The results we present insert
in the theory initiated in [1], some of whose results we substantially improve, and are part of a
long-term program whose aim is to develop a theory of function spaces on general sub-Riemannian
manifolds.

In the Euclidean setting, the Besov spaces B5Y(R?) and the Triebel Lizorkin spaces FL?(R%)
are classically introduced by means of the Littlewood—Paley decomposition of a function. However,
it is well known that if A is the Euclidean nonnegative Laplacian on R¢, then the Besov and
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2 BRUNO, PELOSO, AND VALLARINO

Triebel-Lizorkin norms of a distribution f are equivalent respectively to the norms
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whenever a > 0, m > «a/2 is integer and ¢y € (0,1) (if @ > 0, one can take also to = 0). See,
e.g., [30]. By means of these characterizations, which we call of “Gauss—Weierstrass type”, the
problem of defining analogous spaces outside the Fuclidean context can be reduced to finding an
appropriate substitute for the Laplacian in that context, see e.g. [18, 25]. The Littlewood—Paley
decomposition, instead, heavily relies on Mihlin—-Hérmander’s multiplier theorem for the Laplacian,
which is known to fail in some cases, as we explain below.

If G is a Lie group of polynomial volume growth, endowed with the sub-Riemannian structure
induced by a family of left-invariant vector fields satisfying Hérmander’s condition, then a Mihlin—
Hormander type multiplier theorem holds for the sub-Laplacian associated with the chosen family.
In this case, the Besov spaces defined in terms of the Littlewood—Paley decomposition coincide,
with equivalence of norms, to those defined by a Gauss—Weierstrass type norm, where the Laplacian
is replaced by the sum-of-squares sub-Laplacian associated with the chosen family of vector fields,
see [10]. In this case, algebra properties analogous to those in the Euclidean setting hold [11]. If G
is more generally a unimodular group, then Besov spaces defined by means of a Gauss—Weierstrass
type norm were introduced and studied in [7], where it was proved that they still enjoy an algebra
property.

In this paper, we develop a theory of Besov and Triebel-Lizorkin spaces on general noncompact
Lie groups endowed with a sub-Riemannian structure. Since these groups might exhibit an expo-
nential volume growth at infinity, in general they do not satisfy a global doubling condition. In
particular, our results for Besov spaces extend those in [11, 7] while, to the best of our knowledge,
those for Triebel-Lizorkin spaces have no counterpart on nondoubling Lie groups endowed with a
sub-Riemannian structure. We now precisely describe our setting.

and

N
le™2 fll Lo ey +

Let G be a noncompact connected Lie group with identity e and let X = {X,..., Xy} be a family
of linearly independent left-invariant vector fields on G satisfying Hérmander’s condition. Denote
with p a right Haar measure of GG, with § the modular function and let x be a continuous positive
character of GG; consider the measure p, on G' with density x with respect to p, i.e. du, = xdp.
Consider the differential operator

l
Ay =- Z(Xf + ¢ Xj), ¢ = (Xsx)(e), j=1,....¢,
j=1

with domain the set of smooth and compactly supported functions C°(G). This operator was
introduced by Hebisch, Mauceri and Meda [16], who showed that A, is essentially self-adjoint on
LQ(MX). With a slight abuse of notation, we still denote with A, its unique self-adjoint extension.
We emphasize that if y is the modular function §, pus = A is a left Haar measure of G and the
operator Ags, which from now on will be denoted by L, is the intrinsic hypoelliptic Laplacian
associated with the Carnot—Carathéodory metric induced on G by the vector fields X, see [I, 1],
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and is the natural substitute of the Laplacian in this setting. This also reflects the fact that the
measure A is privileged among the measures p,.

In view of the previous discussion, it is worth mentioning that since A, has a holomorphic
functional calculus whenever x is nontrivial, see [16], a Mihlin-Hérmander type theorem for A,
and hence an associated Littlewood—Paley decomposition do not hold when x # 1. Thus, given
a=0,p,q€[l,0], m>a/2and ty € (0,1), we are led to define the Besov space BY?(p1,) and the
Triebel-Lizorkin space F5 (i, ) as the spaces of tempered distributions f such that respectively

q dt>1/q

1
=98 o + ( jo (52 1A flpngy)

1 1/q
([ s )
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are finite, with the usual modification when ¢ = o0. As expected, different choices of the parameters
m and to give equivalent norms (see Theorem 4.1).

and
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We shall obtain several equivalent characterizations of Besov and Triebel-Lizorkin norms. In
addition to the aforementioned independence of the parameters m and ty, we realize a discrete
version of their norms strongly resembling their definition in the classical case, namely similar in
flavour to that obtained by the Littlewood-Paley decomposition of a function (Theorem 4.2). We
shall also provide a characterization of the norms in terms of the vector fields of the chosen family X
(Theorem 4.4), a recursive characterization (Theorem 4.5), and we also present a characterization
in terms of differences of functions (Theorem 4.6).

Then, we establish various comparison results between Besov and Triebel-Lizorkin spaces, which
extend the classical embeddings to the current setting (Theorems 5.1, 5.2 and 5.3). Among these
results, we mention that every Triebel-Lizorkin space is intermediate beween two Besov spaces,
and that when ¢ = 2 the Triebel-Lizorkin spaces coincide with the Sobolev spaces introduced in [4]
(see also [206]). These results manifest a coherence of the results of [1] and those of the present
paper.

Furthermore, we investigate the complex interpolation properties and the algebra properties of
the Besov and Triebel-Lizorkin spaces, see Theorems 6.1 and 7.1 respectively. In particular, we
show that if & > 0, then the spaces BY?(py) 0 L and F&?(py) N L* are algebras under pointwise
multiplication. To prove such algebra properties, we use the paraproduct technique.

The paper is organized as follows. In Section 2, we introduce the general setting of the paper and
give the precise definition of Besov and Triebel-Lizorkin spaces. In Section 3, we establish several
results related to the heat semigroup of the operator A,. Section 4 is devoted to the discussion of
various equivalent characterizations of Besov and Triebel-Lizorkin norms. In Section 5 we prove
embedding and comparison results, while in Sections 6 and 7 we obtain interpolation and algebra
properties, respectively. In Section 8 we discuss further developments of this work.

2. PRELIMINARIES AND DEFINITIONS

All throughout the paper, G will be a noncompact connected Lie group with identity e. We
shall denote with p a right Haar measure, with ¢ the modular function, and with A the left Haar
measure such that dA = §dp. We recall that ¢ is a smooth positive character of G, i.e. a smooth
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homomorphism of G into the multiplicative group R*. The letter y will always denote a continuous
positive character of G, which is then automatically smooth. We shall denote with p, the measure
with density x with respect to p. Observe that us = A and p; = p.

We fix a family of left-invariant linearly independent vector fields X = {X7, ..., X;} which satisfy
Hormander’s condition. These vector fields induce a left-invariant distance d¢( -, -) which is the
associated Carnot—Carathéodory distance. We let || = d¢(x, €), and denote by B, the ball centred
at e of radius r. The volume of the ball B, with respect to the measure p will be denoted with

V(r) = p(By); recall that also V(r) = A(By). It is well known (cf. [9, 38]) that there exist two
constants, which we denote with d = d(G,X) and D = D(G), such that
i <v(ry<cort  vre(0,1] (2.1)
and
V(r)<Cel"  Wre(l,o). (2.2)

for a constant C' > 0 independent of r.

If p € [1,00), the spaces of (equivalent classes of ) measurable functions whose p-power is integrable
with respect to u, will be denoted by LP(fu,), and endowed with the usual norm which we shall
denote with | - ||zp(,,), or || - [zr when there is no risk of confusion. The space L* will be the
space of (equivalent classes of) measurable functions which are p-essentially bounded; observe that
this coincides with the space of p,-essentially bounded functions for every positive character x of
G, since p, is absolutely continuous with respect to p. Observe moreover that, since for every
character x and R > 0 there exists a constant ¢ = ¢(x, R) such that

¢ Ix(x) < x(y) < ex(z) Vz,y € G such that do(x,y) < R, (2.3)

cf. [1], by (2.1) the metric measure space (G, dc, ) is locally doubling.
We shall write .# for the set {1,...,¢}. For every m € N, .#™ will be the set of multi-indices
J = (j1,.--,Jm) such that j; € & and for J € ™ we denote by X; the left-invariant differential
operator Xj = Xj, --- X, . Recall that since x is a smooth character, if ¢; = (X;x)(e) then
XX = ¢jx Vje .#. (2.4)
We denote with S(G) the Schwartz space of functions ¢ € C*(G) such that all the seminorms

Nin(e) = sup | X ;o ()|, neN, Je #™ meN,
zeG

are finite. We denote by S&’'(G) the dual space of S(G). The convolution between two functions f
and g, when it exists, is

Fea@) = | fev ot dotw)
Observe that the convolution f g makes sense also when f € §’(G) and g € S(G), and that in this
case fx g€ S'(G) n CP(G).
Let now A, be the sub-Laplacian with drift

l

Ay == D (X7 + ¢ X)),
j=1
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We set ¢ 14 1/2
X=3_uX X=X, )"

The operator A, generates a diffusion semigroup, i.e. (e*tAX)t>0 extends to a contraction semigroup
on LP(u,) for every p € [1,00] (see e.g. [16, Proposition 3.1, (ii)]) whose infinitesimal generator,
with a slight abuse of notation, we still denote with A,. Observe that A; is the standard left-
invariant sum-of-squares sub-Laplacian, usually denoted with A. The convolution kernel of e~ *4
will be denoted with py, i.e. e **f = f # p;. Recall that p; € S(G). Since A, is also left-invariant,

e~*Ax admits a convolution kernel as well, which we denote with py. Since
_tix|2. —
pr = e dlXIPy =12y, (2.5)
cf. [4], and since characters grow at most exponentially, cf. [16, Proposition 5.7], p} € S(G). Thus,

for f € S'(G) one has e tAx f = f x pY.
For every t > 0 and m € N we denote by Wt(m) the operator

W™ = (tA )" e x| (2.6)

In the case when A, = £, we write
W = (tL)™ e e . (2.7)

As will be clear later on, see e.g. Theorem 4.2 below, for j € N the operators WQ(TJ) play an analogous
role of the operators A; involved in the classical Littlewood-Paley decomposition of a function on
R? (cf. [37] for such notation).

We can now define the Besov and Triebel-Lizorkin spaces on G associated with A,. If 3 > 0,
we denote with [3] the largest integer smaller than or equal to 5.

DEFINITION 2.1. Let o > 0 and p,q € [1,0].
(i) The Besov space BY?(u,) is the subspace of §’(G) made of distributions f such that

_1
119y = ™23 Fllouy) + BEIS) < +o0, (2.8)

where

1 Y o q dt Ya
,%’g’q(f) o <J (t /2 HWt([ /Q]Jrl)f”Lp(,ux)) t>

if ¢ < oo, while
B2 (f) = sup 2 WP g

te(0,1)
(ii) The Triebel-Lizorkin space F&'(u,) is the subspace of 8’'(G) made of distributions f such
that
_1
[ lEpagey = 1e72%% flouy + FEUS) < +o0, (2.9)
where y
1 q
FLUS) = ' < NGRS dt)
‘ ! L7 (jux)
if ¢ < o0, while
—a a/2]+1
FLo(f) = | sup WA

te(0,1)
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Observe that, for every p € [1,00) and o = 0, BEP(11y) = F&P (1)

3. THE HEAT SEMIGROUP

In this section we shall prove many results involving the heat semigroup e *2x and its associated
heat kernel pf. They will be of fundamental importance later on. For any quantities A and B, we
shall write A < B to indicate that there exists a constant ¢ > 0 such that A <¢B. If A < B and
B < A, we write A ~ B . We also set, for any function g, §(x) = g(x~!) for every z € G.

Lemma 3.1. The following properties hold:

(i) (e7*Ax)i=0 is a diffusion semigroup on (G, 1y );

(ii) for every r >0, supg X = elXlr .

(iii) there exist two constants ci,ca > 0 such that
()2 () VIVE e pX(a) s (0x )2 () V(VE) e

for every t € (0,1) and x € G;
(iv) for every h € N there exists a positive constant b = by, such that

| X pX(z)] S Oy DY@V O s et e (0,1), 2e @G, Je I

Proof. For a proof of (i) and (ii), see [10, Propositions 3.1 and 5.7]. Property (iii) follows from (2.5)
and [24, p.150]. For property (iv), see [4, Lemma 2.3]. O

From now on, we set c3 = ¢1/ce, where ¢1 and c2 are the constants appearing in Lemma 3.1 (iii).
Lemma 3.2. Let h,k € N. Then
(i) for every 0 < k' < k, there exists C(k/k") > 0 such that
e~ g| < C(k/K e 82 g|  Vige (0,1), t € [K'to, kto],
(ii) there exists ap > 0 such that
X et Bxg| <t e B ||  Vie (0,1), Je I, (3.1)
(iii) there exists app > 0 such that
AFe A X g <t e antA gl Ve (0,1), J e SN, (3.2)
where g is any measurable function in 8'(QG).
Proof. To prove (i), notice that
e xg| = |g * pY| < lg| * 1"
Thus, it is enough to prove that given tg € (0,1), 0 < &’ < K
pr(z) < pfg%to () VreG, Vte[r'ty,rto], (3.3)
which follows by property Lemma 3.1 (iii). Indeed

|22 |z |2

_d .
i) < (Ox )Y@ 2e T < (X))t Te T S Py, ()

which proves (3.3) and concludes the proof of (i).
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To prove (ii), observe that
X e~ B xg| = |g = Xypr| < gl = | Xpyl,
and that, by Lemma 3.1, there exists b, > 0 such that

X p¥ (@) £ 72 (0x ) (@)t

ol
%e_th < t_%px ), 3.4
apt

with aj, = Cl/bh.
We now prove (iii). Observe that

Afe™ XX ;9 = X ;g % AlpY
= (=)Mlg « (X [((AYPY)S ™)V ]}V6 = g+ By
Since the integral kernel of e *2 is symmetric, one has p; = 6~ 'p;, so that
pr = (67" x)pf (3.5)
Moreover (AFpX)¥ = (ofpf)¥ = ofpy. Thus,

B = 0{Xy((OFB)6)} = 6{Xs(xarp)}” = {Xs(xALp)} .

Now, by (2.4),
X(x Axpt) Z C[XX[AXpt
o<|I|<h
for suitable coefficients ¢;. Thus, by (3.4) and (3.5)
_ — _L
XA < (X)), I(XrAL ) Y] < (6x ) 2 (07 )Pyt
0<|I|<h o0<|I|<h
which implies (3.2). O

By Lemma 3.2 (i) and (ii) and by the LP-boundedness of the heat semigroup, we also obtain the
following estimates.

Lemma 3.3. Let he N and p € [1,00]. For every g € LP(py)
. _ _h
() [Xse " glroguy St 2lglrguy  VEE(0,1),J € 5",
iy _h
(i) Je " Xglo(uy) St 2lglir(uy  VEE(0,1),J € I

We now consider an estimate where only the left measure A is involved.
Lemma 3.4. Let 1 < p <p; < andr > 1 be such that * + ~ =1+ —. Then for every g € LP())
d
e glimey <12V glay  VEe (0,1).
Proof. Arguing as in the proof of [17, (20.18)], we have
lg * B lzor ) < lglzocyy (171720 1172 )
so that it is enough to prove that

g(1- ~ d(1_
’|p2(szLT(>\) S tQ(T 1), prHLT(A) S t?(r 1).
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Observe now that by estimates (2.1) and (2.2)

V(2k+1\/¥) < 2dk6D2k

e Vk=0,te(0,1). (3.6)

Thus, if for every k > 1 we denote with Ay ; the annulus Byx, 7\Byi—1,/7, by Lemma 3.1 (ii) and (iii)
there exist positive constants ¢ and C' such that

a0
Iz < f VIV dd+ Y e VI vV T g 47307,
B k=1 Akt

Thanks to (3.5), the estimate for pY is similar and omitted. O

We shall need several variants of [0, Proposition 8].

Proposition 3.5. Letp € (1,00), g € [1,00] and 0 < &’ < k. Then, for every sequence of measurable
functions (tj) such that t;(z) € [k'277,k277] for every j € N and x € G, and every sequence (f;) of

measurable functions in S'(G),
0 l/q
<Z |fj|q>
j=1

00 1/‘]
j=1
with the obvious modification when q = o0, where e 42X f denotes the function x — f * Pt (z) (x).

<

i

LP(uy)

LP ()

tj

Proof. The proof is inspired to that of [6, Proposition 8], which covers the case when t; is constant
for every j.
Consider the operator

Ty f(x) = sup|e @A f(z)],
jeN

which is linearizable according to [12, Definition 1.20, p. 481], and bounded on LP(pu,), since
T\ f(z) < sup ™" f ()] = T f(x)
>

and Ty is bounded on LP(uy) by the maximal theorem of [27, p. 73]. Moreover, T f| < Ty|f|
for py is positive for any t. By applying [12, Corollary 1.23, p. 482] to T and observing that
le~ti%x f;| < Ty|f;l, the conclusion follows when 1 < p < q.

We now consider the case when p > ¢. By Lemma 3.2, for every function g > 0

el @Axg (1) < eI Axg(2).

We can follow the same argument of [6]. Indeed, let r be such that % =1- % and let w > 0. Then,

tA

since e~4(®)Ax f(2)]9 < et @Ax|f(x)|? by Jensen’s inequality, and since e **x is symmetric on
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L?(py ) for every t > 0,

[ e @) ) i) < [ o5 @)l 0(0) iy 0

< L TR AN f (@) () ity ()

— J |f(a:)|qe_"c327jAXw(a:) dpy ()
G

< | @) di o).

The proof now can be concluded exactly as in [0, pp. 307-308] using that T} is bounded on LP ().

O
We now prove a very useful proposition, which is an integral analogue of Proposition 3.5.
Proposition 3.6. Let pe (1,0), g€ [1,0], ¢ >0 and ¢,r € R. Then
1 de\ Ve 1 1/q
H (]} (e’ ) < ([ (o) F) ,
0 t 0 t
L (py) LP(py)
with the usual modification when q = 00, where either g is a measurable function in S'(G) and
(i) Gt,z) = e "xg(a),
(ii) G(t, x) = g(x),
org:(0,1) x G — [0,00) is such that g(u,-) is a measurable function in S'(G) for all u € (0,1) and
(iii) ( So u+t)"g(u,z)du,
(iv) G St u, x) du.

Proof. We first prove (i) when ¢ < c0. Observe that

0 2—j+1

1 ) )
f (tfe—ctAx|e—tAxg|> dt < ZJ (Q—jﬁe—ctAXe—(t—Q*J)AX|e—2*JAXg|>q dt
0 N 2-i t

7j=1

0
—j q
Z (2 Je— (2¢+1)c32™ ]Ax|e*2 JAXg|> ’

where we have used the fact that <277 < ct+t—277 < (2¢+1)277 for t € [277,27771] and we have
applied Lemma 3.2. Thus, by Proposition 3.5

1 1/q
t
0 Ip

A

[e's} 1/q
<Z <2 Gl (2e+1)c32™ JAX| 9~ AXqu)
]:
_ . 1/q
(277le72 "2xg)) )

(

[y

Lp

18

A

1 Lr



10 BRUNO, PELOSO, AND VALLARINO

Observe now that, for every j € N and = € G, by the mean value theorem there exists s;(z) €
[27772,27771] such that

[ () 2~ (st @y

2772

Then, by applying Lemma 3.2 and Proposition 3.5 to ¢j(z) = 277 — s;(x), we obtain

0 ) 1/‘1 0 1/(1
‘ (Z(rﬂwe—MXqu) - (Z (2o Ak m)
j=1 Lr Jj=1 Lr
o0 1/q
< (Z (2 e Xgl) )
j=1 Lp
00 1/(1
~ 0 —tay )1 dt
~ (Z t |e "gl) t)
=1 p
1/q
dt
< 0 —tay )7 9t
< (L (t le X9|> t>
Lp

We now prove (i) when ¢ = c0. Arguing as above,

sup tee_CtAX|e_tAXg| ~sup  sup 27 7feA

—tA
, up x|e™ gl
te(0,1) Jj=1te[27,277+1]

—il — —3J —92—J
$ Sup2 ]fe (26+1)C32 Ax|e 27IA
j=1

xXgl,

so that by Proposition 3.5

_ _ i — - o
sup e ctAX|e tA < | sup2 itg (2¢+1)c32 Ax‘e 277A
t€(0,1) j=1
< |[sup 2*j£|e*27 A
=1
<|sup  sup 2_ﬂ|e_tA
=1 te[2—i 2-i+1]
< || sup tZ\e_m
te(0,1)

The case (ii) is easier to prove and we omit the details.
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To prove (iii) when ¢ < 0, we recall that g = 0 and use Proposition 3.5:

H <f01 <t£ecmx Ll (u+1)"g(u, x) du> q it) la

Lp
0 ot q\ 1/
< (Z (2_ﬂe_cl2]AXJ (u+ 279" g(u, z) du> )
j=1 0 Lp
0 1 q 1/q
< (Z (2_3ZJ (u+277)"g(u,x) du> )
j=1 0 Lp
1 1 q 1/q
< <J <tef (u+1t)g(u,z) du> dt) ,
0 0 I

since u 4+t ~ 277 +wuif t € [277,277H1]. If ¢ = o0, arguing in the same fashion,

1 , 1 A
sup tle tAx f (u+t)"g(u, ) duHL < H sup 2 /e~ Ax J (u+277)g(u,x) duHL
0 P 0 P

te(0,1) j=1
1
< | sup tef (u+t)"g(u,z)du| .
te(0,1)  Jo L
The proof of (iv) is analogous to (iii), and we omit it. O

Lemma 3.7. Letpe (1,0), ¢ € [1,0] and £ > 0. Then there exists a positive constant ¢ such that
for every measurable functions f,g in S'(G)

1 1/q
H <J (tgeftAX(’eftAXﬂ . |e7tAxg|))q it)
0 L7 ()

1 1/q
U (#(emtBxjemt ) - (B2 g]) ) OD
0

p3

)

LP ()

with the usual modification when ¢ = 0.
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Proof. We only prove the statement when ¢ < o0. We shall apply repeatedly Lemma 3.2. Since

e tAx — o= (t=277")Ay 277 71A

1 1/q
‘ (j (tfe—tAX (‘e_tAXfHe_tAXgD)q dt>
0

(&

o0 q l/q
il 9es0 —9¢52] _g—j-1 —9¢42] _g—j-1
(2 (2 ﬂe 2¢327T Ay <e 2¢32 AX|e 277 Axf| . @282 JAX|e 27 Axg|>) )
Jj=1

;

<

A

<

RE

1

x, using Proposition 3.5,

t

Lp

2—J+1

2 jfe—2032*jAX (’e_tAXfHe_tAXgD)q dt)
t

1/q

Lp

1/q
, » o i o q
<2ﬁ£ (672%2 ]Ax‘e*2 J 1AXf| . e—2¢32 JAX‘efz J IAXg‘)> )

Recall now that for every t; € [27773,27772] one has

hence

907 _o—j-1
e 202 T Ay o270 TIA

Choose t;(z) €

Then,

[

8

0

A

3

727 A |

xfl - 672032*jAX|672*j*1AX9| <e

[27773,27772] such that

(2—jz (e—3C32*jAX‘e—tjAXf| 'e—3C32*jAX|e—tjAXg|>)q

27972 . .
_ f ) (2—gf <e—3C32_JAX|e—tAXf| . o~ 3c32 JAX|e—tAXg|>)
i

2— i

1/q
(2—j£ (e—2032*jAX|e—2*j*1AXf| 23279 Ay e—leAXgD)q)
o 4 _ g 1/q
(5, s o)
27972 . .
<Z J 2 74 —3032*JAX|e—tAXf’ . e—3C32*JAX|e—tAXg|>>

>l/q

1
(j (tf (e—24c§tAX |e—tAXf| . e—24c§tAX |e—tAXg|>)
0

which completes the proof.

As all the discussion above shows, pointwise results concerning the heat semigroup e

q dt
t

730327jAX |eft]'AX f| .

Lr

9

Lp

— |e—(27j71—t_7')AXe—tjAXf| s e—c327jAX|e—tjAXf| ,

_ —J
e 3c327TA

q dt

7-

Lp

Lp

q di
t

)1/q

Lp

Lp

—tA

x|e B g].

O

X are

substantially harder to obtain than LP-norm estimates. This is the reason why, in several of the
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results presented from now on, we shall give detailed proofs only for those involving Triebel-Lizorkin
spaces. In all such cases, the analogous result for Besov spaces can be obtained by means of a similar
procedure, but in a somewhat easier fashion.

4. EQUIVALENT NORMS

We begin by stating a fundamental decomposition formula (see [7, Lemma 3.1]) which will be
a key ingredient from now on, and which can be thought of, in some sense, as a substitute of the
Littlewood-Paley decomposition of a function. If m € N;m > 1 and f € §'(G), then

1 1 (m) , dt m=ly (k)
f_(m—l)!Jth ft+kZ:0k!W1 [ (4.1)

where the integral converges in §'(G). If f € S(G), the integral converges in S(G).
In this section, we prove equivalent characterizations of Besov and Triebel-Lizorkin norms. Ob-
serve in particular that for ¢ € [1,00] and a > 0, they imply the embeddings

BY(py) = LP(py), ER9(py) — LP(py) (4.2)
for p e [1,0] and p € (1,0) respectively.

4.1. Independence of parameters.

Theorem 4.1. Let o > 0, m > «/2 be an integer, to € [0,1) and g € [1,0].
(i) If pe[1,00], then the norm | f| gpa(,, ) is equivalent to the norm

! —a m q dt 1a _
([ (2 m lun)" )+ 17 g, w3

with the usual modification when q = o0.
(i) Ifpe (1,), then the norm |f|pra, ) is equivalent to the norm

(Ll (2w )’ df)l/q

with the usual modification when q = 0.

+ 0% f Loy (4.4)

LP(py)

If a = 0, the norms | f| gpa,, ) and |flFrag.,) are equivalent to those in (4.3) and (4.4), respec-
tively, provided to € (0,1).

Proof. We prove only (ii) when ¢ < o0, since the proofs of the remaining cases follow the same
steps, and are easier in some respects. We split the proof of (ii) into three steps.

Step 1. Let m > a/2 be an integer. We prove that if either ¢y € [0,1) and o > 0, or ¢y € (0, 1)

and o = 0, then
1 l/q
o (m) 4 dt>
tT2 W) —
(NG

<J01 (t_%|Wt(m)f|>q it>1/q

1
le™" % fl» < + e 22 f o (4.5)

Lp
and

+ e 0B f| 1. (4.6)
Lp

_1
le 2% flr <




14 BRUNO, PELOSO, AND VALLARINO

Let « > 0 and ¢y € [0,1). By Lemma 3 3, HW(k) A fle S e 3 Axfllpe for every k e
N. Moreover, |W, (Me—tolx f| < e~todx |W Jf|. We use formula (4.1), these observations, the
boundedness of e *0%x on LP (i) and Holder’s inequality to obtain

m—1
+ 3 wPe oA g 1,
k=0

Lp

(Ll (f%|Wt |>q dt>1/q

Let a = 0 and ¢y € (0,1). By formula (4.1), Lemma 3.2, and arguing as above, we get

_ Vo) dt
ol s | [ e

+ e 2% f o
Lp

<

~

1

dt

Je~0% f o < f W et | =
0

+ 3w g
P k=0

L

1
dt
< |emaztors j I I e ot
0

1 . de\ V4
<\([ i)
0

This concludes the proof of (4.5). The proof of (4.6) is analogous and omitted.

Lp

+ e 2% £ o
Lp

Step 2. We prove that for all integers m > «/2 and tg € (0, 1),

1/q 1 1/q
_a m q dt a m q dt _
H (2w ) ) < ( f (3w ) ) + e ] oo
Lp 0 Lp
By (4.1) applied to Wt(m)f we get
W™ f = f WM e sAx £ qs 4 W™ Ax .
Thus,
1 1/q 1 1 q 1/q
(w2 <[ ([ i 4
0 0 0 t
Lp p
1 1/q
a dt
NGRS
0 e
=:I1 + I5.
Now, by Lemma 3.2 and Proposition 3.6 we obtain that there exists ¢ > 0 such that
1 g dt\ "
b< ( f (rFemetrjerotag))” 2 ) < e~ 02 f] 1o (4.7)
0 Ip
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We now consider I;. We split the inner integral according to the splitting [0,¢] U [t,1]. By
Lemma 3.2 (observe that £ < s+ § < 3% if s € [0,¢])

1 t a !
) N ) dt m dt
J (t | e SAxﬂdS) <) <’f T f R f'd> t
0 0 t 0 :
< C3tA m+1 4 dt
NJ;] (t 2e 2 |Wt/2 f|)

so that by Proposition 3.6 and a change of variables

1 ¢ q 1/q
(e ueesn)
0 0 t
1 1 q 1 1 q
J <t§1f |Wt(m+1)esAde8> (jgtgf (tmgemxf S(m+1)’WS(m+1)f‘d3> %
0 t 0 t

Moreover, observe that
so that

<

~

1 1/q
—a (m+1) a dt
. (NG

(4.8)

P

1 1 q 1/q
(e fmremrs)
0 ¢ t .
1 1 q 1/q
<J <tmgf s~ (mH D) 1) ds> df)
0 ¢ t

by Proposition 3.6. To conclude, observe that

1 1 a 1,0 q
[ (e [ s omemmwemngias) S ([ Koo )
0 ¢ t 0o \Jo s 3

where g(s) = s~ 2 |W. mH)f] and K(s,t) = (£)™ 2 1{s>4. Since

<

~

P

1 d
supJK(s,t)sgl and sup JKst
te(0,1) Jo s s€(0,1)

Schur’s Lemma (see [8, Theorem 6.18]) yields

1 q 1/q
‘ tmff 7(m+1)’W(m+1)f‘ d8> dt>
s t

~

Lpr Lp
which together with (4.7) and (4.8) concludes the proof of Step 2.
Step 3. We prove that for every integer m > «/2
1/q 1 1/q
_a m q dt _a q dt
' (e o) ) < ([ () )
Lp 0 p
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By Lemma 3.2 and Proposition 3.6, there exists ¢ > 0 such that

1/q 1 1/q
_a (erl q dt _a 7ctA q dt
H (5w ) ) S(L(t” W) T
Lp
1/q
o (m) o\ dt
() (smia)” )

which concludes the proof of Step 3 and of the equivalence of (2.9) and (4.4). O

Lr

<

~ )

Lp

4.2. Littlewood—Paley type characterization. The next result concerns a characterization that
resembles the definition of Besov and Triebel-Lizorkin norms in the classical case, which makes
use of the Littlewood—Paley decomposition of a function. As already mentioned, for j € N the

(m)

—J

x plays the role of Sy.

operators W play the role of the operators A; in the classical Littlewood-Paley decomposition,

while e~ oA

Theorem 4.2. Let o > 0, m > «/2 be an integer, ty € [0,1) and g € [1,0].

(i) If pe[1,00], then the norm | f| gra(,,) is equivalent to the norm

o0 q 1/q
<Z(WWWWUMMW)> + 107 g (19)

§=0
with the usual modification when q¢ =
ii) If pe (1,00), then the norm P, s equivalent to the norm
F, (Nx)

0 . ( ) q l/q
(3 mamny’)
7=0 Lp

with the usual modification when q¢ =

+ e f ] 1o ) (4.10)

(1x)

Ifa =0, the norms | f| gra(,, ) and | fllppa,., ) are equivalent respectively to those in (4.9) and (4.10)
provided ty € (0,1).

Proof. Again, we prove the statements only when ¢ < co. To prove (i), just observe that

N (032 [1p(m) RSN —(277 A ¢ dt
S (EW ) ~ Y [ (28 i )"
7=0"277"

j=0
1 N q dt

< | (2w s) =

L ( t p) t

a0
< ) (FHW e )
§=0

Thus the norm (4.9) is equivalent to the norm (4.3), and the conclusion follows by Theorem 4.1.

To prove (ii), we shall prove that
© 1/q
(B eEmeay)

1/
| t"|W "”f])q dt) ' : (4.11)

Lp
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which yields the conclusion by Theorem 4.1. Its proof is similar to that of Proposition 3.6.
To prove the inequality <, we observe that

2.7+

a q dt o, (4 _o9—j— m q dt
J ( ’Wt f| ZJ 2J2|e (t—277 1)AXW( Y 1f|)

< Z <2j%e*4C32*J‘Ax|W2(Z),1f!>q,
j=1

since 27971 <t — 27771 < 29+2 for every t € [277,277%1], so that Lemma 3.2 applies. Thus, by
Proposition 3.5,

1/q
_a m q dt
‘ Gl >

This is the inequality < of (4.11).
We now prove the inequality Z. By the mean value theorem, there exists ¢;(z) € [27772,27771]
such that

(4.12)

~

Lr

(i (275 wim 11) )W

j=0

Lp

f_j_l (rrwim @) G~ (s f Wi @)

22

where W b (o )f( ) is the function z — ¢;(2)™[(AY' f) * pi‘j (I)](x). Then, by Proposition 3.5

['e} 1/q
(Semmzn)

. 1/q
2715 |~ (277 1)y Wt(_m)f>q>
J

0 1/q
5 <2f%wwtam>f‘>q)

I
VR
s
VS
[NIfe)

Lp Lr

A

Lp

Lp

A

)

Lp

Q
/N N N
8

which completes the proof. O

To proceed further, we shall need the following lemma. It consists of two statements which are
both corollaries of Schur’s Lemma.

Lemma 4.3. Let 0 <y < be two real numbers and q € [1,0].

(i) If a,be Z v {+0} are such that a < b, then for any sequence (dy)nez < [0, 00)

Zb] (2j'y Zb: 2min{n,j}ndn>q Zb: (2( YEmn g > )
j=a

n=a
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(ii) For every function d: (0,1) — [0, )

[ o) oo

The obvious modification applies when q = o

Proof. The statement (i) is [7, Lemma 2.2]. To prove (ii), we rewrite the integral as

fol <“fo <t+1u>nd“)dtt> f (f Kt u)d > 0

where d(t) = t77d(t) and K (t,u) = (%)Vﬁ Since

du ! dt
suprtu)<1 SupJK(t,u)Sl,
ue(0,1) Jo t

the statement follows by Schur’s Lemma.

0

4.3. Characterizations in terms of vector fields. The following result is a characterization of

Besov and Triebel-Lizorkin norms in terms of the vector fields in X. We write

W(TJ)’*f = sup max [tMX e Ax f| & 27IM sup max |X e x|,
te[2—3,2-7+1] [J|<2m te[2—3,2-7+1] [J|<2m

Theorem 4.4. Let o > 0, m > «/2 be an integer and q € [1,0].
(i) If pe[1,0], then the norm | f| gra(,,) is equivalent to the norm

© . 1/q
(Z (ZF W Fliriu) ) 2o

§=0
with the usual modification when q¢ =
ii) If pe (1,0), then the norm P, s equivalent to the norm
F& 9 (px)

()
]

=0

+ HfHLP(p,X)a
L (py)

with the usual modification when ¢ = o©
Proof. We prove only (ii), for the proof of (i) is similar and easier in some respects. Since

A2 7Af < sup max |[Xge A,
te[2—d,2—i+1] |[J|<2m

the inequality | f|gra, ) < (4.14) is immediate.
We now prove the converse inequality. By (4.1), we may write

o0 m
(h) 1 1
(m—1)! JW h'W f_(m—l)!zfn+zh!wl /

where

(4.13)

(4.14)
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Since by Proposition 3.5 there exists ¢ > 0 such that

X et W p| < e Ax| ]

for every .J such that |J| < 2m, t € [277,279+1] and h € {0,. — 1}, when ¢ < o0 we obtain
o0 q 1/q
jo m), h
H (Z (273w wi ) ) < I f s
7=0 Lp
Observe now that
1 327! 1 ds
XJeftAan _ XJef(Q_"_ +t)AXJ (SAX)mef(372_"_ )Axf e
—n S
2 ds
+ XJef(Q_”th)AX J (SA )me*(5*2_n)Axf hd
392-—n-—1 X S

2—n
— ds
=X —(2 LA, J + g—n—lym Am —sAy
e 9—n—1 (S ) X ¢ f s+ 2—n—1

9—n
—n ds
X —(27" ) Ay f 9—nymA™M —sAy )
+ Xje - (s+27")"Al'e f S 0w

If |J| < 2m and t € [277,27711], by Lemma 3.2 we have
) 27"
’XJeftAan| < [an + 2j]mec(2_1+2_”)AXf ’W f| ue

2—n—1

for some ¢ > 0. In other words, once we define

—-n

= [y <
277171 S
we have

sup max |XJ6 tAXf | < 2mm1n{j n} TJAXgn.
te[2-3 2-i+1]|J[<2m

Therefore, by Proposition 3.5 and Lemma 4.3 (i), when ¢ < o0

0 1/q q
H <Z (2]2 W(m f|> ) (2 J(m=5)g—c2" TAy 2 2mm1n{]n} )

n=1
a q
(243

Since by Lemma 3.2 there exists ¢’ > 0 such that

<

~

Lp

Lp

DMs T8

1

3
Il

Lr

R |

2—n—

gn S €

Proposition 3.5 completes the proof of (ii) when ¢ < o0. We leave the details of the case ¢ = o0 to
the reader. 0
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4.4. Recursive characterizations. As Sobolev spaces (see [, Proposition 3.4]), also Besov and
Triebel-Lizorkin spaces can be characterized recursively.

Theorem 4.5. Let o > 0 and q € [1,0].
(i) If p e [1,0], then f e BYY, (1y) if and only if f € LP(uy) and X;f € BY(uy) for every
je & In particular

4

£ 1522, )~ D25 1K F L2y + 1F 2
j=1

(ii) If p € (1,0), then f e FVL (uy) if and only if f € LP(uy) and X;f € F&¥(uy) for every
je S In particular

|1l

oc+1

¢
~ Y X flprage,y + 1 ey
j=1

Proof. We prove (ii), for the proof of (i) follows the same steps and is easier. We claim that for
every p€ (1,0), ge [1,00], 5> —1and i€ {1,...,¢}
Fet(Xif) £ Zh () + 1 £lee ~ |l pra (4.15)

B+1

where we extended the definition of 9’5"1 to the case when —1 < 8 < 0, by putting [5] = 0 in that
case. Assuming the claim, we prove the theorem. Indeed, if & > 0, by the claim with g = a —1

Fah(f) = ”’q( xf)
l
Zgzpq i(Xif)) + > Fhe
i=1

(1X:f | pps + 1Xif I gza.)

\Xz-flng’q,

i

which proves the inequality < of the statement. The converse inequality also follows, since
FEVUXf) < | £l zr.a, by the claim with 8 = o and

_1
le™ 2 Xif o < |f e < 1]l 5z
by Lemma 3.3. Thus, it remains to prove the claim (4.15).
Let m=[(f+1)/2] + 1 and m = [5/2] + 1. By (4.1)

1 0 m—1 1 )
_1 JWt Z k"Wl - m_1)| Zlfn_‘_kzoklwl f7

where
2—n+1

), dt
fom | W
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Hence

(Xf)<9”’q< an>+w<z X s )

Define g,, by

n+1
fn = e*?‘n—QAX 2mJ2 7(t —g—n— 2)AXW(m)f % _. e72_n_2Ax

t/2 t gn-

Notice that by Lemma 3.2 there exists a,, 1 > 0 such that

AT e 2 AN | < 2mF D)gama2 A o2 Ay (4.16)
< 9I(m+ ) g=(am 27T +27 A g1 '

but also asy,+1 > 0 such that

|A?e_27jAXXifn| < e_2ijAX |A?Xie_(27n72)AXgn|

~

. » - (4.17)
< 2n(m+§)e—(2 Jtagm4127" )Ax|gn|‘

Since for a;, = min(am 1,1/4, azm+1/4) and for a,, = max(am,1, 1, agm+1/4)
am12 7 +27" %€ (al, (27 + 27", am (277 +271)),
277 + agm127" 2 € (al, (277 +27"),am(277 +271)),

there exists a constant ¢ > 0 depending only on m such that

AT 2T MK f, | g 20m ) min(md)gme@ T H2T A g

Let ¢ < o0. By (4.11) and Proposition 3.5,

0 q © q\ /g

‘I(Xz-an)g ( (52 ’%an))

n=1 =1 Lp

o q\ g
( (2—j(m—§)e—021AX Z 2min(n,j)(m+é)e—02"AX’gn’> >
J n=1

< (2

J

M8 TMS

A

0

Lpr

I

oe) N
(2—j(m—é’) > 2min(”7j)(m+%)e_02nAX‘gnO )
-0 n=1

and by Lemma 4.3, the last term of these inequalities is controlled by

‘ (i (2"551e—‘32_%<lgnl)q> N (i (2" Iga1) >1/q

n=0
by Proposition 3.5 again. Observe now that by definition of g, and by Lemma 3.2, there exists
¢ > 0 such that

Lr

<

~ 9

Lp

Lp

2—n+1

_ dt
_ nA
ol A | WG
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Hence, by Proposition 3.5 and Jensen’s inequality,

0 1/‘1 0 o—n+1 q\ 1/q
nBt1 nM m dt
(Sl () mnt))
=0 =0 2—n
1 B+l m) th 1/‘1
L (== w5 n) )

A
N
[

Lpr r

A
A/~

Lr
We are then left with estimating the term ﬂpq(Z? 01 Xi W( )f). By Lemma 3.2 and Proposi-

tion 3.6, for every k € {0,...,m — 1}
1 T e ¢ de\ V4
(] (teein) )
0

([ i)
S |l

This completes the proof of the claim (4.15) and thus that of Theorem 4.5 in the case when g < .
The case g = o0 is left to the reader. O

1/q
<

~

Lr

Lr

4.5. Characterizations by differences. One can also characterize Besov and Triebel-Lizorkin
norms by means of finite differences. For z,y € G, p € [1,0] and f € LP(p,), let

Dy f(z) = flzy™") — f(x).

DA( £ — IDy 1o (1) T dply) v
o m‘(fw( ) V<|y|>> |

e B 1 1 q du 1/q
S () = (jo (Ww) L|<u!Dyf(w)\dp(y)> u) .

If g € [1,00), we define

and

We also define
Dy fll e (1)

<t |Yl*
Theorem 4.6. Let o€ (0,1).
(i) If p,q € [1,0], then
1122y = G + 1 | Lo )
(ii) If p,q € (1,00), then
1z (ugy = 150U o uy) + 1 Loy

The proofs of (i) and (ii) can be obtained by suitably adapting the proofs of [7, Theorem 1.16]
and [24, Theorem 1.3 (i)] respectively. We omit the details, which are contained in [5, Section 3.
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5. COMPARISON THEOREMS

In this section, we establish embedding properties of Besov and Triebel-Lizorkin spaces, whose
Euclidean counterparts can be found in [37, Proposition 2, p. 47 and Theorem p. 129]. We begin
by observing that if X5(u,) is either BE?(u,) or FE(py ), then embeddings of the form

X0 ) = X5° (1), X8 (iy) = L (i)

may hold only if either p = r or p # r and p,, = A, by a translation-invariance argument analogous
to that of [1, Section 4]. We also recall that for p € (1,00) and o = 0, the Sobolev space L5 (i) is
defined by means of the norm (see |1, Section 3])

1712y = 11 mpay) + 1A Lo uy = (A + D2 Fll ooy (5.1)

The following theorem concerns Besov spaces.

Theorem 5.1. The following embeddings hold.
(i) Let p,q,q1 € [1,0] and o,y = 0. Then
BE () = BE (1)
if either a1 < @ or a1 = « and q1 = q.
(il) Let 1 < py < p1 < 0, g€ [1,0] and oy = a1 = 0. If——a pi—ao,then
B2A() — Bga’qw.
(iii) Let pe [1,0]. Then
Bp} (A) — L=.
Moreover, if g € [1,00] and o > d/p, then
BP9(\) — L”.
Proof. We first consider (i). If a3 < «, the embedding is a consequence of Holder’s inequality. If

a1 = a, it is a consequence of Theorem 4.2 and the inclusions of the £9 spaces.
We now prove (ii). Let tg € (0,1), m > a/2 be an integer and g < c0. By Lemma 3.4,

t
le™% fll Lo ) < le™ 2 £l oo ()

and, since 4 _d g g,
p1 Po

L/l adt _ (1 _ea,m) g dt
| EF 1) F = | (EFE )" S
gd

< [ (2 )"

the second inequality by a change of variables. The conclusion follows by Theorem 4.1. The case
q = o0 can be proved analogously.
To prove (iii), let 0 < € < d/p and observe that by (ii) and (4.2)
BIL(N) < BE(N) < L,
If @ > d/p, then by (i) and the embedding above

BPI()\) — BP)

P = L”,
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which were the desired embeddings. (|
We now turn to comparison theorems for Triebel-Lizorkin spaces.

Theorem 5.2. The following embeddings hold.
(i) Let p,q,q1 € [1,0] and o,cc; = 0. Then

F& () = FG " (py)

if either ap <« or ay = « and q1 = q.
(il) Let 1 <py < p1 < 0, q,r € [1,00] and ap = g = 0. pril—oq =4 _ oy, then

Po
FL(N) = FL (M.

(iii) If pe (1,0) and o = 0, then F£’2(ux) = LE(py) with equivalence of norms.
(iv) If pe (1,0), g€ [1,0] and o > d/p, then

FPA(X) — LZ.

Proof. We begin with (i). If a1 < «, the embedding is a consequence of Holder’s inequality. If
a1 = a, it is a consequence of Theorem 4.2 and the inclusions of the ¢9 spaces.

We skip the proof of (ii) for a moment, and prove (iii). By Proposition 4.1, it will be enough to
prove that for every p € (1,00), a =0, tp € (0,1) and m > «/2 integer

1 1/2
( [ sy dt)
0 t
L (py)

We first recall that by Littlewood—Paley—Stein theory (see [22] or [24, p. 6]),

(] (rswion) T)m

The inequality 2 of (5.2) follows at once, since

le™" % fllo < | f] e

L e o a2 dt D a2 dE
| swn) s [ (erwion) §
0 0
To prove the inequality < of (5.2), observe that

«© o 2 dt w0 2 dt
—35 m) m| Am —(t—to) Ay ,—toA
t2|W < t"A x x

[ sy < [ (miape ctoag)”

© 2 dt
g Hl(m)eftoAXf =,
fo (' ¢ |> t

the last inequality by a change of variables in the integral. Thus, again by Littlewood—Paley—Stein

theory
0, 2 dt\ />
—2rpr(m)
s |wim™ )
H(L (FEw™ 1) S

1F 122 gy = 1™ fll Loy + (5.2)

|AY2f| 1o ~

Lp

and

< e f o

Lr
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This proves that

1 o (m) o \2 dt 1/2
e e (NG N >3
Lp
which in particular implies that for every m > 0 one has
) Loy a2 A
1o <l sl + | ([ (Wi s1)” ) (5.4
Lp

It remains to observe that for every o = 0

INCEDE SINCGORUR

which together with (5.3) and (5.4) proves the inequality < of (5.2).
We now prove (iv). Let o > d/p and 8 be such that d/p < f < «. Then by (i), (iii) and the
embeddings of Sobolev spaces (see [, Theorems 1.1 and 4.4])

2
FPAI()\) — Fg N = Lg,()\) — L*.
It remains to prove (ii). Observe that by (i) it is enough to prove that
FLy= () = FE (). (5.5)
Let mo > % > G- and to simplify the notation, define the operators

TO = 2 FWMO Tl gi S mo)

2—j

and observe that

0
Hf“pggﬁoc(,\) = H Sj{gg‘ﬁfmhpoo\)? Hf“ng*l()\) = HJZOw;lfH

221000

Without loss of generality, we may assume that | f|| FOP () = 1. By Lemma 3.4,

| T3 fllpe = 27970 27dtmo= 327 =20 L pmo | oy

— 74_ -
<2777 j2p0H7;'071fHLPO()\)a

so that, for every K € N,

K L
VT s Y27 T P, (5.6)
§=0 j=0
Moreover, one has
o0
DT, 2 2 I TO | < 27K sup | T, (5.7)
j=K+1 j=K+1 jeN

Now,

o0 L © 1 o0
PN >ty |dt = ...dt+f ... dt.
sy =1 | v 3317 160 | 1
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By (5.7) with K = —1, there exists C' > 0 such that

{x: Z ‘731]0(3:)] > t} c {:c: §2£|730f(a;)| > Ct}

§=0
and hence
1 0 dt 1 dt
Jtmx v ST @) > ¢ sf A fa: sup A @) > Ct ) F
H up s ois
< 1.
Observe now that
o0 o0 t
1
{ Z |>t} {x > |7}f(x)|>2}
j=0 j=K(t)+1

where K = K (t) is the largest integer such that
jd

K
3t - 91kt <

l\:J\H~

Kd
In other words, K = K (t) is such that 221 ~ t. By (5.7)

{x: >, T @) > ;} = {w: sup [T f(z)| > Cr2~ K55 },
J JjeN

=K (t)+1
and
12~ K5 o
Then,
0 00] o0 Pl
J PNz YT ()] > dtsf P IN L s sup [T f(2)] > Ctro ¢ | dt
1 ]:0 1 ]EN
a0
$J sPIN S @ sup [TV f(2)] > s ds
0 jeN
< 1.
The proof is complete. O
The following result is the counterpart of [37, Section 2.3.2, Proposition 2] in the Euclidean

context. It compares Besov with Triebel-Lizorkin spaces.
Theorem 5.3. Let pe (1,00), g€ [1,0] and a = 0. Then
BRmRID (1) o FE9(j1y) <> BEm00 (4.



BESOV AND TRIEBEL-LIZORKIN SPACES

Proof. Let first p = ¢q. Then, since ¢4 — (P,

© . 1/p
(Z (2731w f s ) (j |2/ é"?fu;?pdﬂx)
j=1
. 1/p
< ([ Ewen an)

0 . 1/q
> (2w )

j=1

)

Lpla

0 1/q
<2 i%| WQ(Tj)f)qlle/q)
© . ) ‘ 1/q
_ <Z (zaa”WZ_j f||Lp) ) .
j=1

The conclusion follows by Theorem 4.2. Similarly, if p < g < o0 then

o ‘ 1/q . 1/p
(Z <2ﬁz|\W(m fHLp) ) = HJ 2]p5’W2(Tj)f\deX
j=1 G ¢a/p

4 (m) 1/p
< ( [ 1w i1 dux)

and by the triangle inequality in LP/9(y,,),

S (i)

J=1

1/q

Lpla

s /
B jG (Z (2jg|W2(@f|)q>p | dpx

7=0
S (5 [y m) 1/,,
(L& omeny o)
o0 . » 1/p
=<Z (2]2||W2(T})f|m)> ,
j=0

1/p

and the conclusion follows. The proof in the case p < ¢ = o is easier and omitted.

6. COMPLEX INTERPOLATION

In this section we describe the complex interpolation properties of Besov and Triebel-Lizorkin

27

spaces. Given a compatible couple of Banach spaces Ag and Ay, we denote with (Ao,Al)[g] the
intermediate space of index € € (0,1) in the complex method (see [3]). We recall for future conve-

nience that by [3, Theorem 4.7.1, p. 102] and [3, p. 49], one has

6
HaH Ao,Al)[g] ~ HG’HAO ”a”Al

for every 6 € (0,1).

(6.1)
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Theorem 6.1. Let ag,a1 =0, 6 € (0,1), ag = (1 — 0)ag + g and qo, q1 € [1, 0].
(i) If po,p1 € [1, 0], then

(BE™ (1), BE (1)) = B (1),

1 _ 10, 0 1 _1-0, 6
where pe — po T pi and W~ o Ta
(ii) If po,p1 € (1,0), then

(FE3 ™ (1), FEY™ (1)) = P (11)
where pg and qy are as above.

Proof. The proof is inspired by [3, Theorem 6.4.3]. We prove only (ii), for the proof of (i) follows
the same steps and is easier in some respects. To prove (i), one may also adapt the proof of [7,
Corollary 4.7].

To prove (ii), it is enough to prove that the spaces F4'%(u,) are retracts of

- oo},
LP(py)

with the obvious modification when ¢ = c0. The result will then follow by [3, Theorem 6.4.2] and
the complex interpolation properties of the spaces LP({&, i) (see [31, Theorem p.128]). We recall
that a space Y is called a retract of X if there exist two bounded linear operators J: Y — X and
P: X — Y such that P o J is the identity on Y (see [3, Definition 6.4.1}).

Let m = [§] + 1. Define the functional J on F&*(uy) by Jf = ((J f);) o Where

1/q
0 . q
LP(68, 1) = {u — (u3)jen: [l o eg ) = H (2 (27% fuy) )
j=0

(Tho=e22f (T =2"Wm L iti>1,

and P on LP(¢d, j1,) by

Eh \ 12 2 1 dt
Pu = —AFem3 By 4 —— 2jmf 2 AT (27T ) Ay =
;zo k!X 0 (2771—1)!;1 oi X I

=: Pru + Pou.

By (4.1), Po J = Idgra. Moreover, J is bounded from F&(uy) to LP(€4, ju,) by Theorem 4.2.
Thus, it remains to prove that P is bounded from LP(€%, uy) to F&(uy).
We assume ¢ < c0. By Lemma 3.2, one gets

1 1/q
_a o (m) (), N9 dE
(L Guiliaiamy t>

< Jull o)

2m—1

|Prulpre < )
k=0

S uollzr

+ e 2Py s
Lp
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By Lemma 3.2, Proposition 3.5 and Holder’s inequality we have

0 9—j+1
. —j— dt
e 2 Pyullzs < | Y 2]mf £ AReT R DA e vy |
j=1 27

A

0
Z —jm —cAX|uJ|

< Z 279 |
Jj=1 Lp

< [ullzeesy-

Lp

Now, we use (4.11), Lemma 3.2 and Proposition 3.5, which yield

© —j+1 A a)? 1/q
—k(m—%) Z 2]mj t2m‘Aime—(t—Q*Jfl—&-Q*k)Axuﬂ ?
Lp
0 9—j+1 2 ) a\ 1/q
g-km=§) 3 gim J T ey, 9
: 9-i (277 4 27k)2m Tt

< Kn—3) N 2—Im 29 A N
2~ FimTs . —¢ x|
Zl Z (2—] + 2—k)2me ‘uj‘

FPU(Pyu) <

Lp

<
~ )

Lp

4 1/q
(Z (272 |uj|)q>

Jj=1

A
Ll e N
D18

hence by Lemma

<

~

Lr

F3(Pau) 3

= l[ull Lo (es -
Lr

‘ 1/q
<Z<2ﬂ'%‘eczmx|uj|>q>

j=1

Leaving the case ¢ = o0 to the reader, this concludes the proof.

7. ALGEBRA PROPERTIES

In this final section we establish algebra properties of Besov and Triebel-Lizorkin spaces.
particular, we prove the following.

Theorem 7.1. Let o > 0 and p,p1,p2,p3,p4,q € [1,0] be such that
1 1 1 1 1
- —‘f— -

pr p2 pP3 P4 P
(1) If f € BE""(py) 0 LP3(py) and g € BEY(puy) 0 LP2(py ), then

179055900 < 15200y |92 ) + 12 G 9l 5205 - (7.

In particular, BE () 0 L* is an algebra under pointwise multiplication.

29

In

)

(11) Let p,DP1,P4,€ (1700) and Pp2,p3 € (1700] [ff € Fgl’q(ﬂx) N LpS(:u‘X) and g€ F£4’q(ﬂx) a

LP?(puy), then

HfQHFg’q(px) < HfHFgl’q(ux)HgHLm (uy) T HfHLPs(pX)HQHF§4*‘1(HX)‘ (7.2)

In particular, Fg’q(ux) N L* is an algebra under pointwise multiplication.
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By Theorems 5.1 (iii) and 5.2 (iv) we obtain the following corollary.

Corollary 7.2. Let q € [1,0].
i) If pe|1,0]| and a > d/p, then BEY(N) and BEY(N) are algebras under pointwise multipli-
d/p
cation.
(ii) If pe (1,0) and o > d/p, then FyY(X\) is an algebra under pointwise multiplication.

To prove Theorem 7.1, we shall use paraproducts, see [2, 7]. The following proposition is essen-
tially [7, Proposition 5.2], and its proof is exactly the same.

Proposition 7.3. Let p,q € [1,0] be such that l + l < 1. If fe LP(uy) and g € L(py ), then

fg=T;(g) + y(f) + (£, g) whw P g wimgl

B0 hlklnl
in §'(G), where
m—1
(k dt
Z W w i wiP g =, (7.3)
W 0 -1 'h'k:'J t
and
m—1 1
1 m h k) o dt
I(f,g) = h;O(m_l)!h!k!L Wt( )[Wt( )f . Wt( )g] - (7.4)

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. We prove only (ii), for the proof of (i) follows the same steps. See also the
proof of [7, Proposition 5.3].
We claim that

FEU s (9) < 1 fprvalgleee, (7.5)
that
FEU () < | flres gl prasa, (7.6)
and that
FEUS, 9)) s | flpevalgloes + [ 1es gl graa. (7.7)

Postponing the proof of (7.5), (7.6) and (7.7), we prove the theorem. By Proposition 7.3 and the
claim, it will be enough to prove that
Ifglze < [ flgevallgloee + 1fzes gl praa
and
h k
W £ W gl S 1| pgaliglire + 1 F1zos gl o

for every h,k,n € {0,...,m — 1}. The first inequality is a consequence of Holder’s inequality:

Ifglce < flLeruolglee < [flgzralglir.

In order to prove the second inequality, observe that by Lemma 3.2 there exists a positive constant
c such that
h k - k
W g Wil < et wt g Wl
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so that, by Proposition 3.6, Lemma 3.3 and Holder’s inequality

k
WP WS W g pre < WE - W g1

< W £ Lo [W ™ gl o
~ Hf”LPl HgHLl’z
< [ fllgeralgll e

Therefore, it remains to prove the claim. We provide the details only when ¢ < oo.

Step 1. We prove (7.5) and (7.6). Let m = [a/2] + 1. By (7.3)

([ (o [ primmwion s weog| &Y' 4)™

Thus, let now h,k € {0,...,m — 1} and u € (0,1). By Lemma 3.2, there exist agp, agy, > 0 such
that

m—1
FPUTs(g)) < ),
h,k=0

Lp

m m k
wmw MW ow gl = iwPwmwm g ow g

< ume—%htAX ’A;me—(%+u)AX [Wt(m)f . Wt(k)g]l

t e
su” <2+u> e~ HtAxemam A p oy g)

< um(u + t)_me_c(t+u)AX|Wt(m)f . Wt(k)g|,

for some ¢ > 0. Therefore, by Lemmata 3.6, 4.3 (ii), and 3.7

qu <“ J wmw I w ]!) iu)l/q

Lp

o 1 m dt q d 1/q
umffefcuAX f (u + t)i —ctA ‘W( f (k | > u)
0 t u

1 1 1/q
J (um—g‘f (u+t)—m —ctAX|W(mf | > d}:)

1 1/q
J t—%e—ctAX |Wt(m)f . Wt(k)g|)q d:)

<

Lp

Lp

A

Lp

A

A
N N

Lp
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By Lemma 3.2 |Wt(k) g| < e Ax|g|. Hence, by Proposition 3.6, Holder’s inequality and the LP2-
boundedness of the local heat maximal function (observe that p, > 1) we obtain

' (Ll W W g|>q dt) 1/a <J01 (t_%|Wt(m)f| .e_CtAX|g|>q (115) 1/q

sup e “Ax[gl| | f] prrea
te(0,1) Lp2

< lgllzre HfHFaqu.

<

~

Lr

<

~

The proof of (7.5) is thus complete. The proof of (7.6) is similar and omitted.
Step 2. We prove (7.7). By Lemma 3.2 and the Leibniz rule,

m m h k

wimw g wg)|

_ um|A;ne—(u+t)AX (tAX)m[Wt(h)f . Wt(k)g]l

<" (t + u) —me—azm(t+u)AX‘(tAX)m[Wt(h)f . Wt(k)g]!

2m

< Ut + u)—me—agm(t+u)Axtm+h+k max max |YLe—tAXf . ZJe_tAXg|,
S |L|=i+2h 7| =2m+2k—i

where (Yr, Zy) = (AR, ATHF) if i = 0, (Y7, Zy) = (AP AF) if i = 2m and (Yz, Zy) = (X1, X)
otherwise. Thus, after defining

m
=>'FEi(f,q), Fy(f,g) = t"h*F  max Yie X f . Z et
9) Z i(f.9) 1(f.9) SR, mex jhe f gl,

by Proposition 3.6 and Lemma 4.3 we obtain

HUO [ g 4" ) o
( < —azmulx Ll(wu)—m —ethp(f, )it> (Z)l/q

< ( (t+U> me—etAp( )dt> d>1/q

t U
2m 1 1/‘1
< (f <t_%e‘CtAXFz‘(f, 9)>q dt)
0 0 ¢

We separate two cases, depending on the values of 7. The cases i = 0 or ¢ = 2m are symmetric, so
that we can assume without loss of generality that ¢ = 0. Thus,

Lp

Lp

Lp

R max max |YLe*tAXf : ZJe*tAXg| = ]Wt(h)f||Wt(m+k)g|.
|L|=2h |J|=2m+2k
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Thus by Lemma 3.7 and Holder’s inequality

1 RN L. m ey 1\
‘ (J;) ctAXF (f, ) t) > - (J;) (t 2 e CtAX|Wt(h)f||Wt( +k)g| t) >
Ly, - ar\ 1\
(J, (w2 5)')

S H sup ’Wt(erk)g‘HLm HfHF«fl’q
te(0,1)

Lr r

<

~

Lp

< lgllzez] £l ppra,

33

the last inequality since |Wt(m+k)g| < e “x|g| and by the LP2-boundedness of the local heat

maximal function.

Assume now that i € {1,...,m — 1}. Since
max max  |Yze 'AXf. Zye gl < max [Yre S f|  max  |Zje 'Sy,
|L|=i+2h | J|=2m+2k—i |L|<i+2h | J|<2m+2k—i
one has

H Uo1 (t e A E(f, >it>q>l/q

Lp
! dr\ ¢ l/q
< (j (tm+h+k— —ctAx < max |XLe tAXf| max |XJ€ tAXg|> ) >
0 |L|<i+2h |J|<2m+2k—i .
00 2 Jj+1 q 1/q
e . dt
S (e oty oo )
-0 .
© A ‘ l/q
< (2 2]56—02 IA (W(H-Qh f W2(2§n+2k—z),*g)) )
-0 .
o 1/q
< (Z <23 2 W z+2h) *f W 2m+2k i), *g) )
Jj=0 o
where we used Lemma 3.5. We apply Holder’s inequality with oy = 2(7;;;7%04, a9 = %a,

2(m+h+k) _ it2n  2(m+h+k)

q2

= , = 2m+q2k_i to obtain that the last term of the previous inequality is

a q
controlled by

O (g Sk pp (20 ) e (2mer2k—i)s )@ e
(g (g

)

Lp
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(m+h+k) i+2h + 2m+2k—i 2(m+h+k)

which again by Hélder’s inequality with 2 = = $42h 4 Im+h—i

o r1 P1 P3 ’ T2 P2 P4 ’
is in turn controlled by
0 @ l/ql o0 g 1/Q2
paal i+2h), % o2 2m—+2k—i),%
> (25 wiEy) > (FF w0 < Lz gl gz,
Jj=0 71 Jj=0 L2
the last inequality by Theorem 4.4. Let now 0 = 2(77217%, and observe that by Theorem 6.1

(5> (1), ERM ()1 = Fay ™ ()
and

(FRH (), Fg%oo(/ix))[e] = Fo2® (py)-
Since for every s € (1, 00] we have L*(u,) < Fy'™(u1y) by the L-boundedness of the heat maximal
function, by (6.1) we have

1 0

6 —0 —0
£ pz gl gzzes S 1710 £l Gpaal ol

‘gHLPQ
< | fllersllglpraa + [ f[ grrallgll ez

which completes the proof of (7.7) and of the theorem. O

8. FUTURE DEVELOPMENTS

Although the theory developed in this paper is rather complete, there are additional questions
that are certainly worth of investigation.

In analogy to the Euclidean setting, we expect that the Triebel-Lizorkin spaces F}) ’Z(MX), when
either p = 1 or p = o, correspond respectively to the local Hardy space hl(ux) and its dual
bmo(py) introduced in [1]. We also expect that the dual spaces of B&Y(u,) and F&?(u,) when
«a > 0 can be identified with analogous spaces with negative index of regularity. Moreover, it would
be interesting to extend our results to the case when 0 < p,q¢ < 1. To conclude, we mention the
study of homogeneous versions of Besov and Triebel-Lizorkin spaces on nondoubling Lie groups.

Acknowledgements. The authors wish to thank Andrea Carbonaro for useful conversations.
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