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Abstract

We discuss the general framework of a stochastic two-players, hybrid differ-
ential game, and we apply it to the modelling of a “match race” between
two sailing boats, namely a competition in which the goal of both players is
to proceed in the windward direction, while trying to slow down the other
player. We provide a convergent approximation scheme for the computation
of the value function of the game, and we validate the approach on some
typical racing scenarios.

Keywords: Stochastic hybrid systems, differential games, Hamilton–Jacobi
equations, route planning, match race
93E20, 65C20, 65M25, 65N06

1. Introduction

Hybrid processes are present in many economic and technological systems,
whose dynamics can be modelled by a collection of controlled ordinary or
stochastic differential equations: besides the standard actions performed on
the current dynamics at a given time, the controller also has the option to
switch to a different dynamics, in order to optimize some objective functional.

Starting from the late 90s, several attempts have been made to provide
a precise notion of hybrid systems. Among the different concepts proposed,
we quote here [1] and [2] for respectively the deterministic and the stochastic
case. The common feature of these models is to consider an extended state
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space for the dynamics, given by the product of both a continuous component
and a discrete component, the latter indexing the active dynamics within a
finite set.

In the optimal control of such class of systems, dynamic programming
techniques have been widely investigated in the literature. The formula-
tion of the problem in terms of a Bellman equation leads to a system of
quasi-variational inequalities, which involve two different Bellman operators,
related to respectively the continuous and the discrete control actions. A
theoretical study of the problem in the framework of viscosity solutions can
be found in [2, 3]. The numerical treatment via monotone schemes has also
been studied in [4], proving that the classical Barles–Souganidis theory [5]
applies to the hybrid case, and providing a convergent technique to construct
asymptotically optimal controls.

On the other hand, the case of differential games in the presence of hybrid
dynamics seems much less explored in the literature. To our knowledge, the
first study of a deterministic game under pure switching controls is given
in [6]. Using the celebrated notion of non-anticipating strategies by Elliott
and Kalton [7], one can prove the existence of a value for the game under a
technical assumption, the so-called no free loop property. The unique value
function satisfies a dynamic programming principle and can be characterized
as the viscosity solution of an Isaacs system of quasi-variational inequalities.
We refer to this work also for an extensive review of the earlier literature on
the subject. A more recent and general study, still in the deterministic case
but much in the spirit of hybrid systems, is provided in [8]. Requiring also
the classical Isaacs conditions, the existence of a value is proved for games
involving continuous, impulsive and discrete controls. Finally, concerning
the stochastic case, we refer to some recent papers [9? ? ? ? ? ].

In this paper, we use the theory of stochastic hybrid differential games
to model a route planning problem for two competing sailing boats, known
as a match race. In this problem, the aim of the two competitors is to reach
a mark at the end of a race leg before the other, regardless of the time to
reach the goal. This aspect makes the problem quite different from optimal
navigation (discussed, e.g., in [10, 11, 12]) and motivates the use of game
theory to model the interaction mechanics between the boats. This issue
was also addressed in [13], where the authors propose a technique to assess
virtual competitions between yachts and to evaluate the pros and cons of
various race scenarios. The physical interaction between the two boats (the
wind shadow region where one boat perturbs the wind) is modelled using
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a penalization/reward term. Other works related are [14, 15], where a risk
model is included in the strategic decision process, and it is shown that,
rather than finding the strategy that minimizes the time to complete the race
leg, a strategy aimed at maximizing the probability of completing before the
opponent offers better chances of victory. In the same works, the authors use
a short term wind forecast methodology based on Artificial Neural Networks
to model the instability of the wind. The originality of the methodology
that we propose in this paper lies on a game-theory-based formulation of the
interaction between the two boats. This framework permits the observation
of highly sophisticated strategic choices that are commonly used by tacticians
in match race competitions, and a precise timing and quantification of them.

The paper is organized as follows. In Section 2, we introduce the mathe-
matical framework for a stochastic hybrid game, reporting some results con-
cerning its well-posedness in the viscosity sense, as well as the conditions for
the existence of a value. In Section 3, we discuss in detail our game, and we
analyze some relevant features of the corresponding value function. Section
4 is devoted to the numerical solution of the Isaacs system of the game. We
build a convergent algorithm based on a suitable monotone scheme, and we
provide some hints on its actual implementation. Finally, in Section 5, we
perform some numerical tests, showing the effectiveness of the technique in
different scenarios of application.

2. Stochastic hybrid differential games

We describe the general structure of a zero-sum stochastic hybrid differ-
ential game, and we report the main results concerning the well-posedness of
the problem in the sense of viscosity solutions. The following presentation
is a modified version of the one proposed in [6]. Fundamental contributions
are also [2, 1] adapted to the stochastic case as in [8] or in the same spirit of
[16]. We refer to these papers for further details and rigorous proofs.

Given two compact sets A ⊂ RmA and B ⊂ RmB (for some integers mA,
mB), we define the following standard sets of continuous controls for the two
players, respectively

A = {a : (0,∞)→ A | a measurable} ,

B = {b : (0,∞)→ B | b measurable} .
Moreover, in order to model the possibility for the two players to switch be-
tween different dynamics, we consider two finite sets of indices I = {1, 2, . . . , NI}
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and J = {1, 2, . . . , NJ } (for some integers NI , NJ ), and we define the fol-
lowing sets of piecewise constant discrete controls, respectively

Q =

{
Q : (0,∞)→ I |Q(t) =

∑
i≥0

qiχ[ti,ti+1)(t)

}
,

R =

{
R : (0,∞)→ J |R(t) =

∑
i≥0

riχ[ti,ti+1)(t)

}
,

where {ti} is the sequence of (ordered) switching times, {qi} ⊂ I, {ri} ⊂ J
are the corresponding sequences of switching values for the two players, and
χ[ti,ti+1) denotes the characteristic function of the interval [ti, ti+1).

We consider the dynamical system described by the following controlled
stochastic differential equation (SDE):{
dX(t) = f(X(t), Q(t), a(t), R(t), b(t))dt+ σ(X(t), Q(t), R(t)) dWt, t > 0 ,

X(0) = x, Q(0+) = q, R(0+) = r,

(1)
where (for some integers d, k) x,X ∈ Rd, q ∈ I, r ∈ J , a(·) ∈ A, Q(·) ∈ Q,
b(·) ∈ B, R(·) ∈ R, while f : Rd×I×A×J ×B → Rd is the dynamics, dWt

is the differential of a k-dimensional Brownian process, and σ : Rd×I×J →
Rd×k is the corresponding covariance matrix.

To properly define solutions of the stochastic differential equation (1), we
need a standard regularity assumption:

H1 - f and σ are globally bounded and uniformly Lipschitz continuous with
respect to x.

Then, the following integral representation formula holds:

X(t) = x+

∫ t

0

f(X(s), Q(s), a(s), R(s), b(s))ds+

∫ t

0

σ(X(s), Q(s), R̄(s)) dWs.

The stochastic trajectory starts from (x, q, r) in the extended state space
Rd × I × J . At each time t > 0 the first player can act on the current
dynamics through the control a(·) ∈ A, or switch to another dynamics using
the discrete control Q(·) ∈ Q. Similarly, the second player employs the
controls b(·) ∈ B and R(·) ∈ R. This setting is suitable for our application
to a match race competition, but we remark that the most general framework
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of hybrid control systems (see, e.g., [2]), allows one to deal with problems
including also autonomous transitions and jumps in the state X.

Now, we define the game between the two players. To this end, let us
introduce a more compact notation for the controllers, by setting respectively
α(t) := (Q(t), a(t)) ∈ Q×A and β(t) := (R(t), b(t)) ∈ R×B. Moreover, we
consider the following cost functional:

J(x, q, r;α, β) := E
(∫ +∞

0

e−λs`(X(s), Q(s), a(s), R(s), b(s))ds

+
∑
i≥0

e−λti
[
CA
(
Q(t−i ), Q(t+i )

)
+ CB

(
R(t−i ), R(t+i )

)])
. (2)

Here, the symbol E denotes expectation with respect to the Wiener measure,
while the first integral term defines a standard infinite horizon functional,
with discount factor λ > 0 and a running cost ` : Rd×Q×A×R×B → R.
We assume that:

H2 - ` is non-negative, bounded and uniformly Lipschitz continuous with
respect to x.

On the other hand, the second term in (2) accounts for the discounted costs
CA : I × I → R and CB : J × J → R associated to the switches of the
two players (A and B respectively) at times {ti}. Here, player A wants to
maximize J using the control α, thus paying a negative cost CA for each
switch. Similarly, player B wants to minimize J using the control β and
paying a positive cost CB for each switch. Note that, to simplify notation, we
regrouped the switching times of both players in a single sequence {ti}. This
means that, if only one player performs a switch at time ti, the corresponding
cost of the other player should be zero. We summarize all these properties
by requiring the following assumptions:

H3 - CA and CB are bounded and satisfy

CA(q, q) = 0 for every q ∈ I , CB(r, r) = 0 for every r ∈ J .

Moreover, there exists C0 > 0 such that

max
q1 6=q2

CA(q1, q2) ≤ −C0, min
r1 6=r2

CB(r1, r2) ≥ C0.
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We proceed by defining the value functions of the game. To this end, we
employ the classical notion of non-anticipating strategies [7, 6], which allows
to rigorously prove a dynamic programming principle.

Definition 1. A non-anticipating strategy for player A (resp. B) is a map
φ : R× B → Q×A (resp. ψ : Q×A → R×B) such that, for any t > 0,

β(s) = β̃(s) for all s ≤ t implies φ[β](s) = φ[β̃](s) for all s ≤ t .

(resp. α(s) = α̃(s) for all s ≤ t implies ψ[α](s) = ψ[α̃](s) for all s ≤ t .)

We denote the set of non-anticipating strategies by Φ for player A, and
by Ψ for player B. Then, for every (x, q, r) ∈ Rd×I×J , we define the lower
value function v of the game as

v(x, q, r) := inf
ψ∈Ψ

sup
α∈Q×A

J(x, q, r;α, ψ[α]), (3)

and the upper value v as

v(x, q, r) := sup
φ∈Φ

inf
β∈R×B

J(x, q, r;φ[β], β). (4)

Moreover, if v ≡ v, we say that the game has a value, and we denote it by v.
In the next Proposition, we state the dynamic programming principle

satisfied by both the value functions.

Proposition 1. Under the assumptions H1-H3, for all (x, q, r) ∈ Rd×I×J
and τ > 0, the following equation holds true

v(x, q, r) = inf
ψ∈Ψ

sup
α∈Q×A

{
E
(∫ τ

0

`(X(s), α(s), ψ[α](s))ds

+
∑
ti<τ

e−λti
[
CA
(
Q(t−i ), Q(t+i )

)
+ CB

(
R(t−i ), R(t+i )

)]
+ v(X(τ), Q(τ), R(τ))e−λτ

)}
, (5)

where Q and R are the switching controls contained respectively in the strategy
α and ψ[α]. A similar equation holds for the upper value function v, by
swapping the role between inf and sup in (5).
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Now, for a generic function ϕ : Rd×I ×J → R, we define the two following
switching operators

N [ϕ](x, q, r) := max
q̂ 6=q
{ϕ(x, q̂, r) + CA(q, q̂)},

M[ϕ](x, q, r) := min
r̂ 6=r
{ϕ(x, q, r̂) + CB(r, r̂)},

which provide some natural bounds on the value functions, as stated in the
next Proposition.

Proposition 2. For every (x, q, r) ∈ Rd×I ×J the lower value function v
satisfies

N [v](x, q, r) ≤ v(x, q, r) ≤M[v](x, q, r) .

The same estimates hold for the upper value function v.

Proposition 1 and Proposition 2 allow to derive the Hamilton–Jacobi–
Isaacs equations of the game. More precisely, for x, p ∈ Rd, q ∈ I and r ∈ J ,
we introduce the Hamiltonians

H−(x, q, r, p) := min
a∈A

max
b∈B
{−f(x, q, a, r, b) · p− `(x, q, a, r, b)}, (6)

H+(x, q, r, p) := max
b∈B

min
a∈A
{−f(x, q, a, r, b) · p− `(x, q, a, r, b)}, (7)

and the second order differential operators

F−[ϕ](x, q, r) = λϕ(x, q, r) +H−(x, q, r,Dϕ)− 1

2
tr
(
σσTD2ϕ(x, q, r)

)
, (8)

F+[ϕ](x, q, r) = λϕ(x, q, r) +H+(x, q, r,Dϕ)− 1

2
tr
(
σσTD2ϕ(x, q, r)

)
, (9)

whereD andD2 denote respectively the gradient and the hessian with respect
to x, σT is the transpose of σ, and tr(·) stands for the matrix trace.

Then, it follows that the value functions v and v satisfy, for every (x, q, r) ∈
Rd × I × J , respectively

max
{
v −M[v],min

{
v −N [v], F−[v]

}}
= 0 , (10)

and
max

{
v −M[v],min

{
v −N [v], F+[v]

}}
= 0 , (11)

namely two systems of NINJ quasi-variational inequalities. In each system,
we can identify three separate operators, which provide respectively the best
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possible switching for the two players, and the best possible continuous con-
trols. The arguments attaining the respective extrema in such equations
represent the overall optimal control strategies. The derivation of (10) and
(11), which is elementary under differentiability assumptions, can be rigor-
ously justified in a more general setting by an adaptation of the viscosity
theory [3] to the case under consideration.

To conclude this section, we briefly discuss the key steps for proving the
existence of a value for the game, namely that v ≡ v. First, a uniqueness
result for the viscosity solutions of both (10) and (11) is needed. In this direc-
tion, the following additional assumption, the so-called no free loop property,
appears in several papers on hybrid games, see e.g., [? 6? ]:

H4 - Let {(qi, ri)}i=1,...,N+1 be a finite sequence of indices such that (qi, ri) 6=
(qi+1, ri+1) for every i = 1, ..., N − 1 and (q1, r1) = (qN+1, rN+1). Then

N∑
i=1

{CA(qi, qi+1) + CB(ri, ri+1)} 6= 0.

Although technical, this assumption seems unavoidable in order to obtain
a comparison principle between a viscosity sub-solution u and a viscosity
super-solution w of (10) (the same reasoning applies to (11)). The idea
is that, using assumption H4, one can find, for every x ∈ Rd, a common
state (q∗, r∗) ∈ I × J in which both inequalities F−[u](x, q∗, r∗) ≤ 0 and
F−[w](x, q∗, r∗) ≥ 0 hold. Then, one can proceed with the usual comparison
of the Hamiltonians in the viscosity theory and conclude that u ≤ w. This
result implies that v is the unique viscosity solution of (10) and v is the
unique viscosity solution of (11).

Finally, the existence of a value for the game is guaranteed by providing
assumptions that let the Isaacs systems (10) and (11) coincide, as for the
following classical Isaacs conditions:

H5 - H−(x, q, r, p) = H+(x, q, r, p) for every (x, q, r, p) ∈ Rd × I × J × Rd.

Summarizing, we have the following result.

Theorem 1. Under assumption H1-H5, the value function v := v ≡ v is the
unique viscosity solution of both (10) and (11).
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3. The match race problem

We apply the theoretical framework of hybrid differential games, dis-
cussed in the previous section, to a real-world application. A match race is a
competition between two sailing boats, in which the goal of both players is
to reach, as first, the end of the course, regardless of their relative distance.
Each player can take advantage of the wind fluctuations to proceed upwind
towards the finish line, by adjusting the relative angle between the sail and
the wind, and also changing the tack side. In addition, the players can make
use of their respective influence, caused by the sail turbulence. This is usu-
ally an advantage for the leading boat, which can exploit this influence to
control the other player. Note that a reasonable description of this problem
requires, at least, a state space of dimension d = 5: two pairs of coordinates
to track the positions of the boats in a plane, and one coordinate for the wind
angle. Here, we consider a simplified game, namely we neglect the windward
mark, and we just focus on the strategies of the two players in the space of
relative positions. This reduces the problem to dimension d = 3, but it is still
a realistic racing criterion when the two players are far from the windward
mark. Moreover, it can be numerically solved in a reasonable time also on
a laptop computer. The analysis and the parallel implementation of the full
game is under investigation, and will be addressed in a forthcoming paper.

In the next subsections, we first introduce the hybrid dynamics for the
boats, following the model presented in [12]. Then, we define the hybrid
game, by suitably setting all the parameters appearing in the cost functional
(2). Finally, we present a more detailed analysis of the value function of the
game, in case the two players are far enough from each other.

3.1. Dynamics modelling

We consider the motion on a plane of a single boat, subject to a wind
of constant speed and variable direction. We set the dimension of the state
space to d = 3, in which the first two components x1 and x2 represent the
position of the boat, while the third component x3 gives the angle θ ∈ [−π, π]
of the wind with respect to the vertical axis. In particular, θ is negative in
the second and third quadrant, and positive in the first and fourth quadrant,
see Figure 1a.

Moreover, we assume that the wind has a purely Brownian nature, i.e.,
it evolves according to the one-dimensional SDE:

dX3(t) = dΘ(t) = σdW (t), (12)
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(a) (b) (c)

Figure 1: Model of the boat speed. Geometric setting (a), one of the two dynamics (q = 1)
of a boat, superposed on the polar plot of the speed (b) and simplified dynamics based on
the angle of largest windward component of the speed (c).

where dW denotes the differential of a Brownian process, and σ > 0 is the
corresponding standard deviation.

On the other hand, the motion of the boat results from both the wind
direction and the boat characteristics. Following the notation presented in
Section 2, we introduce the set of admissible controls A = [0, π] as the un-
signed angles between the boat direction and the wind, so that the continuous
control is given by a function a : [0,+∞) → A. Then, since the wind speed
is constant, the boat speed will depend only on the angle a, by means of a
function s : A → R+, the so-called polar plot of the boat. Figure 1a sum-
marizes this geometric setting, while in Figure 1b we show a typical form of
the polar plot, with the whole set of speeds associated with the port tack.
Note that, for a = 0, the trajectory points directly in the upwind direction,
whereas, for a = π, the trajectory has the same direction of the wind field.

When sailing to windward, it is customary to keep constantly the boat
at its most efficient angle with the wind, that is, at the angle a∗ ≈ π

4
, cor-

responding the largest windward component of the speed. In this case, the
dynamics can be simplified by freezing the control at the value a∗ (see Figure
1c), and acting on the system only by changing tack. In what follows, we
will use this simplified approach.

Finally, we introduce the discrete control, namely a piecewise constant
function Q : [0,+∞) → I, taking values in the discrete set I = {1, 2}. The
two possible discrete states correspond to the tack sides, where the port tack
is identified by q = 1 and the starboard tack by q = 2. Hence, the dynamics
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of the boat is given by{
Ẋ1(t) = s(a∗) sin

(
Θ(t) + (−1)Q(t)a∗

)
Ẋ2(t) = s(a∗) cos

(
Θ(t) + (−1)Q(t)a∗

)
.

(13)

3.2. Game modelling

We define the game in reduced coordinates, i.e., we consider as space vari-
able the relative position of the two players. We denote by xA = (xA1 , x

A
2 ) ∈

R2, xB = (xB1 , x
B
2 ) ∈ R2 and θ ∈ [−π, π], respectively the coordinates of

the two players and the wind angle, while the reduced coordinates are given
by x = xA − xB ∈ R2. Then, for q, r ∈ I = J = {1, 2} and discrete con-
trols Q,R : [0,+∞] → I such that Q(0) = q and R(0) = r, we define the
controlled dynamics of the game according to (12) and (13):

dXA(t) = fA(X(t),Θ(t), Q(t))dt
dXB(t) = fB(X(t),Θ(t), R(t))dt
dΘ(t) = σdW (t)


XA(0) = xA

XB(0) = xB

Θ(0) = θ
(14)

where

fA(x, θ, q) = sA(x, θ) (sin(θ + (−1)qa∗), cos(θ + (−1)qa∗)) ,

fB(x, θ, r) = sB(−x, θ) (sin(θ + (−1)rb∗), cos(θ + (−1)rb∗)) ,

with a∗ = b∗ = π
4
. The speed functions sA and sB contain the information

about the interaction between the two players. As an example, we can take

sP (x, θ) = s̄P
(

1 + min{sP0 (x · (sin(θ), cos(θ))e−s
P
1 |x|2 , 0}

)
(P = A,B),

(15)
for given positive constants s̄P , sP0 , s

P
1 , which would model the wind shadow

region, i.e., a situation in which the player P has its maximum speed s̄P

when the two players are far from one another, but it is slowed down when
its position is close and behind or on the downwind side of the other (note
the dependency of fA on x and of fB on −x, which reflects the speed profile
with respect to the origin, according to the leading player). Figure 2 shows
the level sets of the speed function sP in (15), corresponding to s̄P = 0.05,
sP0 = 20 and sP1 = 300, for θ = π

4
.

We remark that we can also incorporate in the maximum speeds s̄A and
s̄B an additional dependency on the states (x, q, r). This can be useful to
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Figure 2: Level sets of the speed profile.

model the rules about the right of way in match race competitions. For
instance, with a little abuse of notation, we can choose

s̄A(x, θ, q) = s̄A
(

1− ν1e
−x

2

ν2

)q−1

(and similarly s̄B(x, θ, r)) to introduce a penalization of the speed of the boat
on the port-tack (q, r = 2), which activates only when the distance between
the boats is small enough, tuned by the choice of the parameters ν1, ν2.
This penalization mimics the interaction of a boat meeting a competitor on
opposite tacks (see [17, Rule 10]).

In order to define the infinite horizon cost functional J in (2), we choose
two constants CA, CB > 0, and we set the switching costs as follows

CA(q1, q2) =

{
−CA if q1 6= q2

0 otherwise,
CB(r1, r2) =

{
CB if r1 6= r2

0 otherwise.

Finally, we choose the running cost

`(x, θ, q, r) = fA2 (x, θ, q)− fB2 (x, θ, r),

so that the cost functional integrates the vertical component of the relative
speed of the two boats. This results in a game in which each player wants to
overcome the opponent along the vertical component with the least number of
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switches. Due to the lack of continuous controls, the corresponding systems
of quasi-variational inequalities (10)-(11) coincide, and take the form:

min
{
v(x, θ, q, r)− v(x, θ, q̂, r) + CA , max

{
v(x, θ, q, r)− v(x, θ, q, r̂)− CB ,

λv(x, θ, q, r)− f(x, θ, q, r) ·Dv − `(x, θ, q, r)− σ2

2

∂2v

∂θ2
(x, θ, q, r)

}}
= 0 ,

(16)

where, for every q, r ∈ I = J = {1, 2}, we set q̂ = 3 − q and r̂ = 3 − r,
and we denoted by f the deterministic part of the coupled dynamics in Rd,
namely

f(x, θ, q, r) =
(
fA1 (x, θ, q)− fB1 (x, θ, r), fA2 (x, θ, q)− fB2 (x, θ, r), 0

)
.

We can observe that, in the present setting, the technical assumption H4 in
Theorem 1 is satisfied if CA 6= CB. Otherwise, uniqueness of a solution is
not ensured.

3.3. Decoupling of the game with “far” players

As discussed in the previous section, the coupling in the dynamics of
the two players, and hence the essence of the game, is entirely embedded in
the speed function sP . A key observation is that if the two players are far
enough from each other, i.e., if |x| � 1, then sP ≈ s̄P . Consequently, a fair
approximation of the far dynamics of each player depends only on the wind
direction and on the switching strategy. In this setting, we can provide a more
explicit analysis of the game, and also obtain suitable boundary conditions
for the approximation of the problem in a bounded domain, as it will be
discussed later. We remark that this analysis is much in the same spirit of
the one carried out in [18, Chapter 5], and in some sense brings it to its final
conclusions, in the case in which the player is far from the target.

Assuming that |x| = |xA− xB| � 1, and using the definition of sP and `,
we can split the cost functional J in (2) as the difference

J(x, θ, q, r;Q,R) = JA(θ, q;Q)− JB(θ, r;R),

where

JA(θ, q;Q) = E

(∫ ∞
0

s̄A cos
(

Θ(t) +
π

4
(−1)Q(t)

)
e−λtdt− CA

∑
i≥0

e−λt
A
i

)
,
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JB(θ, r;R) = E

(∫ ∞
0

s̄B cos
(

Θ(t) +
π

4
(−1)R(t)

)
e−λtdt− CB

∑
i≥0

e−λt
B
i

)
.

As a consequence, we get

v(x, θ, q, r) = inf
R(·)

sup
Q(·)

J(x, θ, q, r;Q,R)

= sup
Q(·)

JA(θ, q;Q) + inf
R(·)

{
−JB(θ, r;R)

}
= sup

Q(·)
JA(θ, q;Q)− sup

R(·)
JB(θ, r;R)

= vA(q, θ)− vB(r, θ),

where, for P = A,B, and p = q, r ∈ I = J = {1, 2}, we denote by vP (p, θ)
the value function corresponding to the optimal control problem, for the
single player P , of maximizing JP subject to the dynamics fP . We remark
that, due to the special structure of fP and of the running cost in JP , the
value function vP depends only on θ and on the discrete state p. Moreover,
it satisfies the following system of quasi-variational inequalities: for p ∈ I =
{1, 2} and p̂ = 3− p,

min
(
vP (p, θ)− vP (p̂, θ) + CP ,

λvP (p, θ)− s̄P cos
(
θ +

π

4
(−1)p

)
− σ2

2

∂2vP

∂θ2
(p, θ)

)
= 0.

(17)

For general switching costs CA, CB and speeds s̄A, s̄B, we can solve (17)
numerically, as shown in the next section. Neverthless, in the symmetric case
(CA = CB =: c̄ and s̄A = s̄B =: s̄), we have vA(p, θ) = vB(p, θ) =: v̄(p, θ),
and we can extract further information by straightforward computations.
Indeed, choosing alternately p = 1 and p = 2 in (17), for every θ ∈ [−π, π]
we get

v̄(1, θ)− v̄(2, θ) + c̄ ≥ 0, v̄(2, θ)− v̄(1, θ) + c̄ ≥ 0,

and, at the points θ such that both inequalities are strict, we also have the
equations

λv̄(1, θ)− s̄ cos
(
θ − π

4

)
− σ2

2

∂2v̄

∂θ2
(1, θ) = 0 ,

λv̄(2, θ)− s̄ cos
(
θ +

π

4

)
− σ2

2

∂2v̄

∂θ2
(2, θ) = 0 .

14



Defining the difference ṽ(θ) = v̄(2, θ)− v̄(1, θ), by linearity we readily obtain

max

{
ṽ(θ)− c̄ , min

{
ṽ(θ) + c̄ , λṽ(θ)−

√
2s̄ sin(θ)− 1

2
σ2 ∂

2

∂θ2
ṽ(θ)

}}
= 0,

(18)
where we used the subtraction formula for the cosine function. This is a
classical double obstacle problem, whose solution can be characterized as
follows. First of all, the solution to the second order differential equation is
given by

v∗(θ) = C1e
−ω∗θ + C2e

ω∗θ + Ω∗ sin(θ), ω∗ =

√
2λ

σ
, Ω∗ =

2
√

2s̄

2λ+ σ2
,

where C1, C2 are constants to be determined. By symmetry we require
v∗(0) = 0, whereas, imposing C1 regularity for the contact point θ∗ with the
obstacle (this is a classical result, see [19]), we get v∗(θ∗) = c̄ and ∂v∗

∂θ
(θ∗) = 0.

This easily implies the following nonlinear equation in θ:

Ω∗ sin(θ)− Ω∗

ω∗
tanh(ω∗θ) cos(θ) = c̄ , (19)

which admits a unique solution θ∗ ∈ [0, π
2
], since the left hand side is strictly

increasing for θ ∈ [0, π
2
] (we recall that, when sailing to windward, this is the

interesting case).
Hence, we obtain

ṽ(θ) =


−c̄ θ < −θ∗
v∗(θ) |θ| ≤ θ∗

c̄ θ > θ∗
(20)

and coming back to the relationship

v(θ, q, r) = vA(θ, q)− vB(θ, r) ,

we conclude that, for |x| � 1

v(x, θ, 1, 1) = v̄(1, θ)− v̄(1, θ) = 0 , v(x, θ, 2, 2) = v(2, θ)− v̄(2, θ) = 0 ,

v(x, θ, 2, 1) = v̄(2, θ)−v̄(1, θ) = ṽ(θ) , v(x, θ, 1, 2) = v̄(1, θ)−v̄(2, θ) = −ṽ(θ) .

As a final remark, we point out again that, if the game is not symmetric
(CA 6= CB or s̄A 6= s̄B), then no such explicit computation is possible, and
the single-player solution, as well as the boundary conditions for the two-
player game, should be computed numerically.
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Example. We solve the one dimensional problem (17) for a single player,
choosing the algorithm and parameters as described in the next section.
Figure 3a shows the value functions v(1, θ) and v(2, θ), corresponding to the
two discrete states. We observe two crossing points, one at the origin, and
one at the boundary of the periodic domain [−π, π]. In Figure 3b we report,
for θ ∈ [−0.2, 0.2], a detail of the difference v(2, θ) − v(1, θ), namely, the
solution of the double obstacle problem (18). The computed contact point
is about θ∗ = 0.085722. Finally, in Figure 3c, we show the optimal switching
maps, observing a typical hysteresis loop around the origin, with optimal
switching points −θ∗ and θ∗.

4. Numerical approximation

In this section we introduce a numerical scheme for solving the system of
quasi-variational inequalities (16). To this end, it is useful to rewrite (16) in
the following fixed point form:

v(q, r) = max

{
v(q̂, r)− CA,min

{
v(q, r̂) + CB,

1

λ

(
f ·Dv + `+

σ2

2

∂2v

∂θ2

)}}
.

(21)
Now, given b1, b2, b3 > 0, we consider the computational box [−b1, b1] ×
[−b2, b2]× [−b3, b3] in the reduced state space R2× [−π, π], and we introduce
a uniform grid with nodes(
xi1, x

j
2, θ

k
)

= (−b1 + i∆x1,−b2 + j∆x2,−b3 + k∆θ), (i, j, k = 0, . . . , N),

where N is an integer and the space steps are given respectively by ∆x1 =
2b1/N , ∆x2 = 2b2/N and ∆x3 = ∆θ = 2b3/N .
For a generic scalar or vector function χ(x1, x2, θ, q, r), we denote by χi,j,kq,r the

corresponding approximation at the point (xi1, x
j
2, θ

k). Then, we discretize
the stationary advection-diffusion equation appearing in (21) using centred
differences for the second derivative of v, and upwind differences (according
to the sign of the components of f) for first derivatives. By straightforward
algebraic manipulations, we obtain the following scheme:

vi,j,kq,r = T [v](i, j, k, q, r, q̂, r̂) := max
{
vi,j,kq̂,r − C

A,min
{
vi,j,kq,r̂ + CB,S[vi,j,kq,r ]

}}
,

(22)
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Figure 3: One-dimensional problem. Value functions (a), zoom of their difference around
the origin (b), and optimal switching maps (c).

where

S[vi,j,kq,r ] =
1

Λ

(
α1v

ī,j,k
q,r + α2v

i,j̄,k
q,r + α3v

i,j,k̄
q,r +

1

2
α4(vi,j,k−1

q,r + vi,j,k+1
q,r ) + li,j,kq,r

)
(23)

with

α1 =
|(f i,j,kq,r )1|

∆x1

, α2 =
|(f i,j,kq,r )2|

∆x2

, α3 =
|(f i,j,kq,r )3|

∆θ
, α4 =

σ2

∆θ2
,

Λ = λ+ α1 + α2 + α3 + α4
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and (the symbol sgn(·) denotes the sign of its argument)

ī = i+ sgn((f i,j,kq,r )1) , j̄ = j + sgn((f i,j,kq,r )2) , k̄ = k + sgn((f i,j,kq,r )3) .

Now, we can compute the solution of (21) using fixed point iterations, as
described in Algorithm 1.

Algorithm 1 Value Iteration Algorithm

1: Assign an initial guess (vi,j,kq,r )(0), for i, j, k = 0, . . . , N and q, r = 1, 2.
Fix a tolerance tol > 0 and set n = 0

2: repeat
3: for i, j, k = 1, . . . , N − 1 and q, r = 1, 2 do
4: Set q̂ = 3− q and r̂ = 3− r
5: Compute (vi,j,kq,r )(n+1) = T [v(n)](i, j, k, q, r, q̂, r̂)
6: end for
7: Set n = n+ 1
8: until max

q,r
max
i,j,k

∣∣(vi,j,kq,r )(n) − (vi,j,kq,r )(n−1)
∣∣ < tol

Note that, in this form, the scheme is consistent, monotone and L∞ stable
(see the analysis in [4]), and therefore convergent via the Barles–Souganidis
theorem [5], in all cases in which a comparison principle holds.

We remark that the fixed point iterations are performed at the internal
nodes of the grid, hence the choice of the boundary conditions for the initial
guess is crucial. As discussed in the previous section, if the bounds b1 and b2

are large enough, the game at the boundary decouples in two optimal control
problems, one for each player, both described by the same system of quasi-
variational inequalities (17), in the only state variable θ ∈ [−π, π]. These
one-dimensional problems can be solved again via fixed point iterations, using
the following discretization of (17) for P = A,B and p = q, r ∈ {1, 2}:

(vP )kp = max
{

(vP )kp̂ − CP ,S1[(vP )kp]
}
,

with

S1[(vP )kp] =

(
λ+

σ2

∆θ2

)−1(
1

2

σ2

∆θ2

(
(vP )k−1

p + (vP )k+1
p

)
+ s̄P sin

(
θk +

π

4
(−1)p

))
,

and imposing periodic boundary conditions at θ = ±π. Once the solutions
vA and vB are computed, we set the boundary values vi,j,kq,r = (vA)kq − (vB)kr
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for i = 0 or i = N or j = 0 or j = N and 0 ≤ k ≤ N . Note that this relation
can be used also in the internal nodes, to define a reasonable initial guess
and save some iterations for the convergence of Algorithm 1.

We finally remark that, in the special case CA = CB and s̄A = s̄B, we
can alternately solve the nonlinear equation (19) by a standard root-finding
algorithm, and build the initial guess using the explicit expression (20) for
the difference vA − vB.

We proceed by discussing how to build optimal trajectories for the game.
With the value function v at hand, we have, by construction, the following
inequalities for all i, j, k = 0, ..., N , all q, r = 1, 2 and q̂ = 3− q, r̂ = 3− r

vi,j,kq̂,r − C
A ≤ vi,j,kq,r ≤ vi,j,kq,r̂ + CB .

Whenever an inequality is strict, the corresponding player keeps its discrete
state, otherwise it can take an advantage on its opponent by switching to
the other state and paying the corresponding cost. Then, we can easily
define, for each player, an optimal switching map, depending on both the
node (xi1, x

j
2, θ

k) and the state (q, r):

SA
i,j,k

q,r =

{
q if vi,j,kq,r > vi,j,kq̂,r − CA

q̂ if vi,j,kq,r = vi,j,kq̂,r − CA SB
i,j,k

q,r =

{
r if vi,j,kq,r < vi,j,kq,r̂ + CB

r̂ if vi,j,kq,r = vi,j,kq,r̂ + CB

Finally, we discretize the dynamics (14) by means of a simple forward Euler
scheme with time step ∆t:

XA
n+1 = XA

n + fA(Xn,Θn, Qn)∆t
XB
n+1 = XB

n + fB(Xn,Θn, Rn)∆t

Θn+1 = Θn + σ
√

∆tWn+1

Qn+1 = SA
in+1,jn+1,kn+1

Qn,Rn

Rn+1 = SB
in+1,jn+1,kn+1

Qn+1,Rn


XA

0 = xA

XB
0 = xB

Θ0 = θ
Q0 = q
R0 = r

where {Wn} is a sequence of random numbers with a normal distribution of
unit variance, and

in+1 = d((Xn+1)1 + b1)/∆x1e
jn+1 = d((Xn+1)2 + b2)/∆x2e
kn+1 = d(Θn+1 + b3)/∆θe

define, by means of the upper integer part d·e, a closest-neighbour projection
on the grid of the updated state variables.
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5. Numerical examples

Parameters for the simulations have been set according to the literature
related to single-hull America’s Cup vessels. In what follows, the length
unit amounts to 1000 meters, and the time unit to 10 seconds. We choose
the bounds b1 = 1, b2 = 1 and b3 = π

4
, with 201 nodes for each dimension

of the grid (i.e., a total number of about 3.2 · 107 nodes). Concerning the
boat speeds, we choose s̄A = s̄B = 0.05 and s̄A1 = s̄B1 = 300. For the
switching costs, we consider two different settings, a symmetric case with
CA = CB = 0.02, and an asymmetric case with CA = 0.02 and CB =
0.04. For the wind evolution, we consider a brownian motion with standard
deviation σ = 0.03. Finally, we set λ = 0.1 for the discount factor in the
cost functional, tol = 10−5 for the convergence tolerance in Algorithm 1, and
∆t = 0.2 for the time step in the reconstruction of the optimal trajectories.

As already remarked, uniqueness of solutions for the system (21) is not
ensured in the symmetric case CA = CB. Nevertheless, in the following tests,
we always observe the convergence of the algorithm to a meaningful solution.

In the examples, we show some sample simulations obtained in typical
scenarios. For each scenario, the value function and switching map have been
computed in a first phase, while sample optimal (or suboptimal, as in the
second example) trajectories are computed in the second phase, according
to the procedure outlined in the previous section. For each simulation, four
plots show respectively the wind evolution Θ(t), the resulting trajectories of
the players in the x1−x2 plane, the relative position xA2 −xB2 and the speeds
of the two players, as functions of time. Trajectories and speeds are shown
in red for player A, in black for player B.

Test 1. We consider the symmetric case CA = CB, and the same initial x2-
coordinate, with the player A on the left side. Figures 4–5 show two sample
trajectories. The game is led, at least up to the final time T = 1000 of
the simulation, one time for each player. Both players tend to follow the
optimal single-player strategy. However, the speed plots show that, once one
of the players has gained a small advantage in the first part of the game,
it tries to preserve the advantage by disturbing the other player as much as
possible when in favourable position, and keeping away from the other if in
unfavourable position. This results in two trajectories relatively close to one
another, see also the detail of the trajectories in Fig. 4.
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Figure 4: Test 1a. Optimal strategy for both players in symmetric conditions, player B
(black trajectory) wins.

Test 2. We still consider the symmetric case CA = CB, but here player A
plays using the optimal strategy for the game, while player B plays using the
single-player optimal strategy. Despite the small advantage gained by B in
the first phase, A plays to disturb B (as it is apparent from the speed plot),
and ends by leading the game, see Fig. 6.

Test 3. We finally consider the asymmetric case CA 6= CB. Player B starts
in a favourable position, but player A ends by leading the game. Here, rather
than from the coupling between the players, A seems to take advantage of
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Figure 5: Test 1b. Optimal strategy for both players in symmetric conditions, player A
(red trajectory) wins.

its better ability to exploit wind variations, see Fig. 7.
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