
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Towards Vehicle-Level Simulator Aided Failure Mode, Effect, and Diagnostic Analysis of Automotive Power Electronics
Items / Sini, J.; D'Auria, M.; Violante, Massimo.. - (2020), pp. 1-6. (Intervento presentato al convegno 21st IEEE Latin-
American Test Symposium, LATS 2020 tenutosi a Maceio (Brazil) nel 30 March-2 April 2020)
[10.1109/LATS49555.2020.9093694].

Original

Towards Vehicle-Level Simulator Aided Failure Mode, Effect, and Diagnostic Analysis of Automotive
Power Electronics Items

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/LATS49555.2020.9093694

Terms of use:

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2831216 since: 2020-06-10T13:06:49Z

IEEE

Towards Vehicle-Level Simulator Aided

Failure Mode, Effect, and Diagnostic Analysis of

Automotive Power Electronics Items

J. Sini, M. D’Auria, M. Violante

Control and Computer Engineering Department (DAUIN)

Politecnico di Torino

jacopo.sini@polito.it, marco.dauria@studenti.polito.it, massimo.violante@polito.it

Abstract—The increasing demand for Electronic Control Units

able to perform safety-relevant tasks leads the automotive industry

to find novel verification methodologies, capable to decrease the

time-to-market and, at the same time, to improve the quality of the

assessment. The ISO26262:2018 automotive functional safety

standard requires to follow a strict development process, compliant

with its “safety lifecycle”. It includes all the phases of the item life,

from the concept to the decommissioning. The phase that places

most difficulties about its objectivity and repeatability is the

hardware/software integration verification since, usually, the

software is in charge to mitigate the effects of some possible

hardware failures. This paper proposes a novel technique, based

on a simulation-based approach, to aid the designers during the

Failure Mode, Effect, and Diagnostic Analysis (FMEDA). We

consider a power electronics module, to be embedded into electric

vehicles powertrains, as a challenging practical example. We

performed some tests on it, considering a rear traction car with two

independent electric motors, one per each wheel. This system, to

allow the vehicle to curve, has to act like a differential gear. Hence,

it has a strong safety impact on the driveability of the car. All the

involved components have been simulated propagating their

behaviours up to the entire vehicle. Due the strong coupling

between item failures and vehicle dynamics, a structured way

based on coupling fault injection with vehicle dynamic simulation

is desirable.

Keywords—. Circuit faults; Hardware; Software; Microcontrollers;

Safety; Automotive electronics; Embedded systems; failure analysis;

ISO 26262 standard; Reliability

I. INTRODUCTION

Electronics and electrical (E/E) items design is becoming day
by day more important in the design process of new cars. In
particular, to develop electrically powered vehicles (EV), the
design of high-reliable electric components is becoming a crucial
point for automotive companies.

Since 2011 the ISO 26262 [1] standard prescribes the safety
lifecycle that has to be followed during the development of those
items that are in charge of safety-related functionalities. In 2018
the Standard has been upgraded to be applied to all road vehicles
except for mopeds and aftermarket parts for vehicles designed to
be operated by drivers with disabilities.

In this paper, we propose a novel methodology to improve
the Failure Mode, Effect, and Diagnostic Analysis (FMEDA), by
adopting a simulation-based approach. We propose to simulate

the item, obtaining its possible misbehaviors by injecting the
possible faults that can affect it. By propagating these
misbehaviors to the vehicle-level though a vehicle dynamics
simulator, it will become possible to perform the failure effect
classification by keeping into account the forecasted effects on
the dynamics and drivability of the vehicle. This can be
particularly useful in those cases where the behavior of the item
is highly coupled with the behavior of the whole vehicle.

II. BACKGROUND

To better understand the problem, it is convenient to briefly

describe the ISO 26262 “safety lifecycle”.

This Standard puts the safety aspects in the central position of

the whole design process.

The ISO 26262 Part 5 [1], titled “Product development at the

hardware level”, describes how to verify the hardware designs

in charge to provide safety-relevant functions of a vehicle. One

of the instruments to compute these reliability metrics is the

FMEDA. Safety-relevant effects of each vehicle function are

analyzed keeping into account the whole lifecycle of an item,

starting from the concept phase to the decommissioning one.

The FMEDA takes place after the concept phase and before the

production of the item. It has the purpose to allow the designers

to determine if the reliability of their item is compliant with the

minimum reliability requirements determined during the

concept phase and described in the technical safety concept,

which describes how to obtain the required safety level from a

technical perspective.

These requirements are imposed by the Standard based on the

results of the Hazard Analysis and Risk Assessment (HARA)

performed during the “Concept phase”. All the risks related to

the item operations have to be analyzed, by assessing the most

common operational situations [2][3][4]. At the end of this

assessment, an Automotive Safety Integrated Level (ASIL), that

is the formal indication of the risk level associated to a violation

of a safety goal, is determined. If the item has more than one

safety goals, the item is developed with the prescription required

to the higher ASIL. ASILs are represented by a capital letter,

from A the less restrictive to D the most severe. If the violation

of a safety goal has no consequences on safety, it is indicated as

Quality Management (QM). In this case, it has not to be

considered within the safety lifecycle but has to be managed

under the quality management procedures adopted by the

manufacturer company.
Once we have obtained the ASIL for the item, the design will

have to comply with the relative hardware architectural metrics
[1]. These are: random hardware fault metric 𝑟ℎ𝑓𝑚, single point
fault metric 𝑠𝑝𝑓𝑚 , and latent fault metric 𝑙𝑓𝑚 . An accurate
description of these is outside the scope of this work. The
interested readers can find it in [10].

As required by the ISO26262, the expected results of the
FMEDA process is a table in where, for each failure mode of
each component installed on the board, is reported its failure
mode effect. As described before, the possible failure mode
effects can be classified into four classes, keeping into account if
the detection system can identify them and if they affect safety.

• Safe Undetected (SU), when the considered failure
mode has not relevant drawbacks in terms of safety
and it is undetected. SU failures have to be avoided,
since we are not investigating multiple failures
conditions, hence we do not have any information
about the effects of more than one SU failures at the
same time.

• Safe Detected (SD), if the failure mode has not
relevant drawbacks in terms of safety and it is
detected by the failure detection algorithm.

• Dangerous Undetected (DU), when the failure mode
has a dangerous effect and there are no detection
mechanisms able to perceive it. Of course, these are
the worst since they can be assumed as single point
of failure.

• Dangerous Detected (DD), if the failure mode by
itself could lead to dangerous effect, but it is
possible to detect it. In this case, it is possible to
insert a mitigation algorithm to mitigate its effects
making it become an SD failure mode.

These classifications are usually performed by hand by safety
engineers on the design to be analyzed. This method is effective
to analyze those systems that have interactions with the physical
environment (like anti-pinch systems for cars sliding windows or
automatic parking brakes) for which the cause-effect relationship
is clearly defined but, in those cases in where these interactions
become more intricate, a perfect knowledge of the item behavior
cannot be sufficient to determine the effect of a failure mode.
Some aiding tools to improve the quality of the results have been
proposed in the past [8][10][11], but they classify by applying
rules keeping into account only the item(actuator)-level effects
of the failure. For a lot of automotive functions, it can be
sufficient, but in some cases, finding item-level classification
criteria can become non-trivial, due to the strong coupling
between the item local failure effects and vehicle behavior.

To overcome this issue, we would like to propose the
following approach. Starting from the item simulation with fault
injection methodology proposed in the previous works [10][11],
we can determine the behavior of a fault-affected item. Hence,
by the propagation of this behavior to a vehicle-level simulator,
it becomes possible to assess also the expected effects on the

whole car, allowing to define classification rules at the vehicle-
level.

In this work, we adopted an actuator-based perspective: we are
only considering the failures that propagate to the actuators.
Hence, under this hypothesis, all the failure effects can be
propagated from the inside of the item to the actuators without
losing generality [5]. The core of a vehicle-level simulator is
composed of a set of differential equations to simulate the vehicle
dynamics and an optimized solver. A graphical user interface
allows configuring scenarios, vehicle characteristics, and
environmental conditions. They offer also visualization tools to
analyze the simulation results as plots or 3D reconstructions.
Usually is provided a quite good set of predefined simulations.
High-end simulators offer also APIs to connect themselves with
third-party software. In this way, it is possible to extract the
signals of interest, compute the item behavior, and close the loop
giving the actuators command to the simulator.

Other authors explored the simulation-based failure effects
assessment, like [6] and [7] where a machine learning approach
has been adopted to generate test cases able to shorten the
identification of the dangerous faults.

III. PROPOSED METHODOLOGY

A platform suitable to perform FMEDA by the proposed
vehicle-level simulation approach is composed of:

• the embedded software of the item;

• the physical models of the item (at printed board
circuit level) in both fault-free and fault-affected
conditions, needed to perform the SPICE-level
simulations;

• the physical model of the sensors and the controlled
actuators;

• the physical model of the car and the surrounding
environment, provided by the vehicle-level
simulator;

• scenarios in which test the failure effects;

• vehicle behavior classification rules.

The following accessory components are also required:

• fault list generator module;

• saboteur;

• circuit (item-level) simulator;

• vehicle-level simulator;

• failure effect classifier.

The whole system architecture is represented in fig. 1 (last page
of the paper). For the sake of this work, we considered only the
faults that could affect the analog components installed on the
PCBs of the Powertrain Electronic Control Unit and of the two
inverters. We have not considered the faults affecting both the
wirings between the boards and the conductive tracks of the
PCBs itself.

The environment works as follows. It starts with the bill of
materials (BOM) and a fault catalog (for example [15], with
probabilities computed as described in [14]). By combining these
two documents it is possible to obtain the failure modes list to be
used by the saboteur to inject the faults during the simulations.
The circuit simulator takes the SPICE-level model of the item. It
can be instrumented with dummy elements to allow to inject
particular failure modes (for example switches to simulate open
or short circuits). We have to provide also a workload list
representing the conditions in where we want to assess the failure
mode effects. The latter can be shared with the vehicle-level
simulator. During the simulations, the circuit simulator interacts
with the vehicle-level simulator, taking the input signals from the
latter and generating the outputs for the actuators, closing the
control loops the item is in charge of. At this point, the simulation
results can be stored and classified, according to the
classifications rules, taking into account the effects of the
considered failure mode on the vehicle dynamics.

The saboteur injects one by one the faults [11][12][13] into
the affected component (fault injection technique is widely
discussed in the literature [16][17][18][19][20][21]). In the
FMEDA only one failure mode is considered at a time, since the
probability of successful detection is part of the analysis. The
silicon-level faults that could affect the microcontrollers (MCUs)
are not considered in this work since modern automotive-grade
MCUs integrate fault detection and mitigation mechanisms
[22][23] and have to be considered as Safety Element out of
Context (SEooC) [1]. Hence, all the MCU related failures are
described at PCB levels (like shorts between pins, soldering
breaking down, and so on…).

IV. THE CASE STUDY

A. Simulation system set-up

To better describe the approach, we considered a powertrain
system with a dual-motor axle. In particular, the safety of the
software-implemented differential gear has been taken into
account. The system is composed as follows: the rear axle of the
vehicle is powered by two independent motors, one for each
wheel. This allows saving weight, since no shafts and differential
gears between the two sides of the car are needed, and each motor
has to produce only half of the power. It allows also a better
control on the vehicle since the torque on the wheels can be
varied to take into account the radius of curvature that the driver
intends to travel, in a differential-drive like fashion. As a
counterpart of all these interesting characteristics, such a system
needs to guarantee a high level of reliability, since a failure on
one motor can cause torque disparity between the two sides of
the vehicle, making it very difficult for the driver to keep control
of the traveled trajectory. The embedded software is in charge to
detect failures on the motors and it must be able to take action to
minimize the torque disparity.

The benchmark application is composed of (see Fig. 1):

• the embedded software of the dual-inverter system;

• the physical model of the inverters, with their fault
model to be injected;

• the physical model of the motors;

• the physical model of the car and the surrounding
environment, provided by the vehicle-level
simulator;

• scenarios in which test the failure effects;

• vehicle behavior classification rules.

The following companion components are also required:

• fault list generator module implemented as a
MathWorks™ MATLAB™ script;

• saboteur implemented as a MATLAB™ script;

• circuit simulator, resorting to MathWorks™
Simulink™ with SimScape™ toolbox, to perform
the SPICE-level simulation of the design;

• an off-the-shelf vehicle-level simulator;

• failure effect classifier implemented as a
MATLAB™ script.

Fig. 1. Structure of the rear dual-motor axle of the car. The

differential gear and the shafts between the two wheels are not
physical devices but they are implemented by the embedded

software.

1) Detection and mitigation algorithms

We identified 68 failure modes for the considered item. Of these,
30 regarding the gas pedal position acquisition chain circuitry, 2
the power supply, and the remaining 36 are about the two motors
actuation chains. Hence, for each motor, we have 18 possible
failure modes, 6 regarding the triple redundancy encoders
installed to monitor the wheel speed and 12 the power
electronics. An inverter is composed of 6 Insulated Gate Bipolar
Transistors (IGBTs), and each one of them can remain stuck at
closed (short-circuit) or open condition. Since in case of a short
circuit of an IGBT, no software mitigation solution is possible
(the fuses will melt down disconnecting the phase from the
battery) we injected only an always open circuit failure on an
IGBT of the left motor. This injection is sufficient to cover all

Powertrain Electronic

Control Unit

Inverter RInverter L

Virtual

Differential

Gear

the possible cases due to the symmetries of the considered
system.

As part of the benchmark application, we developed simple
detection and mitigation algorithms.

The detection algorithm is based on a comparison between
the current on one of the three phases, with the min/max values
of the other two. If the disparity is higher than 80%, a fault into
the considered leg of the inverter is detected. If the disparity is
on the maximum values, the failed IGBT is the one connected to
the positive pole of the battery, otherwise, it is the one connected
to the negative pole.

The mitigation strategy is based on the following assumption:
the motor driven by the inverter with the broken IGBT is not
more able to provide the full torque it is expected to produce.
Hence, since only one of the two motors is affected by this
failure, and the most dangerous situation is caused by the
asymmetrical torque, we could intervene on the fault-free motor.
If we threshold its speed setpoint up to the speed of the fault-
affected one, we can limit the torque disparity on the wheels.
A semi-formal representation of the algorithm is shown in Fig.
2. UpperLimit and LowerLimit signals are equal to the speed of
the fault-affected motor, Detection comes from the detection
algorithm, and NormalReference is the speed request from the
driver. Once a failure is detected, the Detection input signal is
put to true and the driver’s speed request is saturated up to the
UpperLimit in case of forwarding direction or LowerLimit in case
of reverse direction. The algorithm remains in the safe state, even
if the detection algorithm stops to perceive a failure.

Fig. 2. Semi-formal (MathWorks Simulink™) model of the

mitigation algorithm.

B. Simulation results

The key point of the proposed approach regards how to
improve the evaluation of the effects of failures on the vehicle
drivability. In the analyzed system, a disparity in the torque can
cause a sudden turn of the car. The embedded software has to be
able to “trim” automatically (in a similar way it is done on dual-
engine aircrafts) the torque. Anyway, since the risk level
associated to a vehicle function is determined to keep into
account also the capability of an average driver (defined as
controllability by the ISO 26262) to mitigate the failure effect,
we represented the average driver as a PID controller (to keep
into account the human reaction time), with a target behavior
represented by a predetermined trajectory to be followed by the
vehicle.

We simulated these conditions, representative of some
significative operational conditions of the vehicle:

a) driving straight at 130 km/h;

b) acceleration from 0 to 130 km/h;

c) triple curving at 100 km/h;

d) regenerative braking on a straight road from 130 km/h
to 0 km/h;

e) regenerative braking on triple curving from 100 km/h to
0 km/h.

Among these cases, the three most interesting are the b), c)
and e). In the other two cases, a) and d), the results with and
without the mitigation obtained are too close to each other that
any discussion on the results is not possible. In any case, in order
to report some information, we collected those simulation results
in table 1. The reported values are the local maximums and
minimums after the detection of the failure is happened.

TABLE I. EXPERIMENTAL RESULT SUMMARY

CASE LATERAL ERROR [M] YAW ANGLE ERROR RANGE [DEG]

A) [-0.000 , 0.000]1

[-0,117 , 0.100]2

[-0.096 , 0.080]3

[-0.000 , 0.000]1

[-0.720 , 0.385]2

[-0.289 , 0.248]3

D) [-0.000 , 0.000]1

[-0.026 , 0.032]2

[-0.026 , 0.031]3

[-0.000 , 0.000]1

[-1.477 , 0.813]2

[-1.453 , 0.796]3

1 Fault-free conditions.

2 Fault condition.

3 Fault condition with mitigation algorithm enabled.

1) Acceleration from 0 to 130 km/h

The first situation we simulated is the acceleration from 0 to
130 km/h. The car took 16 s in the fault-free condition to reach
the target speed.

As shown in fig. 3, the mitigation algorithm is quite good to
limits the failure effects in terms of lateral error. Since the failure
is detected (at about 2 s from the start of the simulation) the
benchmark mitigation algorithm can limit the lateral error,
especially at high speed (when it is more difficult for a human
driver to intervene).

Analyzing the error in terms of yaw angle (see fig. 4), we can
see that the mitigation algorithm is able to reduce the error from
the range from -0.5 to 0.6 deg to a range of -0.2 to 0.2 deg.

So, in this case, the mitigation algorithm, even if it is really
simple, has demonstrated itself able to reduce both the lateral and
the yaw angle errors of the car.

Fig. 3. Lateral error comparison with respect to the desired path

(lane centerline) in fault-free, fault affected, and fault+mitigation

conditions.

Fig. 4. Yaw angle error comparison with respect to the vehicle

perfectly aligned with the road center line into fault-free, fault-

affected, and fault+mitigation conditions.

2) Triple curving

In the straight acceleration, we obtained quite good results
from the chosen algorithm. So, to keep into account a different
condition, we repeated the experiments on a curving track,
shown in fig. 5.

 As shown in fig. 6 and fig. 7, the mitigation strategy adopted
improves the lateral error and worsens the yaw angle
performances. But this is an expected result since we are
bounding the speed of the fault-free wheel to the fault-affected
one. In any case, the error is low due to the chosen speed-control
strategy that adopts a small proportional gain in the speed
controller.

3) Regenerative braking on triple curving
In this case, we can see that the mitigation algorithm does not

improve the lateral error (fig. 8) and worsen the yaw angle (fig.
9). In any case, these errors are inside the acceptable range, so in
a tradeoff it remains convenient the mitigation algorithm
adoption.

Fig. 5. The triple curving track implemented in the simulation

enviroment.

Fig. 6. Lateral error comparison with respect to the desired path

(lane centerline) in fault-free, fault affected, and fault+mitigation

conditions.

Fig. 7. Yaw angle error comparison, with respect to the path in fault-free

condition, in fault affected and fault+mitigation conditions.

Fig. 8. Lateral error comparison with respect to the desired path

(lane centerline) in golden, fault, and fault+mitigation conditions.

Fig. 9. Yaw angle error comparison, with respect to the path in fault-free

condition, in fault and fault+mitigation conditions.

0 5 10 15 20 25 30

Time [s]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

L
a
te

ra
l
e

rr
o

r
[m

]

Lateral error comparison

Golden

Fault

Fault + Mitigation

0 5 10 15 20 25 30

Time [s]

-1

-0.5

0

0.5

1

1.5

Y
a
w

 a
n
g

le
 [
d

e
g

]

Yaw angle comparison

Golden

Fault

Fault + Mitigation

ù

50

100

150

200

50 100 150 200 250 300 350 400 450 500 550 600 650 700

Track position [m]

T
ra

c
k
 p

o
s
it
io

n
 [

m
]

0 5 10 15 20 25 30

Time [s]

-0.3

-0.2

-0.1

0

0.1

0.2

L
a
te

ra
l
e

rr
o

r
[m

]

Lateral error comparison

Golden

Fault

Fault + Mitigation

0 5 10 15 20 25 30

Time [s]

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Y
a
w

 a
n
g

le
 [
d

e
g

]

Yaw angle error comparison

Fault

Fault + Mitigation

0 5 10 15 20 25 30

Time [s]

-0.3

-0.2

-0.1

0

0.1

0.2

L
a
te

ra
l
e

rr
o

r
[m

]

Lateral error comparison

Golden

Fault

Fault + Mitigation

0 10 20 30 40 50 60

Time [s]

-1

-0.5

0

0.5

1

1.5

2

Y
a
w

 a
n
g

le
 [
d

e
g

]

Yaw angle error comparison

Fault

Fault + Mitigation

V. CONCLUSIONS

The purpose of this paper is not to propose a good set of
detection and mitigations algorithm to be applied to a dual-motor
axle, but to propose a framework to aid safety engineers who
have to deal with FMEDA. Due so, we decided to show the
simulation results and not an FMEDA table with the failure
modes effects classification. Simulation-based approaches are
widely adopted during the development of the automotive
software, but usually only to verify in the early stages if the
system can reach the nominal performance requirement. We
proposed to introduce this approach also during the safety
analysis, to produce results that can aid these difficult phases.

We obtained some useful results about how to study the
software/vehicle interaction by considering the application of
two really simple detection and mitigation algorithms on a dual-
motor axle, so the approach demonstrated itself able to aid the
functional safety engineers.

REFERENCES

[1] ISO 26262-10:2012, Road vehicles - Functional safety

[2] Koopman P., Wagner M., “Autonomous Vehicle Safety: An
Interdisciplinary Challenge”, In: IEEE Intelligent System Transportation
Systems Magazine, 90-96, Spring 2017

[3] Jang. H.A., Kwon H.M., Hong S., Lee, M. K., “A study on Situation
Analysis for ASIL Determination”, In: Journal of Industrial and
Intelligent Information Vol. 3 No. 2, June 2015

[4] K Beckers, D. Holling, Coté I.M., Hatebur D., “A structured hazard
analysis and risk assessment method for automotive systems – A
descriptive study” In: Reliabilty Engineering and System Safety (2017)
pg. 185-195

[5] Johanennessen, ”Actuator Based Hazard Analysis for Safety Critical
Systems”, In: Computer Safety, Reliability, and Security SAFECOMP
2004 Proceedings

[6] S. Jha et al., "ML-Based Fault Injection for Autonomous Vehicles: A
Case for Bayesian Fault Injection," 2019 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
Portland, OR, USA, 2019, pp. 112-124. doi: 10.1109/DSN.2019.00025

[7] Saurabh Jha, Timothy Tsai, Siva Hari, Mike Sullivan, Zbigniew
Kalbarczyk, Steve Keckler, Ravishankar K. Iyer (2018) “Kayotee: A
Fault Injection-based System to Assess the Safety and Reliability of
Autonomous Vehicles to Faults and Errors” In: Third IEEE International
Workshop on Automotive Reliability & Test Research Area,
https://research.nvidia.com/publication/2018-11_Kayotee%3A-A-Fault,
last visited

[8] W. M. Goble (2010) , Control Systems Safety Evaluation and Reliability,
third edition, International Society of Automation, ISBN: 978-1-934394-
80-9

[9] N. Snooke and C. Price, “Model-driven automated software FMEA,” in
Reliability and Maintainability Symposium (RAMS), 2011 Proceedings
- Annual, 2011, pp. 1–6.

[10] Bagalini, E.; Sini, J., Sonza Reorda, M; Violante, M.; Klimesch H.;
Sarson, P.; (2017) “An automatic approach to perform the verification of
hardware designs according to the ISO 26262 functional safety
standard”, 18th IEEE Latin America Test Symposium, Bogota, Colombia

[11] Sini, J.; Violante, M.; (2018) “An Automatic Approach to Perform
FMEDA Safety Assessment on Hardware Designs“, 24th IEEE
International Symposium on On-Line Testing And Robust System
Design (IOLTS), Platja D’Aro, Spain

[12] R. Leveugle, D. Cimonnet, A. Ammari, "System level dependability
analysis with RT-level fault injection accuracy", "The 19th IEEE
International Symposium on Defect and Fault Tolerance in VLSI
Systems, Cannes, France, October 10-13, 2004", IEEE Computer Society
Press, Los Alamitos, California, 2004, pp. 451-458

[13] Sini, J.; Violante, M.; Dodde, V., Gnaniah, R.; Pecorella, L., “A Novel
Simulation-Based Approach for ISO26262 Hazard Analysis and Risk
Assessment, 25th IEEE International Symposium on On-Line Testing
And Robust System Design (IOLTS), Rhodes Island, Greece

[14] IEC 61709:2011, Electric components -Reliability - Reference
conditions for failure rates and stress models for conversion

[15] FIDES website, http://fides-reliability.org

[16] A. Benso, P. Prinetto, "Fault Injection Techniques and Tools for
Embedded Systems Reliability Evaluation", 2003, Kluwer.

[17] J. Arlat, Y. Crouzet, and J. C. Laprie, “Fault injection for dependability
validation of fault tolerant computing systems,” in 19th International
Symposium on Fault-Tolerant Computing, 1989, pp. 348–355

[18] M. Vieira, H. Madeira, I. Irrera, and M. Malek, ”Fault injection for failure
prediction methods validation”, in Proc. of Workshop on Hot Topics in
System Dependability at DSN 2009, Estoril, Lisbon, Portugal.

[19] L. Grunske, K. Winter, N.Yatapanage, S. Zafar, and P. A. Lindsay,
“Experience with fault injection experiments for FMEA”, Softw. Pract.
Exp., vol. 41, no. 11, pp. 1233–1258, Oct. 2011

[20] Cukier, M., Powell, D., & Ariat, J. (1999). Coverage estimation methods
for stratified fault injection. IEEE Transactions on Computers, 48(7), 707-
723

[21] Christmansson, J., & Chillarege, R. (1996, June). Generation of an error
set that emulates software faults based on field data. In Fault Tolerant
Computing, 1996., Proceedings of Annual Symposium on (pp. 304-313).
IEEE.

[22] Hsueh, M. C., Tsai, T. K., & Iyer, R. K. (1997). Fault injection techniques
and tools. Computer, 30(4), 75-82.

[23] D. Cotroneo & R. Natella (2013). Fault injection for software certification.
IEEE Security & Privacy, 11(4), 38-45.

[24] Mariani, R., & Boschi, G. (2007, July). A systematic approach for failure
modes and effects analysis of system-on-chips. In On-Line Testing
Symposium, 2007. IOLTS 07. 13th IEEE International (pp. 187-188).
IEEE.

[25] Eychenne C., Zorian Y. (2017). “An Effective Functional Safety
Infrastructure for System-on-Chips”, IEEE 23rd International Symposium
on On-Line Testing and Robust System Design (IOLTS)

Fig. 10. Proposed methodology architecture

https://research.nvidia.com/publication/2018-11_Kayotee%3A-A-Fault

	I. Introduction
	II. Background
	III. Proposed Methodology
	IV. The Case Study
	A. Simulation system set-up
	1) Detection and mitigation algorithms

	B. Simulation results
	1) Acceleration from 0 to 130 km/h
	2) Triple curving
	3) Regenerative braking on triple curving

	V. Conclusions
	References

