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Supporting Telecommunication Alarm Management
System with Trouble Ticket Prediction

Mulugeta Weldezgina Asres, Million Abayneh Mengistu, Pino Castrogiovanni, Lorenzo Bottaccioli, Enrico Macii,
Edoardo Patti and Andrea Acquaviva

Abstract—Fault alarm data emanated from heterogeneous
telecommunication network services and infrastructures are
exploding with network expansions. Managing and tracking
the alarms with Trouble Tickets using manual or expert rule-
based methods has become challenging due to increase in the
complexity of Alarm Management Systems and demand for
deployment of highly trained experts. As the size and complexity
of networks hike immensely, identifying semantically identical
alarms, generated from heterogeneous network elements from
diverse vendors, with data-driven methodologies has become
imperative to enhance efficiency. In this paper, a data-driven
Trouble Ticket prediction models are proposed to leverage
Alarm Management Systems. To improve performance, feature
extraction, using a sliding time-window and feature engineering,
from related history alarm streams is also introduced. The models
were trained and validated with a data-set provided by the
largest telecommunication provider in Italy. The experimental
results showed the promising efficacy of the proposed approach in
suppressing false positive alarms with Trouble Ticket prediction.

Index Terms—Alarm Management, Trouble Ticket Prediction,
Telecommunication, Data-Driven, Time Windowing, Feature En-
gineering, LightGBM, Machine Learning

I. INTRODUCTION

Telecommunication networks contain thousands of intercon-
nected components. These components are capable of generat-
ing error and status messages which leads to a large volume of
network data. Hence, Telecommunications Service Providers
use Information Technology (IT) systems, the Operations Sup-
port Systems (OSS), to communicate with network devices.
OSS enables service providers to monitor, control, analyze,
and manage the services on their network. When a network
device detects a fault or an error within itself or related to its
links to other devices or elements, it generates usually a large
number of unsolicited alert messages and sends them to the
alarm management system of the Network Operation Centers
(NOCs). NOCs, central monitoring and control stations for
telecommunication networks, primary deal with faults and
performance management to maintain network efficiency and
customer satisfaction. NOC operators are equipped with a
complex alarm management platform (hereafter called Alarm
Management System (AMS)) to visualize and manage alarms.
The AMS presents relevant alarms to NOC operators after
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performing alarm filtration, correlation, categorization, and
summarization on the unsolicited raised alarms (see Figure 1a).
The NOC operators then analyze the presented alarms to
perform the opening of Trouble Tickets (TT) so that the
network technicians can fix the faults.

During the trouble ticketing, the operators may need to
collect further information such as relationship or dependency
from other alarms to ultimately discern the TT opening deci-
sion. However, such detailed troubleshooting relies, to a large
extent, on the (most often unwritten) expert knowledge and
experience of the NOC operators [1]. Therefore, as networks
become more sophisticated, the telecommunication industry
is facing an unprecedented heterogeneous amount of alarm
data [2], [3]. The increase in variety, volume, and velocity
of alarms from the expansion of networks have made it
challenging to manually track faults and increases the demand
for the deployment of highly trained operators [2]–[4]. Further-
more, the number of alarms, generated from the upcoming 5G
networks, is expected to become overwhelming as the number
of connected devices and their interconnections will increases
significantly [4]. Consequently, telecommunication companies
are investing in innovative intelligent technologies to enhance
existing rule-based OSS [3], [5]–[8].

In industrial domains, knowledge extraction using data
analytics and machine learning (ML) tools for fault alarm
management have been proposed in literature [2], [5]–[7], [9]–
[29]. Some of the proposed applications can be categorized
into Alarm Correlation (ALCR) [2], [6], [11]–[19], Root-
Cause Analysis (ALRC) [7], [17], [19], [20], TT Classification
(TTC) [10], [14], [21]–[26] and TT Resolution Recommenda-
tion (TTRR) [23], [26]–[29] (see Section II-A for definitions).
Generally, ALCR and ALRC tasks are carried out in the AMS
before triaging the most urgent alarms to the NOC operator
who issues appropriately labeled tickets (during TTC) to assist
network technicians in fault resolution (during TTRR) [9].
ALCR, usually accompanied by ALRC, plays a crucial role in
filtering the flood from False-positive alarms that do not need
to be managed with TT while providing essential information
for TTC and TTRR.

However, the integration of state-of-the-art approaches, for
alarm flood handling in the telecommunication industry using
ALCR [6], [11], [12], [14]–[16], [18], [19] algorithms, into
existing AMSs is limited [2] due to issues related to inadequate
accuracy, scalability and domain knowledge requirement [11],
[12]. Consequently, most of the alarm filtering tools in the
existing AMSs yet present thousands of less relevant alarms
to the NOC operators [2], [3], [9], [11]. Though only a
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small portion of presented alarms are managed with TT, the
time and cost consumed by the operators to process and
manage the presented alarms remain significant [2], [3]. The
operators are encumbered by the flood of less relevant alarms
hindering their ability to promptly manage urgent ones. This
is due to the time wasted for filtration during the TT opening
decision [11]–[15], [17], [19], [30] and it is exacerbated as the
operator’s trust on the AMS deteriorates due to the ”cry wolf”
effect [30], [31]. Moreover, alarm overload also increases the
demand for deployment of highly skilled operators to meet
fault maintenance time-constraints [2], [3].

In this study, we introduce an automated TT opening
decision system that lies amid AMS and NOC operators, (illus-
trated in Figure 1b) to address the gaps in alarm flood control.
We present Trouble Ticket Prediction (TTP) models used to
predict whether a given presented alarm will be managed
with a TT (True-positive alarm) or not (False-positive alarm).
Our approach aims to significantly suppress the number of
False-positive alarms by triage only the relevant alarms to
NOC operators. We exploit supervised ML algorithms to learn
from previous experiences on trouble ticketing besides alarm
characteristics, unlike the unsupervised or Expert-Rule based
ALCR methods. Our solution strives to classify semantically
identical alarms, generated from various network elements
of telecommunication mobile network (addressing 2G, 3G,
and LTE network infrastructures and services alarms) from
different vendors, for TT opening decisions using data analysis
and ML algorithm. The aim is to automate and ameliorate the
existing AMS (see Figure 1a), with scalable TTP system using
ML (see Figure 1b).

The proposed system employs a sliding time-windowing and
feature-engineering approach for alarm stream feature aug-
mentation and extraction, and binary classifiers using gradient
boosted decision tree algorithm (LightGBM: Light Gradient
Boosting Machine) for modeling. The term ”alarm stream”
or ”stream” refers to alarm data that are received over time.
After applying data analysis techniques for data cleaning,
correlation-based feature selection, and feature extraction,
binary alarm classification models were trained for TTP.
Performance evaluation vividly validates the capability of the
trained TTP models in reducing alarm overload significantly
while presenting the relevant alarms to the NOC operators.
Finally, to demonstrate the significance of the proposed feature
augmentation based TTP model, performance comparisons
among several benchmark ML algorithms are carried out.

Handling presented alarms with automated TTP to triage
the relevant alerts will assist the NOC operators in effectively
managing a multitude of alarm streams. Therefore, the pro-
posed system will have pertinence in enhancing the efficiency
and competitiveness of service providers by alleviating the
time and cost spent in the alarm management process. Finally,
the key contributions of our work are highlighted below:

(i) Data-driven alarm classification for TT opening decision
prediction, before TT triaging is carried out by NOC oper-
ators, to suppress False-positive alarm floods from AMS
of heterogeneous telecommunication mobile networks.

(ii) Leveraging the TTP with feature augmentation and ex-
traction methods using time-windowing and feature engi-

(a)

(b)

Fig. 1: Current (a) and proposed (b) architecture for alarm
management system

neering from previously managed related alarm streams.
(iii) Characterization of the TTP with decision delay-time

variations. Predicting the TT opening decision at the
earlier-life time of the relevant alarms reduces the time-
to-maintenance of the faults, thus reducing costs related
to service interruptions [32], [33].

The rest of this paper is organized as follows. Section II
discusses background concepts and related works, Section III
briefly highlights the data-set used in the study, Section IV
presents the methodology and Section V discusses results of
the experiments. Finally, Section VI offers the conclusion.

II. BACKGROUND

This section discusses background concepts such as the
working principles of AMS, the related works in fault alarm
management, and the employed tools in our study.

A. Alarm Management System

The Alarm Management System (AMS) is responsible for
storage, characterization, filtration, fault root-cause identifica-
tion, and correlation analysis of the huge amount of alarms,
messages, and events log collections from heterogeneous net-
works [12]. Figure 1a presents the high-level architecture dia-
gram of a typical AMS. Events originating from heterogeneous
networks, Raised alarms, are collected by their vendor-specific
Element Managers and directed to the AMS for further pro-
cessing, mostly using a rule-based reasoning paradigm [2]. The
resulting processed alarms, Presented alarms, are displayed
to NOC operators where True-positive alarms are managed
by opening TT. AMS plays a vital role in handling low-level
Raised Alarm floods using detailed domain knowledge from
expert-defined rules, ontological, and topology databases [2].

Even though data-driven approaches such as statistical-
and ML-based models were suggested in literature [6], [11],
[12], [14]–[16], [18], [19], the existing AMS products still
employ Expert Rule-based algorithms to accomplish most of
their key functionalities [2]. Expert Rule-based algorithms
provide higher accuracy through the incorporation of domain
expertise in the decisions than the other techniques, yet
they are limited in managing unseen conditions and large
heterogeneous systems [11], [12]. Hence, most of the existing
alarm flood filtration tools do not manage False-positives
efficiently [2], [12]. Consequently, thousands of alarms per day
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Solution Purpose ML
Model

Features TW Target
Alarms

Domain

[6], [12] ALCR YES AOS YES Raised Telecom
[18], [19] ALCR YES AOS,

AA
YES Raised Telecom

[13], [17] ALCR YES AOS YES Raised Manufacturing
[15] ALCR NO AOS YES Raised Telecom
[11] ALCR NO AOS YES Presented Telecom
[16] ALCR YES AA NO Presented Telecom
[14] ALCR YES AA NO Presented Enterprise IT
[28] TTP YES TD NO Ticketed Enterprise IT
[5] TTP YES AA NO Presented Telecom
Proposed TTP YES AA YES Presented Telecom

* ML - Machine Learning, TW - Time-windowing, AOS - Alarm Occurrence
Sequence, AA - Alarm Attributes, TD - Ticket Description

TABLE I: Related works in False-positive alarm filtration

are yet burdening the NOC operators to perform decisions for
discarding or silencing False-positive alarms before assigning
proper TT.

Some of the relevant papers proposed to address the chal-
lenges of handling the flood of False-positive fault alarms with
automated systems are summarized in Table I. However, con-
sidering the main tasks in automated alarm handling systems,
the applications can be generally categorized as follows.
• Alarm Correlation (ALCR) is consolidating redundant

correlated alarms. It is typically utilized to reduce related
and spurious alerts (Raised Alarms), delivered by element
manager nodes.

• Alarm Root Cause Analysis (ALRC) is determining of
fault source or root cause of an alarm.

• TT Prediction (TTP) is classifying Presented Alarm to
determine whether it will be managed by opening TT
or not. Employing TTP, for false alarm suppressing, was
also suggested in [5], [28] but in different scenarios. [5]
proposed TTP to prevent repeated ticketing for IT cus-
tomer premises alerts equipment. [28] recommended TTP
for silencing False-positive alarms after ticketing based
on their TT description. Yet, this may help fault resolving
technicians but not the NOC operators because the main
challenge of the alarm flood is before ticketing.

• TT Classification (TTC) is assigning appropriate TT class
for True-positive alarms based on the required problem
resolutions, priority or corresponding technical teams.

• TT Resolution Recommendation (TTRR) is suggesting
troubleshooting solutions to ticketed alarms.

B. LightGBM: Light Gradient Boosting Machine

In this study, a machine learning algorithm, LightGBM,
was employed to build the proposed TT prediction mod-
els. LightGBM is a fast, distributed, high-performance gra-
dient boosting framework based on decision tree algorithms.
Although recent development of deep learning techniques
achieved state-of-the-art performance in vision, speech and
language domains, GBDT (Gradient Boosting Decision Tree)
are currently popular production models in large scale ap-
plications [34] owing to their speed, interpretability, lower
computational resource requirement and accuracy in training
with mixed feature types [35]–[38]. In a GBDT ensemble
model, decision trees are trained in sequence, Boosting, by
fitting the negative gradients (also known as residual errors)

in each iteration [36]. Existing state-of-the-art implementations
of GBDTs include XGBoost [35], LightGBM [36], and Cat-
Boost [37]. LightGBM uses leaf-wise learning to achieve a
good balance between reducing the number of data instances
and keeping the accuracy for learned decision trees. It was
shown that LightGBM outperformed the other boosting tools
in terms of efficiency (memory consumption and speed) and
accuracy in various data-sets [36], [38].

C. Hyperparameter tuning

ML algorithms expose a set of parameters (hyperparame-
ters) that must be configured before training. Tuning hyperpa-
rameters is a cumbersome yet crucial task, as the performance
of the algorithms can be highly dependent on these parameters.
Hence, several techniques have been proposed and applied to
automate the tuning process. However, it has been shown that
Bayesian optimisation based methods are faster and exceeds
human experts at selecting hyperparameters on some compet-
itive data-sets [39], [40]. Therefore, for hyperparameters tun-
ing, we decided to employ an efficient Bayesian Optimisation
based tool, i.e. Hyperopt [40].

III. DATA-SET DESCRIPTION

This section describes the data-set used in this study. The
data was gathered from a data collection and correlation engine
of AMS of TIM, the largest telecommunication provider in
Italy. The data-set includes Presented alarms generated by
2G, 3G and LTE network equipment, focusing on the access
segment of mobile networks. The data was collected for about
six months during 2018 and 2019 and contains around 7.5
million Presented alarm stream events, recorded at every five
minutes. However, only around 900 thousand unique alarms
are composed. The remaining alarms events correspond to
historized real-time instances of the unique alarms when there
is an update in the alarm characteristics and/or Trouble Ticket
status.

Each alarm record contains several attributes and the main
ones are described in Table II. For the alarms managed with
TT, additional information associated with how the alarm
is processed by NOC operator, i.e., acknowledgment status,
ticket status, time of closure, and closing remark, are contained
in the TT attributes. Based on the alarm severity attribute, there
are two main categories (each contributes around 48% of the
Presented Alarms) worth mentioning, i.e. Critical and Major.
Critical alarms, whose Trouble Tickets are expected to be
issued in the first hours of alarms life, and Major ones, whose
Trouble Tickets will typically be issued later. Alarm severity
and first occurrence time are useful in prioritizing alarms to
determine which alarm the operator should triage next [10].
Furthermore, in the data-set, the NOC operators managed only
around 10% of the Presented Alarms with Trouble Ticket. The
operators are immensely burdened to manually identify the
relevant alarms from alarm overload presented by the AMS.

IV. METHODOLOGY

This section introduces the proposed ML-based TT pre-
diction system. The basic modules of the proposed system
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Attribute Description
Feature-1 Type of the alarm
Feature-2 Correlation indicator filled by the AMS
Feature-3 Element Manager
Feature-4 Time in which the alarm is first observed by the AMS
Feature-5 Time in which the alarm is last observed by the AMS
Feature-6 Severity level of the alarm
Feature-7 Alarm root cause status
Feature-8 Site name
Feature-9 Site category
Feature-10 Description of apparatus function
Feature-11 Type of the network
Feature-12 Fault source
Feature-13 Possible probable causes which generated the alarm
Feature-14 Operation view flag
Feature-15 Number of attached children alarms
Feature-16 Number of repeated occurrence of the alarm
Feature-17 Minutes between the first and last occurrence of the alarm
Target TT class label from TT identifier

TABLE II: Description of selected alarms attributes

Fig. 2: The proposed AI-based TT prediction system

are portrayed in the architecture diagram in Figure 2. The
approach embarks with data-set preparation implemented in
the Preprocessing block. The inputs to this block are Pre-
sented alarms from the AMS. Then the processed alarms
are fed to the Feature extraction block where the attributes
are augmented to facilitate the model learning process. The
resulting features are then split into Training- and Test-set.
The Training-set is used by the Training block to fit and tune
the ML models. The resulting models are then used by the
Prediction and Post-Processing block for the TT prediction
and performance evaluation on unseen alarms from Test-set.
The following sub-sections describe in-depth each block in the
proposed architecture.

A. Preprocessing

This section describes the data cleaning, feature selection
and encoding operations performed on the alarms Training-
and Test-sets.

1) Feature selection: the identification of most relevant
features started with the consultation of domain experts which
gave us the starting 43 attributes from which the number of
alarm and TT attributes (which are not available to operators
during real-time intervention on alarms) are 33 and 10 respec-
tively. However, the resulting subset was further scrutinized
with data analysis tools [41], [42] such as Pearson Correlation
for the numerical features, and Chi-Square Test and Associ-
ation Mining (Cramer’s V and Theil’s U) for the categorical
features. The data analysis techniques facilitated the feature
selection processes by quantifying the correlation/association
and predictive capability of the attributes to the target variable
and finally reducing the total relevant attributes to 18 (17 from
alarm, and 1 from TT which is used for labeling) listed in
Table II.

2) Categorical feature encoding: even though Integer and
One-hot encoding are among the most popular categorical
feature encoding techniques, they are opt-out due to semantic

change, feature explosion, training speed and accuracy lim-
itations. These shortcomings become more critical when the
number and/or cardinality of categorical fields in the feature
set increases, and the categories are non-ordinal. Particularly
for high-cardinality categorical features, a tree built on one-
hot features conduces to be unbalanced and needs to grow
very deep to achieve good accuracy [36]. Employing advanced
word embedding techniques such as Word2Vec [43] to encode
the categorical features have not improved the classification
performance in our experiments despite the computational
cost. In this study, we used LightGBM’s built-in categorical
handling algorithm which sorts the categories according to the
training objective at each split [36].

3) Tokenization: some of the alarm features comprise
machine-generated description strings. To categorize such tex-
tual descriptions, text mining techniques are often employed
to capture essential keywords while stifling irrelevant words.
Tokenization is usually applied for text normalization to en-
hance the extraction of keywords while keeping the semantic
structures [14], [21]. In our dataset, some of the textual
alarm attributes contain information specific to a particular
device, network, site, location, vendor, or date-time, such as IP
address, serial number, node identification, vendor name, site
name, date-time, and numbers. Thus, we have employed text
token normalization to clean up such details by replacing them
with anonymous tokens such as ipaddress, serialno, nodeid,
vendor, datetime, number, and location.

4) Labeling: target class labels, for the TT prediction model
training, were created using Back-propagation technique based
on the TT fields of the alarm data-set described in Section III.
Each alarm has multiple real-time historized events in which
TT is assigned or revoked (in some cases) at some point in the
real-time stream. Hence, the TT statuses of the final instance
of the alarms are used for labeling. Then, the labels are
assigned backward to all earlier instances of the alarms. This
labeling method enables training the TT prediction models
using attributes of the alarms in early life. The class labels of
the target variable are given below.

• Alarms with TT (Positive class, referred also as true
positive alarm): if TT is issued or opened for the alarm.

• Alarms without TT (Negative class, referred also as false
positive alarm): if TT is not issued for the alarm.

B. Feature Extraction

In addition to developing a TTP model using predictor
features from the attributes of the given alarms (see Sec-
tion IV-A1), we also introduced feature set augmentation with
engineered features from attributes of previously managed
related history alarms given in Table III. The underlining
concept is fault alarms originating from the same source within
close time-window are most likely emanated from the same
root causes [2], [6], [7], [11]–[20]. Hence, we propose a
feature extraction method to take advantage of this concept and
leverage the performance of the TTP models with augmented
feature sets from related history alarms. Detailed illustration
of the methodology for proposed TTP system is portrayed in
Figure 3. Generally, the method composes two major steps:
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time-windowing (TW) and feature-engineering (FE), hereafter
referred together as TWFE (see Algorithm 1).

The time-windowing (see line 2 - 7 in Algorithm 1) incor-
porates features of related history alarm streams which arose
from the same source as the target alarm within a given time-
window. First, for target alarm A, history alarms, hAlarms,
occurred within the range of TW are retrieved (see line 5).
Then, Nh related alarms, rAlarms, which are generated from
the same S, the origin of A, are filtered from the hAlarms
(see line 7). The extraction of features from the filtered alarms
follows to form the engineered features, rAlarmsFE (see
line 8 - 9), which finally joins with the features of A. The
size of the time-window (TW = 15 days) and the number of
previously managed related history alarms (Nh = 15) were
learned heuristically by combining experts’ domain knowl-
edge, computation complexity, and model accuracy.

Although joining the rAlarms using their temporal order
can give quasi time-series data, the sequence of the history
alarms may not have the same interpretation as classical
time-series events [44], [45]. Thus, the FE is proposed to
transform and aggregate the features from rAlarms into a
new compact feature set, rAlarmsFE. Besides, only the most
relevant categorical features, sF , are selected from rAlarms
(see in Table III) using correlation-based feature selection
(see Section IV-A1) and feature importance analysis (see
Section IV-C3). When deciding the sF , further preference was
also given to features with low cardinality due to the one-hot
encoding feature expansion in the feature engineering (see line
7). The selected attributes of the history alarms, which are
given in Table III, are included in sF except TWFE Feature-
5 that corresponds to rD, relative time duration of occurrence
of the rAlarms to the target alarm A. Furthermore, using
the previously managed related alarms allows us to include
features from the TT attributes of rAlarms (TWFE Feature-
4 and -6). Moreover, Figure 4 illustrates how the TWFE works
and the major tasks also discussed below:

a) ExtractAlarmFeatures (line 4): after applying the
feature selection techniques discussed in Section IV-A1, the
predictor features from the target alarm A are prepared be-
fore applying TWFE. These features also hereafter called as
withoutTW .

b) RetrieveRelatedAlarms (line 5): history alarms,
hAlarms, which occurred within the time-window TW , be-
fore the occurrence time of alarm A, are retrieved from the
previously managed alarm database.

c) AlarmSourceInfo (line 6): the source S of the fault
alarm is formulated from the location attributes and network
element identifications of the target alarm A.

d) FilterHistoryAlarms (line 7): related history alarms,
rAlarms, which were generated from the same source as the
target alarm A are filtered from the hAlarms.

e) FeatureEngineering (line 8): this block is the core
section of the proposed feature-engineering approach. The FE
extracts new transformed features from the selected features
sF by analysing the occurrence of unique categorical values of
the features in all the time windowed related alarms, rAlarms
(see line 11 - 21). The operation initialises with one-hot
encoding like feature expansion for each feature F in sF ,

Selected Features Description
TWFE Feature-1 Correlation indicator filled by the AMS
TWFE Feature-2 Severity level of the alarm
TWFE Feature-3 Operation view flag
TWFE Feature-4 Alarm acknowledgment status
TWFE Feature-5 Relative time of occurrence from the current alarm
TWFE Feature-6 Trouble Ticket opening execution status

TABLE III: Selected features from related history alarms

which gives the occurrence scores, occScores, for each unique
categorical values, catV alues (see line 16 in Algorithm 1,
block 2 in Figure 4). Then, the occScores are added after
multiplied by a weighting function fw to form the extracted
features for each catV alues (see line 18 in Algorithm 1, block
3 and 4 in Figure 4). The weighting function is introduced to
incorporate temporal importance using rD of the rAlarms,
calculated in line 12. The extracted features from all the
unique categorical values, catV alue, are joined to prepare the
engineered features for a given feature F , rAlarmsFEF (see
line 19 in Algorithm 1). Finally, the extracted features from all
features in the sF are joined to prepare the final engineered
features, rAlarmsFE, from the rAlarms (see line 20 in
Algorithm 1). Moreover, the features of A, withoutTW , are
augmented with the extracted features from rAlarms using
FE, AlarmsFE, to create the withTWFE features (see line
9).

The feature score aggregation function (see line 18) is
defined by fsc and given in (1):

fsc(v, occScores, rD) =

i=Nh∑
i=1

occScores(vi, v)× fw(rDi) (1)

where occScores(vi, v) is occurrence score of a category
value v at the ith alarm in rAlarms (2), and fw is a weighting
function (3). rDi is the ith relative duration i.e, the relative
time of occurrence of the ith alarm in rAlarms.

occScores(vi, v) =

{
1, if vi = v
0, if vi 6= v

(2)

fw(rDi) =
k

(b + rDi)
(3)

where k and b are constant factors for normalization and
biasing respectively. The proposed weighting equation is in-
versely related to the relative time of occurrence, rD, since
most relevant history alarms occur closer to the target alarm in
the time-line [6]. The constant parameters k and b control the
sensitivity of the weighting and thus define the feature score
distinctiveness. Their values were heuristically determined
in our experiments. Using weighting temporal importance
has also been suggested for time-series prediction in [44].
Nevertheless, unlike to our scenario, their weighting function
is proposed for rewarding previous correct event predictions.

Finally, TWFE based feature augmentation increases the
number of predictor features to 44 (17 from withoutTW and
27 from rAlarmsFE) as discussed in Section IV-A1 and IV-B.

C. Model Training

The Trouble Ticket prediction system, which predicts
whether a given alarm is to be managed with TT or not,
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Fig. 3: Time-windowing feature-engineering flowchart

* rAi - the ith alarm from rAlarms, Fi - the ith feature from sF , m -
number of the selected features in sF , rDi - relative duration of rAi,

F1 vij - the jth categorical value of the ith feature, k - number of unique
categorical values of F1, fw - weighting function, rAlarmsFE F1 -

engineered features from F1 of all rAlarms, F1 FEi - the ith feature in
rAlarmsFE F1,

Fig. 4: Example of feature extraction using feature-engineering

is implemented by training alarm classification ML models.
Hence, the alarm classification models, which were trained to
classify Alarms with TT and Alarms without TT under various
scenarios, are used to demonstrate the efficacy of the proposed
methods.

Furthermore, as explained in Section III, the data-set con-
tains status of every alarm at every 5 minutes interval.
Therefore, multiple models are trained and tested in order
to demonstrate delay-time based TT prediction models which
classify the alarms at delay-time of 0 to 60 minutes, with 5
minutes interval, after first arrival.

1) Training- and Test-set preparation: The prepared data-
set is partitioned into Training- and Test-set using the time-
series dimension, the First occurrence field. Due to sliding

Algorithm 1 Feature extraction using TWFE
1: procedure TIMEWINDOWFEATUREENGINEERING(A, TWsize, Nh, sF )

. A is the target presented alarm from AMS

. TWsize is size of time window TW

. Nh is maximum number of related history alarms

. sF is list of selected feature names
2: TWend ← AOT . AOT is a time of occurrence of A
3: TWstart ← TWend − TWsize

4: withoutTW ← EXTRACTALARMFEATURES(A) . Features from A
5: hAlarms← RETRIEVEHISTORYALARMS(A, TWstart, TWend)
6: S ← ALARMSOURCEINFO(A) . Fault source location of A
7: rAlarms← FILTERRELATEDALARMS(hAlarms,A, S,Nh)
8: rAlarmsFE ← FEATUREENGINEERING(A, rAlarms, sF )
9: withTWFE ← join(withoutTW, rAlarmsFE)

10: return A
11: procedure FEATUREENGINEERING(A, rAlarms, sF )
12: rD ← RELATIVEDISTANCE(A, rAlarms)
13: rAlarmsFE ← [ ]
14: for Feature F in sF : do
15: rAlarmsFEF ← [ ]
16: catV alues, occScores← FEATUREEXPANSION(F, rAlarms)
17: for catV alue v in catV alues : do
18: weightedScore← AGGREGATESCORE(v, occScores, rD)
19: rAlarmsFEF ← join(F, v, weightedScore)

20: rAlarmsFE ← join(rAlarmsFEF )

21: return rAlarmsFE

Class Label All (%) Training (%) Test (%)
Alarms with TT 9.30 8.60 11.14
Alarms without TT 90.70 91.40 88.86

TABLE IV: Target labels distribution

time-window construction of the features, time-series split
without shuffling is adopted for the Training- and Test-set
preparation. From the six months alarm data-set, the first four
months was used for training (around 70%) the proposed
models and remaining two months were used for testing
(around 30%) evaluate the performance (see Table IV).

2) Hyperparameter tuning: hyperparameters tuning usu-
ally becomes sluggish when the number of parameters or can-
didate values is large, even with a guided optimized searching
mechanism. Therefore, focusing on a small subset of param-
eters that have a significant influence on model performance
is essential. Even though the implementation of LightGBM
covers more than 100 hyperparameters1, we selected a core set
of parameters and found their optimal values, which achieved
the best cross-validation score after training and validating the
model on the Training-set. The criteria for choosing the core
parameters was based on their potential for improvement in
accuracy, speed and over-fitting control. Generally, the param-
eter tuning search consists of i) an estimator (the classifier),
ii) a parameter space, a method for searching or sampling
candidates, iii) a cross-validation scheme and iv) a score func-
tion. Some of the core parameters defined by LightGBM are
boosting, metric, num leaves, min data in leaf, max depth,
learning rate, subsample for bin, lambda l1, lambda l2, fea-
ture fraction, bagging fraction and num boost round

Moreover, there is a class imbalance in our Training-set
which is dominated by negative class which drags the decision
boundary of classifier toward the negative samples data space.
However, using AUC (Area Under the Curve Receiver Operat-
ing Characteristic Curve), as a cost function for the training,
performed better in mitigating the class imbalance problem in
our experiments. Finally, the same hyperparameters settings,

1https://lightgbm.readthedocs.io/en/latest/Parameters.html



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 7

tuned via the aforementioned approach using the withoutTW
features, were adopted in all of our experiments.

3) Feature importance analysis: quantifying feature impor-
tance during ML model building has crucial contributions for
model interpretability which facilitates the model adoption into
the real systems. There are two feature importance measuring
approaches in LightGBM: split-based (numbers of times the
feature is used in a model) and gain-based (total gains of
splits which use the feature). However, using these measures
might be problematic as the measures are purely calculated
on Training-set and it does not show the features relevance
in the unseen data. Owing to the above issue, permutation
based feature importance on Test-set has been suggested in
literature [46], [47]. Another alternative method is Permuta-
tion Feature Importance (PFI) which is an intuitive, model-
agnostic approach to estimate the feature importance of trained
models by analysing the sensitivity of the model to random
permutation (shuffled) of the feature values. In this study, the
PFI is measured from the change in the models prediction
accuracy when supplied with randomly permuted feature on
the test-set.

D. Prediction and Post-Processing

This block starts by loading the model that has been trained
in the Training phase to perform predictions on new test data.
The classification results are stored and forwarded to the post-
processing scripts for evaluation and generating meaningful
representation of the results for display. The performance
metrics and evaluation are detailed in Section V. At a given
decision time-delay (up to one hour) and alarm severity, the
predicted TT class labels along with classification confidence
scores are presented.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, performance evaluation of the conducted
experiments with the proposed approaches, discussed in Sec-
tion IV, is presented. The discussion compares binary classi-
fication of alarms for Trouble Ticket prediction performance
reports on the Presented Alarms using the feature sets gener-
ated by without using Time Windowing (withoutTW) and with
Time-Windowing and Feature-Engineering (withTWFE). The
reported performances are on the Test-set unless explicitly
stated.

As discussed in Section IV, binary LightGBM classifi-
cation models were trained using GBDT with AUC as a
cost function and Early-Stopping for over-fitting handling.
Performance metrics such as Precision, Recall, F1 score (F1),
AUC, Precision-Recall curve, Confusion Matrix and False
Positive Rate are employed to assess performance of the
classifiers. We have also used Average Precision (AP ) for
performance comparison among different ML algorithms. AP
summarizes the Precision-Recall curve as the weighted aver-
age of Precisions accomplished at each Threshold, with the
change in Recall from the previous Threshold used as the
weight, AP =

∑n
i=1(Ri − Ri−1)Pi where Ri and Pi are

Recall and Precision at ith Threshold. Moreover, as pointed in
Section III, the two relevant alarm severity categories, Critical

and Major, have different sensitivity to the ticket decision
timing. Thus, the discussion also incorporates the performance
of the models on these severity scenarios.

Finally, performance comparisons of TTP models, trained
by several ML tools [35]–[37], [48], and deep learning, are
presented as benchmarks to evaluate the competence of the
proposed TWFE and TTP model.
A. Alarm Classification for Trouble Ticket Prediction

Multiple classifiers were trained and compared, using the
real-time alarm stream with different ticketing delay time.
The performance scores of these delay-time based classifiers
are discussed in Section V-A1. Furthermore, the classifiers
trained at delay-time of 60 minutes has been chosen for a more
detailed discussion on the performance gain of the proposed
feature engineering technique (see Section V-A2).

1) Time-delay based classifiers: As explained in Section
IV-C, to assess the impact of ticketing decision delay after
the alarms first occurrence, thirteen models were trained to
classify the alarms at delay-time of 0 to 60 minutes with 5
minutes interval. The performance of these delay-time based
classifiers is illustrated in Figures 5 - 6. For each experiment,
ten repeated trials have been carried out with random seeds.
For each trial, the validation-set (10%) was kept the same
during training withoutTW and withTWFE. The plots portray
the mean scores along with 95% Confidence Interval.

Generally, the classification performance improves with
the delay-time for both feature sets. The steepest boost in
predicting the Alarms with TT occurred when the delay time
is between 10 and 20 minutes. This corresponds to managing
the Critical Alarms during the first half-hour of the alarm
life. Our feature importance evaluation also indicated that the
contribution of the duration feature (i.e. Feature-17) in the TT
prediction becomes pertinent as the delay-time gets prolonged.
The impressive accomplishment of the proposed TTP model
is that it significantly filtered the False-positive alarms (93.6%
correctly suppressed) and enhanced detection of True-positive
alarms by 80% as compared to NOC operators at a one-hour
time-delay. Furthermore, the proposed withTWFE technique
greatly enhanced the classification performance as compared
to the withoutTW.

The models trained withoutTW achieved, across the speci-
fied delay-times, mean score in the interval of [0.525, 0.599]
with std (standard deviation) of [0.005, 0.009] in the F1 score,
while the models trained withTWFE improve the performance
to [0.600, 0.663] with std of [0.002, 0.004] (see Figure 5).
The average performance improvement or gain (absolute dif-
ference, ∆) in the F1 ranges in the interval of [0.055, 0.075]
with std of [0.005, 0.012] (see Figure 6). The withTWFE
improved the mean AUC, with the gain of [0.021, 0.038],
from [0.902, 0.926] to [0.930, 0.947] with std around 0.002.
Another important result is the F1 of the most relevant alarms,
i.e. Critical Alarms, reaches [0.647, 0.727] withTWFE having
a gain of [0.051, 0.083] over withoutTW. The experimental re-
sults show proposed time-window history alarms-based feature
extraction technique significantly enhanced the classification
performance in predicting TT opening decision.

A detailed performance report using additional metrics at
benchmark delay-times, i.e., at 0, 30, and 60 minutes, is
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presented in Table V. The benchmark delay-times were chosen
to take into account the delays applied by the AMS when
presenting the Critical and Major Alarms. When the alarm
classification is estimated instantly as the alarm arrives (at
delay-time zero minutes), using withTWFE has accomplished
a big improvement with a gain of 0.075 in F1 and 0.029
in AUC. This shows related history alarms provide useful
information for the TT prediction.

2) Nominal classifiers: The above section showed the alarm
features’ predictive strength in alarm classification for TT
prediction improves as the alarms stay longer in the system
while the performance gain of the withTWFE over withoutTW
stays consistent. One of these features is the alarm dura-
tion, because Alarms without TT generally tends to have a
shorter duration than the Alarms with TT. Our analysis on
the operators’ waiting time before ticketing revealed that only
around 40% of the ticketed alarms got their TT within an hour.
Moreover, the most urgent critical alarms indicate faults that
need to be resolved within hours[11]. Therefore, the models
trained at delay-time of 60 minutes are chosen as the nominal
classifiers for further detail performance comparison between
the proposed models trained on single trial (see Figure 7 - 8).
The performance comparison on the Test-set showed that the
withTWFE outperforms withoutTW with gain of 0.08, 0.04 and
0.07 in the Precision, Recall and F1, respectively, and the
False Positive Rate reduced from 9.18% to 6.37%.

To evaluate the performance of the proposed TTP models
on the trade-off between detecting True-Positive and suppress-
ing False-Positive alarms, analysis on multiple Thresholds
is required. Hence, the models were further evaluated with
AUC and Precision-Recall curve. The model trained with
TWFE achieved AUC of 0.945 with gain of 0.021. Precision-
Recall curve is usually used to determine a threshold T
which achieves the desired Precision and Recall given the
attainable F1. The Precision-Recall curve accompanied by
F1 contour lines and F1-Recall curve are given in Figure 7.
The dotted annotations on the Precision-Recall curve are
the T values, and the F1-Recall Curve portrayed F1 for
the given Recall. The curves in Figure 7b show withTWFE
enhanced the performance even at T 6= 0.5. F1-Recall curve
and F1 contour illustrate the T values, which give the max
F1, are close to T = 0.5 with almost equal scores. This
demonstrates the models are calibrated and also validates the
comparison discussed in Section V-A1. The Precision-Recall
curve, Figure 7, and the confusion matrices, in Figure 8,
illustrate that the withTWFE gains its leverage by reducing the
false positive predictions (increase by around 9% in Precision),
as Accuracy on the negative class improves by 3%.

The mean PFI scores, after executing ten PFI trials per
each feature on the Test-set, of the top-ten influential features,
are depicted in Figure 9.Although Feature-13 (the probable
causes) is the strongest feature followed by Feature-17 (the
alarm duration), four features (prefixed with TWFE), extracted
from the time-windowed related history alarms, have made it
to the top-ten. This confirms the performance boost is from the
extraction of new relevant predictor features from attributes of
the history alarms despite the expansion of the feature set when
using TWFE. Moreover, we found that the PFI ranking scores

Fig. 5: F1score of the time-delay based classifiers

Fig. 6: ∆F1 score of the time-delay based classifiers

coincide with our feature analysis using the tools described in
Section IV-A1. An asymmetric pair-wise association analysis
with Theilś U and correlation analysis with Pearson Corre-
lation for the nominal and continuous features, respectively,
elucidate Feature-13 has the strongest association with the
target variable. While the statistical correlation tools aid in
identifying the relevant features before training a model, PFI is
crucial in interpreting the trained model by distinguishing the
prominent features during prediction. Therefore, combining
feature analysis with PFI permits us to have a step-wise feature
selection (forward-backward) mechanism, which facilitates the
development of a better model.
B. Performance Comparison with Benchmark Models

To benchmark the proposed model performance, we em-
ployed other ML tools for TTP modeling. The tools are
selected based on their excellent feasibility for the problem,
i.e., particularly in handling class imbalance, many categorical
features, high cardinality, and large data-set. However, only a
few of the tools such as LightGBM [36] and CatBoost [37]
offer a full support for categorical feature inputs. Therefore,
we have devised a customized encoding technique, which
transforms categorical features into numeric, to enable us
to employ more ML tools such as XGBoost [35], Random
Forest [48] and Deep Neural Network (DNN). We employ One-
hot and Word2Vec encoding schemes [43] for low cardinality
(for features with less than 50 categorical values as suggested
in [37]) and higher cardinality respectively. Moreover, for end-
to-end modeling, we have also trained DNN with integrated
embedded input layers2,3 to handle categorical inputs directly
without using external encoding schemes.

The benchmark models were trained with and without using
the TWFE at one-hour delay-time, and Table VI summarizes
their performance. Since the desired false or true positive rates

2https://keras.io/layers/embeddings/
3https://www.fast.ai/2018/04/29/categorical-embeddings/
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Feature
Extraction

F1-score Precision Recall AUC
Mean ± Std Mean ± Std Mean ± Std Mean

delay-time (min) = 0
withoutTW 0.525±0.007 0.451±0.007 0.628±0.019 0.902
withTWFE 0.600±0.004 0.562±0.008 0.644±0.009 0.930

∆ 0.075±0.009 0.111±0.011 0.016±0.024 0.029
delay-time (min) = 30

withoutTW 0.584±0.006 0.506±0.009 0.691±0.013 0.921
withTWFE 0.645±0.004 0.601±0.011 0.695±0.010 0.942

∆ 0.061±0.007 0.095±0.013 0.004±0.012 0.021
delay-time (min) = 60

withoutTW 0.589±0.008 0.501±0.013 0.716±0.016 0.923
withTWFE 0.656±0.004 0.601±0.009 0.722±0.006 0.944

∆ 0.067±0.007 0.100±0.013 0.006±0.017 0.022

*∆ - Absolute difference between scores of withTWFE and withoutTW

TABLE V: Classification performance on Alarms with TT at
delay-time of 0, 30, and 60 minutes

(a)

(b)
* P- Precision, R- Recall, F1- F1 score

Fig. 7: Precision-Recall curve of the nominal classifier with-
outTW (a) and withTWFE (b)

are decided by the telecommunication operator requirement,
we report AUC and Average Precision to provide a general-
ized performance of the classifiers across different decision
thresholds. Generally, two relevant conclusions can be driven
from the comparison. First, the performance of the models are
very close except for the end-to-end DNN trained withoutTW.
LightGBM and CatBoost are the best candidates due to their
auto-handling of categorical features, speed, and accuracy.
The other insight is that the TWFE feature augmentation has
achieved consistent improvement (average ∆AUC = 0.02 and
∆AP = 0.11) in the TTP using the different ML algorithms.

VI. CONCLUSION

This study presents a Trouble Ticket Prediction system
for telecommunication mobile network alarms using machine
learning and feature augmentation. The proposed prediction

(a) (b)
* withoutTT- Alarms without TT, withTT- Alarms with TT

Fig. 8: Confusion Matrix of the nominal classifier withoutTW
(a) and withTWFE (b)

Fig. 9: PFI of nominal classifier withTWFE

Category
Encoding

Model Feature
Extraction

AUC AP ttrn tprd ∆AUC ∆AP

withoutTW 0.93 0.60 16.35 2.18LGBM
withTWFE 0.95 0.71 21.25 1.92

0.018 0.107

withoutTW 0.92 0.57 117.42 0.70
Built-in
Support

CB
withTWFE 0.94 0.68 131.77 0.69 0.021 0.109

withoutTW 0.93 0.60 43.48 7.93LGBM
withTWFE 0.95 0.71 53.41 7.93

0.017 0.111

withoutTW 0.92 0.60 50.48 5.07CB
withTWFE 0.94 0.69 55.98 5.08

0.016 0.085

withoutTW 0.91 0.54 195.89 7.05XGB
withTWFE 0.94 0.69 215.53 7.30

0.025 0.144

withoutTW 0.92 0.59 98.58 5.78RF
withTWFE 0.94 0.70 130.68 5.84

0.017 0.110

withoutTW 0.91 0.59 310.55 10.09

One-hot and
Word2Vec
Encoding

DNN
withTWFE 0.93 0.67 579.30 9.78

0.014 0.084

withoutTW 0.90 0.51 734.04 11.43Embedded
Input Layer DNN

withoutTW 0.93 0.66 744.19 10.76
0.026 0.151

TABLE VI: Comparison with benchmark models
* LGBM: LightGBM [36], CB: CatBoost [37], XGB: XGBoost [35], RF:

Random Forest [48], DNN: (Architecture: 64-32-8 with Batch
Normalization), ttrn: training time (sec), tprd: prediction time (sec)

including feature encoding time on test-set, ∆: gain of withTWFE over
withoutTW, bold font: the best score

system is intended to curtail the time and cost spent on
alarm management which advances the efficiency and com-
petitiveness of the service providers. The approach achieved
encouraging outcomes in classifying the relevant alarms which
need the opening of a TT. Therefore, the proposed models
will support telecommunication operators to enhance their
responsiveness in managing a large set of alarms. However,
the models missed to detect around 28% of the True-Positive
alarms at one-hour decision delay-time. Nevertheless, the
missed alarms are still reduced by half as compared with
the NOC experts at the same delay-time. Another limitation
of the proposed supervised approach is that the TTP models
may need retraining with an adequate number of examples to
learn new alarms when deploying new network technologies
with characteristics very diverse from those used during the
training. Finally, the proposed feature extraction technique
using TWFE achieved a perceivable improvement in the alarm
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classification despite the negligible computation overhead.
Hence, we believe the technique can also be adopted in similar
Industry 4.0 data stream-based applications.
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