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Modeling the impact of on-line navigation devices in traffic flows

Adriano Festa and Paola Goatin

Abstract— We consider a macroscopic multi-population traf-
fic flow model on networks accounting for the presence of
drivers (or autonomous vehicles) using navigation devices to
minimize their instantaneous travel cost to destination. The
strategic choices of each population differ in the degree of
information about the system: while a part of the agents knows
only the structure of the network and minimizes the traveled
distance, others are informed of the current traffic distribution,
and can minimize their travel time avoiding the most congested
areas. In particular, the different route choices are computed
solving eikonal equations on the road network and they are
implemented at road junctions level. The impact on traffic flow
efficiency is illustrated by numerical experiments. We show
that, even if the use of routing devices contributes to alleviate
congestion on the whole network, it also results in increased
traffic on secondary roads. Moreover, the generalized use of
real-time information can even deteriorate the efficiency of the
network.

I. INTRODUCTION

In recent years, navigation devices, such as Google Maps
or Waze, have become very common in road users’ daily
life. This change modified consistently some aspects of
traffic fluxes in many urban areas (cf. [15]). Besides the
obvious benefits for the single users, recent studies [25], [17]
have pointed out some drawbacks generated by selfish route
choices in terms of traffic increase on the secondary network,
in agreement with concerns expressed by local communi-
ties [11], [1]. This paper aims to address this problem in a
macroscopic, non-stationary, simulation framework.

Macroscopic multi-population traffic models have been the
subject of active research in recent years, mainly aiming
at describing the interactions among different classes of
vehicles such as cars and trucks (see, e.g. [2], [6]), cars
and motorcycles [20], [9], [14] or even shared human and
autonomous vehicles roads [18]. Some works also focus on
the dynamics of several populations on a network, e.g. [26].
In particular, in [13] each population is identified by its
origin and destination, while [7], [23] describe populations
moving on predefined paths. On the contrary, here we are
interested in modeling the case of drivers adapting their
route dynamically to minimize their travel time based on
the current state of the network.

A similar problem has been addressed in the case of
pedestrian flows: in [16], Hughes introduced a now classical
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model describing the motion of a large human crowd, seen as
a ”thinking fluid”. The model expresses the fact that people
seek to minimize their travel time to destination, trying to
avoid high-density regions. This information is embedded in
a potential field, which gives the direction of the motion.
Indeed, the potential field is the solution of an eikonal
equation, whose characteristic curves are the optimal paths
to the destination, and whose running cost is proportional to
the local crowd density. A discrete version of this model had
been recently extended to networks in [4].

In this paper, we propose a multi-population traffic flow
model on networks, in which each population’s flow is
governed by the corresponding mass conservation equation
on road segments (summing up into the standard Lighthill-
Williams-Richards (LWR) model [19], [21]). The conserva-
tion equations are coupled with as many eikonal equations on
the underlying directed graph, whose running costs charac-
terize each population and may depend on the traffic density.

The implementation of our model, despite not introducing
substantial methodological innovations, allows addressing
several important points: Which is the evolution of the
network global efficiency as the percentage of the routed
vehicles increases? Is the presence of routed vehicles ben-
eficial even for the less informed group? Which is the
optimal percentage of vehicles provided of on-line navigation
systems to minimize the overall congestion of the network?
What is the impact on secondary roads? The numerical tests
presented in Section V allows to partially answer to the above
questions, at least qualitatively.

II. A GENERAL MULTI-CLASS TRAFFIC FLOW
MODEL ON NETWORKS

We introduce the general framework used for describing
the flow of different classes of users on a road network. In our
case, each class density ρc, c = 1, . . . , Nc, is characterized
by specific, possibly time-dependent, split ratios at junctions,
depending on the class degree of information about the
network, see Section III.

Definition 2.1: An oriented network N = (I,J ) is a
finite collection of points J := {Jk}k∈K in R2 connected by
continuous, non self-intersecting edges I := {I`}`∈L, where
L := {1, . . . , N} and K := {1, . . . ,M}. Each edge I` ∈ I
is parametrized by a smooth function π` : [0, L`] → R2,
L` > 0, which implicitly provides the orientation of the edge.
Given Jk ∈ J , Inc(Jk) := {i ∈ L : Jk ∈ Ii, πi(Li) = Jk}
denotes the set of edges arriving at Jk. Similarly, Out(Jk) :=
{j ∈ L : Jk ∈ Ij , πj(0) = Jk} denotes the set of edges
leaving Jk. We define a subset T ⊂ J of destination
verteces. We require that T 6= ∅, i.e. the set T contains



at least one element.
For any function f : I → R, f` : [0, L`] → R is the
restriction of f to I`, i.e. f(x) = f`(y) for x ∈ I`,
y = π−1

` (x).
The dynamics of each class ρc : ]0, L`[×[0, T ]→ [0, 1] on

each road I` is given by the mass conservation equation

∂tρ
c
` + ∂x (ρc`v`(ρ`)) = 0, t ≥ 0, x ∈ ]0, L`[, (1)

where ρ`(x, t) :=
∑Nc
c=1 ρ

c
`(x, t) represents the total traffic

density on the road I`. Summing up the equations (1) for
c = 1, . . . , Nc, we obtain the classical LWR equation

∂tρ` + ∂x (ρ`v`(ρ`)) = 0, t ≥ 0, x ∈ ]0, L`[. (2)

In (1) and (2), the speed function v` : [0, 1]→ [0, V`] is a
non-increasing function such that v`(0) = V` and v`(1) = 0.
Remark that, without loss of generality, we have normalized
to 1 the maximal traffic density that can be attained on
each road. Moreover, we assume that there exists a unique
point ρ̂` ∈ ]0, 1[ such that the flux function ρ 7→ ρv`(ρ) is
increasing for ρ ∈ [0, ρ̂`[ and decreasing for ρ ∈ ]ρ̂`, 1]. We
set γmax

` := ρ̂`v`(ρ̂`) = maxρ∈I` ρv`(ρ) the maximal flux
allowed on the road I`.

A. Junction conditions for a single class model

Let us now focus on the dynamics at junctions. At first,we
focus initially on a single population case. For any junction
J , let us denote by Ii, i = 1, . . . , n, the incoming roads
and by Ij , j = n + 1, . . . , n + m, the outgoing ones. The
Riemann problem the junction J denotes the Cauchy problem
with constant initial data{

∂tρ` + ∂x (ρ`v`(ρ`)) = 0,

ρ`(·, 0) = ρ0,` ∈ [0, 1],
` ∈ {1, . . . , n+m} . (3)

Given any distribution matrix A = {aji} i=1,...,n
j=n+1,...,n+m

such

that 0 ≤ aji ≤ 1, for any i, j and
n+m∑
j=n+1

aji = 1 for all i,

we define a generic Riemann solver at J as follows:
Definition 2.2: A Riemann solver RSA is a function

RSA : [0, 1]n+m −→
n+m∏
`=1

[0, γmax
` ]

(ρ1, . . . , ρn+m) 7−→ (γ̄1, . . . , γ̄n+m)

where

(γ̄1, . . . , γ̄n+m) := (ρ̄1v1(ρ̄1), . . . , ρ̄n+mvn+m(ρ̄n+m))

and such that
1) (γ̄n+1, . . . , γ̄n+m)

T
= A · (γ̄1, . . . , γ̄n)

T ;

2)
n∑
i=1

γ̄i =

n+m∑
j=n+1

γ̄j ;

3) for every i = 1, . . . , n, the classical Riemann problem
∂tρ+ ∂x (ρvi(ρ)) = 0, t > 0, x ∈ R,

ρ(·, 0) =

{
ρ0,i x < 0,

ρ̄i x > 0,

is solved with waves with negative speed;

4) for every j = n+ 1, . . . , n+m, the classical Riemann
problem

∂tρ+ ∂x (ρvj(ρ)) = 0, t > 0, x ∈ R,

ρ(·, 0) =

{
ρ̄j x < 0,

ρ0,j x > 0,

is solved with waves with positive speed.
Moreover, we require that RSA satisfy the consistency
condition

RSA(ρ̄1, . . . , ρ̄n+m) = (γ̄1, . . . , γ̄n+m).
The Riemann solver provides the incoming/outgoing

fluxes at the junction points satisfying the basic properties
of conservation of mass and distribution of fluxes (see the
recent monograph [12] for details). In the present work, we
will use the Priority Riemann Solver introduced in [8], which
can handle an arbitrary number of incoming and outgoing
roads, accounting for priorities among the incoming roads
and maximizing the through flux.

B. Junction conditions for a multi-class model

To extend the single class treatment of a junction to a
multi-class framework, we generalize the multi-commodity
case discussed in [22], [23] to any underlying Riemann
solverRSA satisfying Definition 2.2. This allows to consider
junctions with any number of incoming and outgoing roads.
The technique consists of the following steps:

1) Compose the total distribution matrix. Let the distri-
bution matrices Ac =

{
acji
}
i,j
∈ A at J be given for

each class ρc, c = 1, . . . , Nc (these coefficients will be
derived in Section III). We set

A := {aji}, where aji :=

Nc∑
c=1

acji
ρci
ρi

(4)

defines a weighted distribution matrix for the total
density of the populations at the junction.

2) Compute the fluxes. Using the selected Riemann solver
RSA corresponding to (4), we obtain the total outgoing
fluxes (γ̄1, . . . , γ̄n+m).

3) Distribute the fluxes among the various classes. The
incoming and outgoing fluxes for each class are given
by

γ̄ci =
ρci
ρi
γ̄i, i = 1, . . . , n, c = 1, . . . , Nc,

γ̄cj =

n∑
i=1

acjiγ̄
c
i , j = n+ 1, . . . , n+m.

III. STRATEGY MODELING ON THE NETWORK

In order to model the strategic route choices of the
vehicles, we use dynamic programming which characterises
the value function of an optimal control problem defined on
the network as a solution of a Hamilton-Jacobi (HJ) equation.
Viscosity solutions for HJ equations on networks have been
introduced in recent years (see e.g. [12], [24], [3]), the case



of the directed graph – where the arcs can be traveled only
in one direction – can be considered a sub-case of the latter.

We start defining formally the optimal control problem on
a graph. We denote by Υz,x the set of absolute continuous
curves connecting x to z identified by a finite sequence
`n ∈ L, n = 0, ..., NΥ, such that there exists a x ∈ [0, L`]
such that `0 = `, π`(x) = z, π`i(0) = π`i−1

(L`i−1
), i =

1, ..., NΥ, π`NΥ
(L`NΥ

) = x. Then the value function of
the optimal control problem which models the weighted
distance from a target set T c, minimizing the running cost
gc : [0, 1] → R+ (which we assume to be a Lipschitz
continuous function) is given by

uc`(y) = inf{dc(x, π`(y)) : x ∈ T c}, (5)

where the distance function dc : I × I → R+ is

dc(x, z) = inf
(`0,...,`NΥ

)∈Υz,x

{∫ L`

x̂

1

gc(ρ`(π`(s), t))
ds

+

NΥ∑
i=1

∫ L`i

0

1

gc(ρ`i(π`i(s), t))
ds

}
. (6)

We observe that the function gc models the influence of the
traffic density for the class of vehicles c in the choice of the
“shortest” path and that, in general, equation (7) can be not
defined on some arcs, since a minimal path (i.e., an itinerary
to reach a destination vertex in an optimal way) could be
not defined in some areas of the network. To overcome this
problem, we assume the following hypothesis:

For every z ∈ I there exists at least one x ∈ T c such
that the set Υz,x 6= ∅, i.e. there exists a sequence of indexes
`0, ..., `NΥ

such that z ∈ I`0 , π`i−1
(L`i−1

) = π`i(0) for
i = 1, ..., NΥ and π`NΥ

(L`NΥ
) = x ∈ T c.

Using the dynamic programming we observe that the value
function uc` is the viscosity solution uc` of

∂xu
c
`(x) + 1

gc(ρ`(x,t))
= 0 x ∈ ]0, L`[, ` ∈ L,

min
`∈Out(Jk)

uc`(0) = ucl (Ll) Jk ∈ J \ T , l ∈ Inc(Jk)

uc`(L`) = 0 , π`(L`) ∈ T c,
(7)

The solution of (7) contains information about the optimal
strategy to find a path leading to the target set T c, depending
on the perceived cost gc. Since the arcs are oriented, route
choices are possible only at junctions. In particular, this
allows to define the matrix distribution coefficients in (4).
For each junction Jk, we define the set

W c
k :=

{
l ∈ Out(Jk) : ucl (0) = min

j∈Out(Jk)
ucj(0)

}
(8)

and we denote by |W c
k | its cardinality. We define the distri-

bution matrix of the population c at Jk as

Ack =

{
αcji = 1/|W c

k |, if j ∈W c
k

αcji = 0, otherwise.

In other words, we dynamically adapt the distribution matrix
to the optimal options at any junction. In particular, we assign
equal weight to all the equally profitable options.

The destination verteces act as additional conditions im-
posed at the boundary (cf. [10]), motivating the choice of
setting the potential uc to zero at these points.

Remark 3.1 (A 2−population case.): We describe in de-
tail the special case of two populations of vehicles ρ1 and
ρ2 with the same destination set (T 1 = T 2), as considered
in the simulation Section V. While we fix, for any choice of
` ∈ L, v1

` (ρ) = v2
` (ρ) = 1 − ρ, we choose g1(ρ) = 1 and

g2(ρ) = 1−ρ. In this way, the two populations’ route choices
– despite the two groups have the same destination – may
be different at the junctions. In particular, the above choices
of g1 and g2 model the case where the first population does
not use any on-line routing device. The knowledge of the
network – or the use of maps or off-line routing devices
– brings the density ρ1 to follow the shortest path to the
destination. On the contrary, ρ2 uses information on the
current state of the system to avoid congested regions, thus
minimizing the time to destination. It is important to keep in
mind that, differently from the Mean-Field game framework,
we do not include a possible forecast ability for the future
states of the system. The type of equilibrium between the
players that we are going to select can be seen, instead, as
an adaptation of the Hughes model [16], [4] to the traffic
case.

IV. A DISCRETE MULTI-CLASS,
MULTI-INFORMED TRAFFIC FLOW MODEL ON

ORIENTED NETWORKS

Let us consider a standard discretization of the network
N , where a generic edge I` is approximated by N` points.
Setting δ` = L`/(N` − 1), we define the space grid
points x`,h = πj((h − 1)δ`) for h = 1, . . . , N`, and
∆x`,h := |x`,h+1 − x`,h|. For each junction point Jk ∈ J ,
we denote by Inc(Jk) = {`1, . . . , `nk} and Out(Jk) =
{`nk+1, . . . , `nk+mk} the indexes of incoming and outgoing
roads, respectively.

For any given initial distribution ρ̄c : I → [0, 1], the
multi-class traffic flow dynamics on the network N is then
described by following discrete system for a ν ∈ N, ` ∈ L,
h = 2, ..., N` − 1 and c = 1, ..., Nc.

ρc,ν+1
`,1 = ρc,ν`,1 −

∆t

∆x`,1

(
ρc,ν`,1
ρν`,1

F (ρν`,1, ρ
ν
`,2)− γ̄c,ν`,1

)
,

ρc,ν+1
`,h = ρc,ν`,h −

∆t

∆x`,h

(
ρc,ν`,h
ρν`,h

F (ρν`,h, ρ
ν
`,h+1)

−
ρc,ν`,h−1

ρν`,h−1

F (ρν`,h−1, ρ
ν
`,h)

)
,

ρc,ν+1
`,N`

= ρc,ν`,N` −
∆t

∆x`,N`

(
γ̄c,ν`,N` −

ρc,ν`,N`−1

ρν`,N`−1

F (ρν`,N`−1, ρ
ν
`,N`

)

)
,

uc,ν`,h+1 − u
c,ν
`,h

∆x`,h
+

1

gc(ρν`,h)
= 0,

uc,ν`,N` = min
i∈Out(Jk)

uc,νi,1 , x`,N` = Jk ∈ J ,



W c,ν
k =

{
l ∈ Out(Jk) : uc,νl,1 = min

i∈Out(Jk)
uc,νi,1

}
,

Ac,νk =

{
ac,νji = 1/|W c,ν

k |, if j ∈W c,ν
k ,

ac,νji = 0, otherwise,

Aνk =

{
Nc∑
c=1

ac,νji
ρc,νi
ρνi

}
,

(γ̄ν`1 , ..., γ̄
ν
`nk+mk

) = RSAνk(ρν`1 , ..., ρ
ν
`nk+mk

)

γ̄c,νi,Ni =
ρc,νi
ρνi

γ̄νi , i ∈ Inc(Jk),

γ̄c,νj,1 =

`nk∑
i=`1

ac,νji γ̄
c,ν
i , j ∈ Out(Jk),

ρc,0`,h =
1

∆x`,h

x`,h+1∫
x`,h

ρ̄c`(x)dx,

uc,ν`,N` = ρc,ν`,N` = 0, x`,N` ∈ T c, (9)

where ρ̄c` is the initial traffic distribution on the network.
In (9), the numerical flux F (ρ1, ρ2) is the standard Go-

dunov flux corresponding to (2), defined by

F (ρ1, ρ2) := min {D1(ρ1), S2(ρ2)} , (10)

where D`(ρ) and S`(ρ) are the demand and supply functions
defined by

D`(ρ) =

{
ρv`(ρ) if ρ ∈ [0, ρ̂`],

γmax
` if ρ ∈ [ρ̂`, 1],

(11)

S`(ρ) =

{
γmax
` if ρ ∈ [0, ρ̂`],

ρv`(ρ) if ρ ∈ [ρ̂`, 1],
(12)

see for example [12], Section 5.2.3.
In order to guarantee the stability of the scheme (9) we

impose that

∆t ≤ min
`,h

∆x`,h
V`

. (13)

We also assume that the vehicles exit the network once
they have reached their destination. In this way, they do
not contribute further to the possible congestion effects of
the latter. Alternative choices are represented by Neumann
condition bounding the flux to a specific exit rate, or directly
imposing some non-flux condition (see [4]).

V. NUMERICAL RESULTS

In the following tests, we consider two populations of
vehicles. For the first one we set v1

` (ρ) = (1 − ρ), ` ∈ L,
and g1(ρ) = 1. Therefore, the agents belonging to the first
population have a perfect knowledge of the geometry of the
network, but they do not know the current traffic conditions.
For the second population we set v2

` (ρ) = g2(ρ) = (1−ρ). In
this case, the drivers have real-time knowledge of the traffic
condition of the network (as well as its geometrical features),
then they choose an itinerary that minimizes the current time
to reach the destination.

Fig. 1. The portion of Los Angeles road network considered in Section V-
A (top, credit “ c© OpenStreetMap contributors” www.openstreetmap.
org) and its schematic representation used for the numerical simulations.

Fig. 2. Evolution of the densities ρ1 corresponding to the non informed
population (left) and ρ2 of the informed one (right) for P = 0.5.

A. A simple road network

For a first qualitative analysis, we consider an elementary
network composed of 8 junctions, which was studied in a
static framework in [17]. It refers to a small portion of the
Los Angeles road network, where two secondary itineraries
offer an alternative to the main road when it gets congested
(see Fig. 1).

We fix the boundary conditions ρ(x, ·) = 0 at the exit node
n. 8, and zero incoming flux at node n. 1. We construct a
uniform grid on the arcs with step ∆x = 0.05 and we sample
the time with steps of size ∆t = 0.01. The initial condition
ρ̄ is set equal to zero in all the network except in the arc
1-2, where it is set equal to 0.9. The proportion between the
two populations is given by a parameter P ∈ [0, 1] as we set

ρ̄1 = (1− P) ρ̄, ρ̄2 = P ρ̄.

At junction n. 5, we set equal priority parameters p =
(1/3, 1/3, 1/3), meaning that vehicles coming from the main
road and the secondary roads access arc 5-8 with the same
priority.

www.openstreetmap.org
www.openstreetmap.org
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Fig. 3. (Left) TTT on the whole network for each of the two populations
and for the total population, in the case of the network depicted in Figures 1
and 2, depending on the penetration rate of routed vehicles P . (Right) TTT
in the main road and in the two detours to reach destination as a function
of the penetration rate of routed vehicles P .

Figure 2 shows the traffic density evolution for the two
populations. We remark that, for the first one, all the density
is driven to opt for the shortest path (the itinerary 1-2-5-
8) (Figure 2 left). The evolution of the second population
is more complex. At the beginning, the shortest path 1-2-
5-8 is the most favorable option, but it becomes soon too
crowded, and part of the population selects the route 1-2-4-
7-5-8. When even this itinerary gets enough crowded to lose
its benefits, part of the agents choose the last option 1-2-3-6-
5-8, since the level of congestion in the other routes justifies
such detour (Figure 2 left).

Figure 3 (left) shows the dependence of the Total Travel
Time (TTT) from the percentage of routed vehicles P , where

TTT (ρ) = ∆t∆x

Nf∑
ν=0

∑
`∈L

N∑̀
h=1

ρν`,h (14)

(i.e. the space/time integral of the density) relative to the two
populations (TTT (ρ1) and TTT (ρ2)) and the total traffic
(TTT (ρ) = TTT (ρ1 + ρ2) = TTT (ρ1) + TTT (ρ2)).

In (14), we have set Nf = Tf/∆t, where Tf = 5 is the
simulation time. It is clear that despite the TTT is computed
in the whole time interval [0, Tf ], once all the vehicles have
left the network, the value of the TTT stays constant. We also
notice that, with the increase of the total number of routed
vehicles, the global total travel time first decreases, reaching
a minimum value around P = 0.5, but then increases again,
probably due to the presence of congestions in the arc 5-8.
This means that the presence of routed vehicles can indeed
alleviate traffic congestion if their percentage is not too high,
but in the limit scenario in which all cars use routing devices,
the network efficiency could not be optimized in a global
sense. For example, no vehicle would never accept a less
convenient strategy to avoid the appearance of congestion
in some section of the network. This is consistent with
literature [17], indicating that a selfish behavior of vehicles
brings to a Wardrop equilibrium [27], i.e. a configuration
where no individual driver can reduce his path cost by a
change of route. This kind of equilibrium is not in general
globally optimal, but, since no unilateral change of strategy
in any group of vehicles can lead to a reduction of the cost,
it can be seen as Nash equilibrium among the agents [5].

In Figure 3 (right) we investigate another drawback gen-
erated by the use of routing devices, that is the increase of
traffic on secondary roads, usually serving residential areas.
This is in agreement with the study reported in [25] in a
static framework.

B. Sophia Antipolis road network
We consider a more complex scenario derived from the

road network of the area around the research area in Sophia
Antipolis (France), see Figure 4 (top), outlined in Figure
4 (bottom). Here the boundary nodes of the network are
displayed in red. The nodes n. 1 and 5 correspond to the
entrance/exit of the high capacity highway A8 La Proven-
cale, while the node n. 30 is a parking area considered as
the target in our simulation. The discretization step is set
∆x = 5 and the time step ∆t = 0.8∆x.

Fig. 4. Road network of the Sophia Antipolis area and Map (credit
“ c© OpenStreetMap contributors” www.openstreetmap.org).

In Figure 5 we can see the initial distribution of the density
(we start with a constant distribution of vehicles ρ̄ = 0.8 on
the high capacity highway composed by the path 1-2-3-4-5)
and its time evolution, for the two populations. We establish
the percentage of the vehicles belonging to each class using,
as in the previous case, the parameter P ∈ [0, 1]. As in the
previous case, the priority parameters at junctions are chosen
to be equal between the various incoming roads.

We observe the different strategies of the two populations:
While population 1 points directly to the objective (node
n. 30), reaching high-density levels on the shortest path
to the destination, the second population splits since the
beginning of the simulation into two main routes to reach
the destination. It is interesting to notice that also several
minor connections are used to balance the flux between the
various paths chosen. As expected, the routed population
tends to avoid the shorter but high congested path traveled
by population 1.

VI. CONCLUSIONS
In this paper we have presented a new dynamic macro-

scopic multi-population traffic model on road networks,

www.openstreetmap.org


Fig. 5. Evolution of the density ρ in the case of non informed population
(left) and informed (right) for P = 0.5. The samples are taken at time
t = 0, 752, 1504, 2256.

where the different population classes are characterised by
their optimal strategies to reach a target. The strategies are
different since they are deduced in base of information about
the state of the system of every class. In particular, we have
studied the impact on the whole traffic flow of different
penetration rates of vehicles routed by on-line navigation
devices. Our numerical experiments show that the total travel
time of all users reaches its minimum, but then it is higher
for large percentages of routed vehicles, driving the system
to some form of Wardrop equilibrium point. Moreover, the
traffic flow on secondary roads also increases as the number
of routed vehicles increases.

This work intends to be a preliminary introduction of the
model, since several aspects still need to be addressed. First
of all, we plan to test the proposed approach in more realistic
scenarios, possibly validating the results against real data. It
would be also interesting to evaluate the impact of traffic
navigation systems by comparing the network performances
obtained using system optimal traffic assignment policies,
see e.g. [23]. Finally, a substantial theoretical work of
validation of the model is necessary, in particular in relation
of the nature of the equilibrium between the agents which is
selected.
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