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Abstract

This thesis aims at the Eulerian-Eulerian computational fluid dynamics (CFD)
simulation of gas-liquid bubbly flows coupled with the Population Balance Mod-
elling (PBM) with the main focus on investigating some physical and numerical
aspects.

The Eulerian-Eulerian framework is currently the most viable approach for the
CFD simulation of large-scale disperse gas-liquid flows. Differently from more com-
plex methods, the Eulerian-Eulerian approach does not resolve explicitly the inter-
faces between the bubbles and the liquid phase. Instead, the physical phenomena
occurring at the interface, i.e. mass, momentum and heat exchanges between the
phases, are taken into account by means of some closure relations. Restricting the
discussion to hydrodynamic simulations, the closure relations to describe the mo-
mentum exchange between the phases are interfacial forces, e.g. drag, turbulent
dispersion, lift and wall lubrication. The predictions of Eulerian-Eulerian CFD
simulations of bubbly flows depend strongly upon the choice of formulations em-
ployed for modelling these forces, among which the lift and wall lubrication forces
have been the subject of ongoing investigations to overcome the lack of accurate
modelling or clear physical explanation. This thesis makes use of a set of experi-
mental data provided by the Helmholtz-Zentrum Dresden-Rossendorf to assess the
performance of some available closure relations. The experimental data belongs
to the measurements conducted in TOPFLOW facility for a large-scale developing
turbulent bubbly flow. Two sets of models are selected, differing in the relations
for the lift and wall lubrication forces. Additionally, the lift coefficient of each set
is replaced with a constant value optimized to achieve the best agreement with the
experiments. The results verify the need for employing negative lift coefficients in
the case of large bubbles (> 5 mm). In addition, it is shown that the geometric
approach to consider the wall effect results in a slightly better agreement than a
standard relation, which assumes the asymmetric drainage around bubbles near the
wall. Eventually, optimizing the lift coefficient highlights the importance of inves-
tigating spatially developing flows to draw general conclusions on the applicability
of closure relations.

The second part of the thesis deals with coupling the PBM and CFD in order
to predict the evolution of the bubble size distribution. In this regard, a literature
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review is presented on the methods for the solution of the PBE with a particular
attention to quadrature-based moment methods, since they are perfectly compat-
ible with the Eulerian framework. Among these methods, the quadrature method
of moments is chosen as the solution method for the CFD-PBM simulation of the
TOPFLOW facility. The main challenge observed in conducting the simulations
is the realizability issue, arising when high-order discretization schemes are used.
Therefore, a new finite-volume scheme based on 2nd-order total variation dimin-
ishing (TVD) schemes is proposed for the solution of moment transport equations
by quadrature-based moment methods. The proposed scheme is capable of pre-
serving important properties of the transported moments, such as realizability and
boundedness. The idea behind the scheme is to limit the flux of all the moments at
each face of the computational cell with the same limiter value, hence being called
the equal-limiter scheme. It is compared with other realizable schemes developed
for the moment transport equations in several one- and two-dimensional examples.
The corresponding results show the advantages of the equal-limiter scheme in im-
proving the accuracy of the numerical prediction, avoiding under- and over-shoots
in the solution and keeping the moments realizable at the same time. Eventually,
the equal-limiter scheme is employed to conduct the CFD-PBM simulations of the
TOPFLOW facility with two different choices for the equal limiter. The first choice
is more conservative, by which the minimum of the flux limiters of all the trans-
ported moments is selected. In this case, the TVD criteria for all the transported
moments are respected, however, the scheme can reduce to the 1st-order upwind
scheme when the smoothness of the profiles of the moments are considerably differ-
ent. The second choice for the equal limiter is the average of the flux limiters of all
the transported moments, which improves the order of accuracy of the solution at
the expense of not fulfilling the TVD criteria for some of the transported moments.
Nevertheless, the simulation results show negligible under- and over-shoots due to
this violation of TVD criteria. Finally, satisfactory predictions are obtained for the
radial and axial profiles of the Sauter mean diameter in the TOPFLOW facility
by conducting the CFD-PBM simulations, in which the equal-limiter scheme with
the choice of the average limiter is employed. In addition, the reasons behind the
observed discrepancies between the predictions and experimental measurements are
discussed. The thesis concludes by summarizing the results and suggesting some
future works.
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Chapter 1

Introduction

Bubbly gas-liquid flows have been growing in importance across the research
community, due to their widespread applications in diverse industries. These flows
can be categorized as disperse multiphase systems, formed by separate gas bubbles
being dispersed in a liquid phase. This type of multiphase flow can be found in dif-
ferent configurations, notably bubble columns [1–3], (usually vertical) pipes [4–10]
and stirred tanks. Some well-known industrial applications of the mentioned con-
figurations are multiphase chemical and biochemical reactors (e.g. Fischer-Tropsch
process), boiling-water nuclear reactors, heat-exchangers, fermenters and wastew-
ater aerated tanks. The importance of these applications has been promoting
numerous researches to investigate bubbly flows by conducting experiments and
Computational Fluid Dynamics (CFD) simulations.

Confining the discussion to the CFD simulation of bubbly flows, the Eulerian-
Eulerian approach is the most common computational method, particularly in the
context of industrial-scale simulations [11–15]. The notable feature of this approach
is the assumption of interpenetrating continua, which avoids the need to track the
interface between the liquid (continuous) phase and the gas (disperse) phase. In-
stead, the relevant phenomena occurring at the interface are taken into account
via closure relations included in the average balance equations [16]. Those rep-
resenting the interphase momentum transfer are called interfacial forces and play
a crucial role in determining the hydrodynamic behavior of the two-phase flow.
The common interfacial forces relevant to turbulent bubbly pipe flows are drag,
lift, turbulent dispersion and wall lubrication [8, 17, 18]. However, the models for
the description of the interfacial forces were mostly developed through theoretical
and/or experimental analysis performed under certain controlled conditions, and
therefore lack generality [19]. Among the mentioned forces, the lift and wall lubrica-
tion forces have been provoking ongoing debate over their physical explanation and
corresponding suggested models [19–21]. For instance, the expression in Eq. (2.16)
proposed by Tomiyama et al. [22] has been commonly employed to estimate the lift
coefficient in various gas-liquid systems. This correlation was developed by tracking
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1 – Introduction

the trajectories of single bubbles in a laminar shear flow of the glycerol-water solu-
tion. However, acceptable predictions have been obtained by using this correlation
in the simulation of systems operating under conditions far from those set in the
experiments by Tomiyama, e.g. air-water and steam-water systems [23]. Never-
theless, Ziegenhein in collaboration with Tomiyama has recently measured the lift
coefficient in low Morton number conditions, as air-water two-phase systems, and
has found smaller lift coefficients in comparison to Tomiyama’s correlation [24].
The authors selected the major axis of the bubbles as the most reasonable choice
for the characteristic length of the bubbles to describe the lift force dependency on
the bubble size. However, they also acknowledged the dependency of the bubble
major axis on the flow properties, hence the dependency of the lift force formula-
tion on the flow properties. In another work, Sugrue [21] has recently developed
an expression that considers the effects of the turbulence and bubbles’ crowding,
which are not present in the expression proposed by Tomiyama and co-workers.
However, the maximum lift coefficients estimated by these two models differ an
order of magnitude.

The correlations for the estimation of the wall lubrication force are even more
controversial because of the ambiguity in the physical interpretation of the wall
effect. Some of the proposed expressions [25–27] are derived from the work of
Antal et al. [28], who associated the wall effect with the unbalanced drainage of
the liquid around the bubbles located near the wall. These models result in a force
of large magnitude near the wall that essentially pushes the gas phase completely
out of the near-wall-region. On the contrary, some experimental investigations
report that the bubbles might move close to the wall in the turbulent boundary
layer [29–31]. Another approach applies a damping function on the lift coefficient
near the wall [32]. However, it leads to a flat profile of the gas volume fraction
close to the wall instead of a profile with a peak near the wall, which is observed
experimentally. Recently, Lubchenko et al. [19] developed a new wall lubrication
model based on the geometric analysis of bubbles close to the wall. Their model
has the advantage of not yielding to zero gas volume fraction in the close vicinity
of the wall.

In addition to the dependency on closure relations, Eulerian-Eulerian methods
in their original formulation require the specification of the mean size of disperse
phase elements. Setting this number fixed and constant, it is simply impossible
to account for the polydispersity and effect of particulate processes. However, the
characteristic properties of bubbles (e.g. size) change in space and time due to
numerous processes, such as coalescence and break-up. As a result, bubbly flows
often feature distributions of bubbles with different properties, a situation identi-
fied as polydispersity. A comprehensive CFD simulation of such flows must take
into account polydispersity and therefore must include the description of the above-
mentioned processes. In this regard, several researches attempted to include the
description of these processes by means of a transport equation written in terms
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1 – Introduction

of the bubble number density [33–37]. Although this method allows the bubble
size to change in time and spatial position, no local dispersion is allowed about the
mean bubble size. In other words, the bubbles located at a given spatial position
are assumed to have the same size. This limitation was overcome by incorporating
Population Balance Modelling (PBM) into the CFD simulations, which was realized
in 00s. In this approach, the evolution of the population of bubbles in space and
time is predicted through the solution of a Population Balance Equation (PBE)
integrated into a CFD code. The PBE is an integro-differential equation written
in terms of a number density function (NDF) that represents, at every point of
the physical space, the number of bubbles with a particular state. The states of
bubbles belong to the so-called phase space, i.e. the space of the properties consti-
tuted by the properties of interest (e.g. bubble size, velocity, chemical composition,
temperature).

Several methods are available to solve the PBE, among which the Class or Sec-
tional Method (CM) [37–46] and Quadrature-Based Moment Methods (QBMMs)
[47–56] have been widely adopted for coupled CFD-PBM simulations of gas-liquid
systems. However, the latter is much less expensive than the former from the com-
putational point of view[47, 54]. This advantage takes on an added importance in
industrial-scale simulations. In fact, QBMMs solve only a finite number of trans-
port equations written in terms of a few integral properties of the NDF (i.e. the
moments), instead of solving directly for the NDF itself [57]. However, these meth-
ods approximate the NDF (which is needed to close moment transport equations)
with a summation of so-called kernel density functions, each one centered on a
quadrature abscissa. The abscissas and weights of the quadrature are, in turn,
calculated by using the transported set of moments.

Despite being one of the viable approaches adopted for coupled CFD-PBE sim-
ulations [54, 58–60], QBMMs pose a major practical issue called "realizability" or
"consistency" of the moments, i.e. the calculated set of moments should be consis-
tent during the simulation, meaning that there should exist a physically meaningful
NDF corresponding to them. Therefore, it is important to employ suitable numeri-
cal methods designed for preventing the realizability issue as a source of simulation
instability. In this regard, a main cause of the realizability issue is the scheme
used for the discretization of the convective term of moment transport equations
[59, 61–63], relevant to simulations of spatially inhomogeneous systems. This issue
can be avoided by employing the 1st-order upwind method [64]. On the contrary,
employing standard high-order schemes can easily cause realizability issue, which
hinders obtaining (usually desired) solutions of high-order accuracy. In the quest of
achieving accurate solutions for QBMMs, novel techniques have been developed [59,
62, 63], among which the one formulated by Vikas and co-workers [62] is viable to
be employed in simulations with three-dimensional unstructured grids. With this
technique, called as the realizable quasi-high-order scheme, the non-realizability
is overcome by the separate interpolation of abscissas (using 1st-order scheme)
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1 – Introduction

and weights (using high-order scheme), provided that a criterion on the simula-
tion time-step is fulfilled. However, no analysis has been presented concerning
the monotonicity-preserving property of this scheme. This property is important
to avoid non-physical oscillations in the predicted solution [65]. The importance
of this property is realized by considering the extensive literature on developing
monotonicity-preserving methods. One notable example is the TVD (total varia-
tion diminishing) high-resolution schemes [65], which are commonly incorporated
in CFD codes for the discretization of the convective term to achieve bounded solu-
tions (i.e. no over- and under-shoots in the solution). Likewise, the boundedness in
the solution of QBMMs deserves attention, since the low-order moments are often
related to some physical properties of the disperse population, which are essentially
bounded, such as the total mass and the total volume fraction of the bubbles [66].

The current thesis is mainly aimed at the CFD-PBM simulation of bubbly flows.
In this context, two objectives are defined: 1) investigation of the interfacial forces
relevant to bubbly flows, in particular the lift and wall lubrication forces, and se-
lection of proper models to describe them; 2) development of numerical methods to
perform reliable CFD simulations coupled with the PBM. Considering the objec-
tives, the thesis is arranged in the following order: Chapter 2 describes the common
methods employed for the CFD simulation of multiphase gas-liquid systems, with
special attention to the Eulerian-Eulerian framework and interfacial forces. Then,
a review on the PBM for the description of polydisperse systems is presented in
Chapter 3, where the coupling between the PBM and CFD is also addressed. Chap-
ter 4 discusses the results of the CFD simulations conducted for a bubbly pipe flow
called the TOPFLOW facility, for which experimental data is available. Eventually,
this chapter summarizes several findings about the correlations employed for the lift
and wall lubrication forces. Moving to the second objective, Chapter 5 introduces a
novel scheme for the solution of QBMMs named as the equal-limiter scheme, which
addresses not only the realizability issue but also the accuracy and boundedness
of the solution. Then, Chapter 6 discusses the advantages and shortcomings of
the equal-limiter scheme by performing the two-way coupled CFD-PBM simulation
of the TOPFLOW facility, and proposes a modification of the original scheme to
improve its order of accuracy. The chapter ends by reporting and discussing the
predictions obtained by the CFD-PBM simulations of the TOPFLOW facility.

This thesis is mainly on the basis of the material reported in the
following published or submitted articles:

• M. Shiea, A. Buffo, E. Baglietto, D. Lucas, M. Vanni, D. L. Marchisio, "Eval-
uation of Hydrodynamic Closures for Bubbly Regime CFD Simulations in
Developing Pipe Flow". In: Chemical Engineering & Technology 42 (2019),
pp. 1618–1626.
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1 – Introduction

• M. Shiea, A. Buffo, M. Vanni, D. L. Marchisio, "A novel finite-volume TVD
scheme to overcome non-realizability problem in quadrature-based moment
methods", accepted for publication in Journal of Computational Physics.

• M. Shiea, A. Buffo, M. Vanni, D. L. Marchisio, "Numerical Methods for the
Solution of Population Balance Equations Coupled with Computational Fluid
Dynamics", submitted to Annual Review of Chemical and Biomolecular En-
gineering.

The above indicated publications along with the other material included in this
thesis are the output of several tasks carried out entirely by the PhD candidate.
These tasks include mainly the literature review of the relevant subjects, analysis
of the two-fluid CFD solver of OpenFOAM, addition of the required models to
the original two-fluid solver, implementation of the PBM (based on the QBMM)
into the solver code, development of the new discretization scheme for the solu-
tion of the QBMM, implementation of the new scheme in the CFD-PBM solver,
processing/visualization of the simulation predictions, and discussion of the results.
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Chapter 2

CFD Modelling of Gas-Liquid
Flows

This chapter presents three main CFD approaches for the prediction of the hy-
drodynamic behaviour of gas-liquid systems, i.e. fully-resolved interface, Eulerian-
Lagrangian and Eulerian-Eulerian. They differ chiefly in the resolved scale of the
modelling. The highest resolution is offered by the fully-resolved interface as the
relevant phenomena are modelled down to the micro-scale of bubble interfaces.
In contrast, the Eulerian-Eulerian approach avoids the explicit modelling of the
interface on the assumption of interpenetrating continua and therefore relies on
macro-scale relations to describe the average interactions between the phases. Yet
it is possible to take a middle approach, i.e. Eulerian-Lagrangian, that tracks the
evolution of each individual bubble without resolving the bubble’s interface explic-
itly. However, closure relations are required to describe the local instantaneous
interactions between each bubble and the surrounding continuous phase. Among
these methods, the Eulerian-Eulerian approach is of our interest and discussed in
more detail, since it is currently the only tractable approach for the simulation of
large industrial-scale simulations.

2.1 Fully-Resolved Interface
An accurate description of some important phenomena encountered in gas-liquid

flows, e.g. coalescence and break-up, relies on the proper characterization of inter-
faces between the gas bubbles and liquid phase. This characterization requires the
small-scale structures inside both phases to be fully resolved. The fully-resolved
approach deals with the solution of the Navier-Stokes equations, considering the
presence of interfaces between the liquid and bubbles. The governing equations
are usually written for the whole flow domain, known as the one-fluid formulation
[67]. Let the phases be incompressible, then the one-fluid formulation includes the
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2 – CFD Modelling of Gas-Liquid Flows

following equations [68]:

∂t(ρu) + ∂x · (ρuu) = −∂xp + ρg + ∂x · [µ(∇u + ∇uT)] +
∫

σκ′n′δ(x − x′) ds′

(2.1)

∇ · u = 0 (2.2)

Dρ

Dt
= 0 (2.3)

Dµ

Dt
= 0 (2.4)

where ρ, µ, u and p are, respectively, the density, viscosity, velocity and pressure
of the fluid at the spatial position x and time t. In addition, (∇u + ∇uT)/2 is the
symmetric, deviatoric strain-rate tensor. Last, g denotes the acceleration due to
body forces. It is evident that in this formulation, the flow fields and the material
properties change abruptly across the interface. The surface integral on the right-
hand side of Eq. (2.1) is over the interface and defines the effect of the surface
tension (σ) on the hydrodynamic behaviour of the fluid. κ′ is the curvature of
the interface, n′ the unit vector normal to the interface at the spatial point x′,
and ds′ an infinitesimal area of the interface. δ is the multiplication of two or
three (depending on the dimensions of the problem) one-dimensional Dirac delta
functions (δ). The numerical methods for the solution of Eqs. (2.1) to (2.4) are
based on those developed for single-phase flows, and are able to handle the spatially
rapid changes in the flow fields and material properties. These numerical methods
rely on the knowledge about the location and shape of the interface. For this
purpose, a technique is needed to describe and then follow the time evolution of
the interface numerically. Some notable techniques can be listed as follows: the
volume of fluid (VOF) [69, 70], the front tracking method [68, 71] and the level-set
method [72–74]. The reader can refer to the work of Gopala and co-workers [75]
for the comparative overview of these methods.

The main advantage of the fully-resolved approach over the other CFD models
is that no empirical or semi-empirical relation is essentially needed to describe the
bubble-bubble and bubble-liquid interactions. Therefore, this approach ensures a
high-level of accuracy of the simulation predictions. Nevertheless, the fully-resolved
approach is tractable only for the simulation of small-scale systems comprising a
limited number of bubbles, otherwise it becomes computationally too expensive.

2.2 Eulerian-Lagrangian Approach
In this approach, the evolution of bubbles is tracked in a Lagrangian reference

frame (thinking of them as point particles, see Figure 2.1), while the liquid phase
is described by the relevant Eulerian fields.
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2.2 – Eulerian-Lagrangian Approach

Figure 2.1: Schematic representation of bubbles in the Lagrangian reference frame.

The dynamics of a generic bubble q can be described by the following set of
ordinary differential equations:

d
dt

(x(q)
i ) = u

(q)
i (2.5)

d
dt

(u(q)
i ) = A

(q)
i + C

(q)
u,i (2.6)

where x
(q)
i and u

(q)
i are the components of the spatial position and velocity of the

bubble q. In addition, A
(q)
i denotes the continuous acceleration of the bubble q

due to the external forces, e.g. gravity, drag and lift. Last, C
(q)
i describes the

discontinuous changes in the velocity due to the bubble collisions. It is noteworthy
that governing equations similar to Eq. (2.6) can be written for other properties of
the bubbles such as size, concentration and temperature.

It is evident that the evolution of the bubbles depends on the state of the liquid
phase surrounding them. This dependency appears in the closure relations for the
A

(q)
i and C

(q)
i . The hydrodynamics of the liquid phase are governed by the Navier-

Stokes equations modified to consider the volume occupied by the gas phase and
the momentum exchange between the phases:

∂t(αlρl) + ∂x · (αlρlUl) = 0 (2.7)

∂t(αlρlUl) + ∂x · (αlρlUlUl) = −αl ∂xp + αlρlg + ∂x · [αlµl(∇Ul + ∇Ul
T)] + Ml

(2.8)

where αl, ρl, µl, Ul and p are the volume fraction, density, viscosity, velocity and
pressure of the liquid phase respectively. g is the acceleration due to the gravity.
In addition, Ml denotes the momentum exchange between the liquid and bubbles.
The above governing equations can be solved using the DNS (direct numerical
simulation) or LES (large-eddy simulation) approach. However, the computational
effort can be decreased by averaging the equations over time, volume or an ensemble
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2 – CFD Modelling of Gas-Liquid Flows

of infinite realizations, and then solving the resulting equation for the mean fields.
In Section 2.3, the averaged equations are explained in the context of the Eulerian-
Eulerian framework.

The Eulerian-Lagrangian (E-L) approach does not resolve directly the bubble
interface and therefore is less expensive than the fully-resolved approach. However,
it requires closure relations to describe the phenomena occurring at the interface,
e.g. momentum exchange between the bubbles and the liquid phase. Some ad-
vantage of the E-L approach, particularly in comparison to the Eulerian-Eulerian
approach (explained in Section 2.3), are as follows. No additional tool is required
to handle the polydispersity of the population of bubbles. For instance, the drag
force for a given bubble can be calculated based on its size. Moreover, the evo-
lution of the bubble size (if necessary) can be determined by adding the relevant
governing equation. Another advantage is that the E-L approach can be used for
the simulation of bubble populations with a wide range of Stokes number [76]. The
reason is that the E-L approach allows bubbles (with the same or different proper-
ties) located at a given position to move with different velocities. As a result, this
approach can be used to simulate systems that feature non-equilibrium velocity
distributions. Finally, the E-L approach can directly describe the bubble-bubble
interactions, e.g. coalescence and break-up of bubbles [77].

Despite the above-mentioned advantages, the application of the E-L approach
encounters some difficulties. When the two-way coupling is required, the volume of
bubbles and the interaction between the bubbles and the surrounding liquid must
be projected onto the Eulerian grid, which is a challenging task [78]. Furthermore,
tracking all bubbles in large-scale systems is not practically feasible due to the
too high computational cost. In such cases, a statistical representation is adopted,
in which the large population of real bubbles are replaced by a smaller ensemble
of computational bubbles [77]. However, the statistical errors due to the limited
number of computational bubbles may give rise to convergence issues [79–81].

2.3 Eulerian-Eulerian Approach
The Eulerian-Eulerian (E-E) framework assumes the liquid and gas phases as

two interpenetrating continua that are present simultaneously in the entire domain
but with a statistical expectation, which translates into the corresponding phase
volume fraction, see Figure 2.2. This assumption allows us to write the continuum
mass, momentum and energy balance equations of both phases over the entire
domain despite the discontinuities existing at the interfaces between the phases.
Then, the local instantaneous balance equations of each phase is averaged over time,
volume or an ensemble of infinite realizations to obtain the averaged equations,
known as the two-fluid model (TFM) [16, 82, 83]. The averaging process helps
to avoid resolving interfaces between the bubbles and liquid phase as it smooths

10
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out discontinuities at interfaces. Instead, the relevant phenomena occurring at
interfaces are described averagely through macro-scale relations. It is evident that
the accuracy of solutions predicted by the E-E approach relies highly on these
macro-scale relations.

Figure 2.2: Averaged representation of two-phase flow in the Eulerian-Eulerian frame-
work.

The averaged mass and momentum balance equations for a generic phase i
(either the disperse or the continuous phases) are the following (in the absence of
the mass transfer):

∂t(αiρi) + ∂x · (αiρiUi) = 0 (2.9)

∂t(αiρiUi) + ∂x · (αiρiUiUi) = −αi ∂xp + αiρig + ∂x · [αi(τ i + τ ′′
i )] + Mi (2.10)

where αi, ρi and Ui are the volume fraction, density and velocity of the phase i
respectively. τ i denotes the viscous stress tensor estimated by:

τ i = µi(∇Ui + ∇Ui
T) − 2

3µi(∇ · Ui)I (2.11)

where µi is the molecular viscosity of the phase i and I the unit tensor with el-
ements equal to the Kronecker delta (δij). The second term on the right-hand
side of Eq. (2.11) is negligible for the liquid phase on the assumption of incom-
pressibility. The unclosed term τ ′′

i appears in the averaged momentum balance
equation due to the fluctuations of the local instantaneous phase velocity around
its mean value, Ui. The fluctuations arise because, first, the existing phase at a
given position changes and second, turbulent conditions may exist in the phase i.
This term is generally closed by extending single-phase RANS (Reynolds-averaged
Navier–Stokes equations) to multiphase flows [54]. Therefore, Eqs. (2.9) and (2.10)
are solved for the Reynolds-averaged fields and τ ′′

i is modelled the same as τ i but
using the turbulent viscosity instead of the molecular one. Last, Mi describes the

11
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momentum exchange between the phases and is modelled through macro-scale rela-
tions called as interfacial forces. Some interfacial forces relevant to gas-liquid flows
are drag, lift, turbulent dispersion, wall lubrication and virtual mass forces.

The TFM can be extended to systems comprising several phases. The extension
of the TFM is known as the multifluid model (MFM), which consists of Eqs. (2.9)
and (2.10) written for more than two phases [13, 84]. For instance, the gas phase
can be divided into two classes of small and large bubbles and therefore the entire
system is comprised of one liquid phase and two fictitious gas phases [45]. In the
MFM, the term Mi takes into account the momentum exchange between phase i
and all the other phases.

The main advantage of the E-E approach is the low computational cost in com-
parison to the previous approaches, however, at the expense of lower modelling
resolution. Therefore, this approach is considered as the first candidate for the
simulation of large-scale systems. Nevertheless, the E-E approach has its draw-
backs. This approach is on the basis of the mono-kinetic assumption, i.e. the
disperse entities (of identical or different properties) move with the same local ve-
locity. This assumption is not valid for systems consisting of disperse entities of
high Stokes number (St > 1) or with velocity distributions far from the equilibrium
[76]. Furthermore, the TFM and MFM cannot provide information about the evo-
lution of the distribution of bubble properties such as the bubbles size distribution.
As a result, these methods are unable to describe phenomena such as coalescence
and break-up of bubbles. Another issue is that macro-scale relations, e.g. interfa-
cial forces, are usually valid for specific systems and a limited range of operating
conditions, and therefore lack general applicability. It is worth repeating that the
predictions of the E-E approach depends strongly on these relations. The following
section discusses the interfacial forces in the context of gas-liquid flows.

2.3.1 Interfacial Forces
In the E-E approach, the momentum exchange between the liquid phase and

bubbles is modelled by including average interfacial forces in the average momen-
tum balance equation of both gas and liquid phases. The average interfacial forces
are estimated by macro-scale (closure) relations that are written in terms of the
known mean flow fields. The forces relevant to gas-liquid flows (considered in this
thesis) are drag, lift, turbulent dispersion and wall lubrication. The following sec-
tions describe these interfacial forces along with some commonly employed closure
relations for the simulation of bubbly pipe flows.

Drag Force

The gas bubbles moving through a liquid experience a friction-like force due to
their relative velocity with respect to the liquid phase. This force acts on the gas
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phase in the opposite direction of the relative velocity of the phases, defined as the
gas velocity minus the liquid velocity. In the Eulerian framework, the drag force
per unit volume is expressed by the following formula [13]:

FD
g = − 3

4db
CDρlαg |Ur| Ur and Ur = Ug − Ul (2.12)

In the above equation, CD denotes the drag coefficient that is generally estimated
using correlations. In addition, db is the bubble diameter and αg the gas volume
fraction. Furthermore, Ug, Ul and Ur are the average gas, liquid and relative
velocities respectively.

Figure 2.3: The drag force due to the relative velocity between a bubble and the liquid
phase.

Among interfacial forces, the drag force has been studied extensively both theo-
retically and experimentally. As a result, there are reliable correlations for estimat-
ing the drag coefficient for a given system. In this thesis, the relationship proposed
by [85] for slightly contaminated systems is used to calculate the drag coefficient:

CD = max
{

min
[ 24
Re

(
1 + 0.15Re0.687

)
,

72
Re

]
,
8
3

Eo

Eo + 4

}
(2.13)

where Re is the bubble Reynolds number and Eo Eötvös number. These numbers
are defined as the following:

Re = ρl |Ur| db

µl
and Eo = |g| (ρl − ρg)db

2

σ
(2.14)

ρg is the gas density and σ the surface tension. The Reynolds number is the ratio
of the effects of inertial forces to the effects of viscous forces. The Eötvös number
represents the ratio between the effects due to the buoyancy and the effects due
to the surface tension. This number is used to characterize the shape of bubbles.
The higher is the Eötvös number, the more distorted is the bubble shape from the
spherical shape.

The first term of the correlation in Eq. (2.13) is the drag coefficient for the
smallest bubbles with a low Reynolds number, which show a rigid interface. The
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second term is the correction by Tomiyama and co-workers for bubbles with higher
Reynolds numbers, where the interface is partially mobile. Finally, for large bubbles
and high Reynolds numbers, the shape of bubbles is distorted from spherical to
ellipsoidal or spherical cap and the drag coefficient is estimated based on the Eötvös
number. As evident from Eq. (2.13), for large bubbles, the drag coefficient does
not depend on the Reynolds number and shows an almost constant dependence on
the bubble size.

Lift Force

Bubbles in a shear flow experience a force acting normal to the flow direction
(Figure 2.4). The shear-induced lift force acting on the gas phase can be expressed
by the following formula [86]:

FL
g = −CLρlαgUr × (∇ × Ul) (2.15)

Here, the lift coefficient is denoted by CL.

Figure 2.4: The lift force due to the shear flow of the liquid phase.

In an upward co-current flow with a monotonically decreasing velocity profile
approaching the wall and CL > 0, the lift force pushes essentially the spherical bub-
bles towards the wall. However, experiments have shown that, for non-spherical
bubbles, the force acts in the reverse direction, which is described by using a nega-
tive lift coefficient [22]. This change in the direction of the force was associated with
the slanted wake created behind the non-spherical bubble. Therefore, Tomiyama
and co-workers [22] proposed a correlation for the lift coefficient that depends on
the Eötvös number or, in other words, the bubble size and its deformation:

CL =
⎧⎨⎩min[0.288 tanh(0.121Re), f(Eod)] Eod < 4

f(Eod) 4 ≤ Eod ≤ 10
(2.16)

and
f(Eod) = 0.00105Eo3

d − 0.0159Eo2
d − 0.0204Eod + 0.474 (2.17)
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In above equations, Eod denotes the Eötvös number calculated using the maximum
horizontal dimension of the bubble (dH) instead of the bubble size. To estimate dH,
the bubbles are assumed to have an oblate spheroidal shape with the aspect ratio
given by the empirical correlation proposed by Wellek et al. [87]:

dH = db
3
√

1 + 0.163Eo0.757 (2.18)

Based on the experimental observations, Eq. (2.16) predicts the inversion of
the lift force as the bubble shape changes to non-spherical one, i.e. as the bubble
diameter increases in a system with constant properties. It should be noted that
Tomiyama’s correlation was obtained based on the experiments that examined the
trajectory of single bubbles under laminar (Reynolds number < 50) and high Mor-
ton number conditions. However, Lucas and Tomiyama [23] showed that the critical
diameter predicted by this correlation at which the lift coefficient changes its sign
is also applicable to the dense turbulent flows in low Morton number systems such
as air-water and steam-water flows. In addition, a recent investigation on single
bubbles in an air-water low-turbulent system validates Tomiyama’s correlation for
such systems provided the major axis of the bubble is used to calculate Eod in
Eq. (2.16) [88].

In contrast to the drag coefficient, a clear consensus on the lift coefficient has
not been reached, mostly due to the fact that the experiments were performed
in simple shear flows under a set of controlled and limited operating conditions.
Moreover, the lift force predicted by Eq. (2.15) reaches, generally, its maximum at
the wall due to the high liquid velocity gradient. It may prevent the gas phase from
spreading towards the center of the column as the flow moves upward, giving rise to
the non-physical accumulation of the gas near the wall. One remedy is to employ
the wall lubrication force in the simulation, although this force is still subject to
controversy and lacks general applicability [19]. Another approach is to damp the
lift force to zero near the wall, as proposed by Shaver and Podowski [32]. In their
model, the lift coefficient (CL) is used for distances larger than the bubble diameter
from the wall. For shorter distances, the lift coefficient is damped to zero, until
the distance of half a bubble diameter from the wall, resulting in the following
expression for the modified lift coefficient (C ′

L):

C ′
L =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 y/db < 0.5
CL[3( 2y

db
− 1)2 − 2( 2y

db
− 1)3] 0.5 ≤ y/db ≤ 1

CL y/db > 1
(2.19)

where y is the distance from the wall. This modification solves the problem of
predicting non-physical accumulation of the gas phase near the wall. However,
it predicts a flat profile for the gas volume fraction close to the wall instead of
predicting a peak near the wall.
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As mentioned before, Tomiyama’s correlation for the lift coefficient was obtained
based on the experiments under laminar conditions. Recently, Sugrue [21] presented
a new correlation for the lift coefficient, which is aimed at fully turbulent flow
conditions, and therefore includes not only the bubble size, but also the turbulent
parameters of the flow:

CL = f(Wo) f(αg) (2.20)
with

f(Wo) = min
(
0.03, 5.0404 − 5.0781Wo0.0108

)
(2.21)

f(αg) = 1.0155 − 0.0154 exp(8.0506αg) (2.22)

This correlation depends on the dimensionless Wobble number, Wo , which reflects
the turbulence condition of the liquid phase, as well as the bubble deformation:

Wo = Eo
kl

|Ur|2
(2.23)

where kl is the turbulent kinetic energy of the liquid phase. It should be noted that
their correlation is based on simulations that employ the wall lubrication model
by Lubchenko et al. [19] (refer to Section 2.3.1), which necessitates the use of
a damping function for the lift coefficient, such as the one suggested by Shaver
and Podowski [32]. The model coefficients have been optimized specifically for
turbulent fully developed bubbly flow conditions, and might contain compensation
errors related to the prediction of the multiphase turbulence levels, due to the
lack of experimental turbulence measurements in the optimization test cases. In
addition, their model takes into account the group behavior of the bubbles as the
number density of the bubbles (void fraction) increases. They stated that the lift
coefficient should be significantly lower due to the bubble interactions when the
void fraction is high (over 20%). This dependency of the lift coefficient on the void
fraction is considered through the function f(αl). However, this swarm effect is
neglected in this thesis due to the sufficiently low local gas volume fractions in the
simulated experimental conditions.

Turbulent Dispersion Force

It has been postulated that the turbulence in the continuous liquid phase has
a direct effect on the migration of gas bubbles, similarly to what happens to the
mass and energy transported via the turbulent dispersion. The turbulent disper-
sion is expected to spread gas bubbles from regions with high gas volume fraction
to regions with low gas volume fraction, see Figure 2.5. Thus, virtually all the
developed expressions include the gradient of the gas volume fraction. Burns et
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al. (2004) proposed an expression for the turbulent dispersion force based on the
Favre-averaged drag force:

FTD
g = −3

4CD
αgρl

db
|Ur|

νturb
l

σTD

(
1
αg

+ 1
αl

)
∇αg (2.24)

In this expression, νturb
l and σTD denote the kinematic eddy viscosity of the liquid

phase and the turbulent Prandtl number for the volume fraction of the disperse
phase (expected to be of order unity), respectively. Furthermore, αl is the liquid
volume fraction. Burns et al. (2004) compared their model with other available
models and stated that the studied models perform almost the same in the limit of
low gas volume fraction.

Figure 2.5: The role of turbulence in the migration of bubbles from regions with high
gas fraction to regions with low gas fraction.

Wall Lubrication Force

It was observed experimentally that the bubbles located near the wall in a qui-
escent liquid phase tend to rise while keeping a distance from the wall. Since under
these conditions, no shear is sustained in the continuous liquid phase, this behavior
cannot be related to the lift force. Instead, it is suggested that the bubbles rising
close to the wall experience a lateral force due to the wall presence (Figure 2.6).

Figure 2.6: The fictitious wall lubrication force.

Antal and co-workers [28] associated this with the unbalanced drainage of the
liquid phase around bubbles due to the no-slip condition on the wall for the liquid
velocity. Eventually, they proposed an expression for the wall lubrication force
based on a two-dimensional analysis. Later, Tomiyama and co-workers [27] reported
that the Antal’s expression, for bubbles far from the wall, results in a force towards
the wall, which is not physically acceptable. Consequently, they modified Antal’s
expression and suggested a model based on the experimental observations of single
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bubble trajectories in the water-glycerol solution. Subsequently, Hosokawa and
co-workers [26] developed a correlation for the empirical coefficient of Tomiyama’s
model in order to extend the applicability of the model to a wider range of fluid
properties and bubble sizes:

FWL
g = Cwlρlαg

⏐⏐⏐(Ur)||
⏐⏐⏐2 nw (2.25)

with

Cwl = Cw
db

2

(
1
y2 − 1

(D − y)2

)
and Cw = max

( 7
Re1.9 , 0.0217Eo

)
(2.26)

In the above expressions, (Ur)|| is the component of the relative velocity parallel
to the wall, nw is the unit vector normal to the wall, D is the pipe diameter and y
is the distance from the wall.

Recently, Lubchenko and co-workers [19] proposed a new approach to consider
the presence of the wall. Their model imposes a parabolic void fraction profile
near the wall, obtained simply using the argument that the bubbles attached to
the wall have their centers located at a distance equal to the bubble radius due
to their physical shape. By imposing this void fraction profile and considering
an instantaneous equilibrium between the turbulent dispersion force and the wall
lubrication force near the wall, it is possible to derive a model for the wall lubrication
force. It should be noted that the lift force is not considered in the equilibrium,
because of employing a damping model near the wall, e.g. Eq. (2.19) proposed
by Shaver and Podowski [32]. Lubchenko et al. [19] stated that the approach is
more general and applicable to different systems. Furthermore, it does not push
the gas completely out of a certain distance from the wall, which is more consistent
with the experimental observations. If the Burns model is employed to represent
the turbulent dispersion, the following relationship will be obtained for the wall
lubrication force:

FWL
g =

⎧⎨⎩−3
4CD

αgρl
db

|Ur| νturb
l

σTD

(
1

αg
+ 1

αl

)
αg

1
y

db−2y
db−y

nw y/db < 0.5
0 y/db ≥ 0.5

(2.27)

The above wall lubrication models are compared in Figure B.1 of Appendix B,
each evaluated using a meaningful set of parameters.

2.3.2 Turbulence Modelling
While the single-phase turbulence modelling has advanced considerably over last

decades and has achieved a general reliability, the multiphase turbulence modelling
is much less developed due to several reasons such as the lack of enough experimen-
tal data, diversity of systems, complex flow fields and different flow regimes. Nev-
ertheless, numerous studies have been conducted to develop multiphase turbulence
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models by extending existing single-phase turbulence models to multiphase sys-
tems. Concerning gas-liquid systems, the Reynolds-averaged Navier-Stokes equa-
tions (RANS) approach is commonly adopted, along with the Boussinesq approxi-
mation [11, 14, 15, 18, 89–95]. Moreover, the turbulence is normally modelled only
inside the liquid phase, since the density of gas (disperse phase) is much smaller
than that of liquid (continuous phase) [16]. Then, the turbulent viscosity of the
liquid phase (µturb

l ) is calculated by using two-equation models adapted to two-
phase systems. If the k−ε model is employed, the turbulent kinetic energy (kl) and
the turbulent dissipation rate (εl) of the liquid phase are predicted by solving the
following transport equations [96]:

∂t(αlρlkl) + ∂x · (αlρlklUl) = ∂x ·
[
αl

(
µl + µt

l
σk

)
∂xkl

]
+ αlPk − αlρlεl + Sk (2.28)

∂t(αlρlεl) + ∂x · (αlρlεlUl) = ∂x ·
[
αl

(
µl + µt

l
σε

)
∂xεl

]
+ αlCε1

εl

kl
Pk − αlρlCε2

ε2
l

kl
+ Sε

(2.29)

with the turbulent viscosity calculated by the following expression:

µt
l = Cµρl

k2
l

εl
(2.30)

In Eqs. (2.28) and (2.29), Pk is the production of the turbulent kinetic energy and
the model coefficients are generally assumed to be the same as those used in the
standard single-phase k−ε model proposed by Launder and Sharma [97]: Cµ = 0.09,
Cε1 = 1.44, Cε2 = 1.92, σk = 1.0 and σε = 1.3. Last, Sk and Sε are the source
terms to consider the effect of bubbles on the turbulence in the liquid phase, i.e.
the bubble-induced turbulence (BIT).

Although bubbles influence the structure of the turbulence in the liquid phase
[98–101], the bubble-induced turbulence is ignored in this thesis to avoid introduc-
ing significant uncertainties due to many ambiguities surrounding the application
of the available approaches for modelling it. For instance, in the context of two-
equation models such as the k−ε model, the most common practice is adding source
terms to the transport equations of k and ε, [18, 92]. However, no consensus on the
implementation of the approach is achieved yet, particularly on the choice of the
time scale to estimate the added ε source, [15]. In addition, the ε source depends on
an empirical coefficient that is system-dependent. Recently, a model was proposed
by [88] that determines the time scale and coefficients based on the direct numer-
ical simulations (DNS) of a bubbly channel flow. However, the DNS simulations
consider only small spherical bubbles, which may limit its application to the system
studied in this thesis.
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2.3.3 Modelling of Polydispersity
As mentioned before, gas-liquid systems generally feature distributions of bub-

bles with different properties, a situation identified as polydispersity. The knowl-
edge about the distribution of bubbles over the properties of interest is essential for
a more accurate description of gas-liquid systems, particularly when property dis-
tributions are not narrow enough to support the mono-disperse assumption. More-
over, property distributions evolve in space and time due to different processes
such as coalescence and break-up. In the TFM or MFM, governing equations are
written in terms of average fields and properties. Thus, these models work with
the average of distributions instead of distributions themselves. More importantly,
these models are not capable of predicting the evolution of property distributions,
which may change considerably in space and time. In this regard, the Population
Balance Modelling (PBM) is a powerful tool to define property distributions and
track their evolution through suitable governing equations, i.e. Population Balance
Equation (PBE).
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Chapter 3

Population Balance Modelling*

The previous chapter introduces the CFD approaches for the simulation of mul-
tiphase gas-liquid flows, placing focus on the Eulerian-Eulerian framework. How-
ever, as mentioned before, the Eulerian-Eulerian methods, e.g. two- and multi-fluid
models (TFM and MFM), does not provide any information regarding the popula-
tion of bubbles. For instance, the TFM and MFM require the specification of the
mean bubble size and they do not account for the bubble size distribution (BSD).
Moreover, the population of bubbles evolves in time due to processes such as co-
alescence and break-up of bubbles, which cannot be predicted by the TFM and
MFM. In general, disperse gas-liquid systems often feature distributions of bub-
bles with different properties such as size, a situation identified as polydispersity.
Therefore, a comprehensive simulation of such systems must take into account the
polydispersity by tracking the evolution of bubble distributions over the properties
of interest, e.g. BSD.

This chapter introduces the population balance equation (PBE) as a suitable
tool for describing the evolution of the bubble population in disperse gas-liquid
systems. We explain how the solution of the PBE provides a detailed level of
description of the disperse gas bubbles, which is not accessible from the TFM and
MFM alone, leading to a more accurate simulation of the entire gas-liquid system.
In this regard, several methods for the solution of the PBE are covered, which belong
to the following main categories: the class or sectional method, method of moments
and quadrature-based moment methods. Eventually, this chapter discusses the
incorporation of the PBE into the CFD and also some relevant numerical issues
concerning the stability of simulations.

*This chapter is mainly based on the following submitted article:
M. Shiea, A. Buffo, M. Vanni, D. L. Marchisio, "Numerical Methods for the Solution of Population
Balance Equations Coupled with Computational Fluid Dynamics", submitted to Annual Review
of Chemical and Biomolecular Engineering.
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3.1 Population Balance Equation
The PBE is a continuity statement that governs the evolution of a number

density function (NDF), which is postulated to exist for a population of disperse
phase elements, such as gas bubbles in this thesis. The NDF defines the distribution
of the disperse phase elements over the properties of interest at any time instant
and physical position. These properties, called internal coordinates, characterize
the disperse elements and can include velocity, size, composition, temperature, etc.
The choice of the internal coordinates, denoted here by the vector ξ, is system
dependent. The state of a generic element q at time t can be determined by its
position vector x(q) and internal coordinates ξ(q), jointly called the element state
vector (x(q), ξ(q)). The state vector of a given element specifies the location of that
element in the so-called phase-space, which is a high-dimensional space consisting of
the physical domain of the system Ωx and the domain of the internal coordinates Ωξ.
Given an arbitrary point in the phase-space (x, ξ), the NDF n(t, x, ξ) is defined as
the expected number density of elements in the infinitesimal volume dx dξ around
that point at time t [102].

At first, let the velocity of gas bubbles be known and excluded from the internal
coordinate vector. Then the PBE takes the following form [57]:

∂tn + ∂x · (Ugn) + ∂ξ · (Gn) = S, (3.1)

where Ug(ξ) is the velocity of the gas bubbles and G(ξ) the rate of change of the
internal coordinates due to continuous molecular processes, such as mass and heat
transfer, growth and shrinkage of bubbles, chemical reactions etc. The source term
S(ξ) describes the discontinuous changes in the internal coordinates of the bubbles
due to discrete events, such as coalescence and break-up.

Eq. (3.1) is a high-dimensional transport equation that describes the evolution
of the NDF not only in time and physical space but also in the domain of inter-
nal coordinates. The velocity of the bubbles in Eq. (3.1) (Ug) is assumed to be a
known function of time, spatial position and internal coordinates (ξ). In addition,
the flow fields of the continuous (liquid) phase, e.g. liquid velocity (Ul), are gen-
erally required by the closure relations for the description of both continuous and
discontinuous processes, i.e. G and S. For this purpose, the velocity of both phases
(Ug and Ul) can be obtained by adopting a suitable Eulerian CFD approach, see
Chapter 2.

3.1.1 Generalized Population Balance Equation
In general, the velocity of the disperse bubbles (ub) can be included within the

internal coordinate vector. In this case, the NDF f(t, x, ξ, ub) is defined as the
expected number density of bubbles in the infinitesimal volume dx dξ dub around
the arbitrary point (x, ξ, ub) at time t. The generalization of Eq. (3.1) to include
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velocity as an internal coordinate leads to the following Generalized Population
Balance Equation (GPBE) [57]:

∂tf + ∂x · (ubf) + ∂ξ · (Gf) + ∂ub · (Af) = S, (3.2)

In Eq. (3.2), A(ξ, ub) is the acceleration of the bubbles due to external forces, e.g.
forces exerted from the liquid phase on the bubbles. The source term S(ξ, ub) is
similar to that in the PBE except that it also describes the discontinuous change
in the velocity of the bubbles due to discrete events.

Relationship between GPBE and PBE

It is noteworthy that Eq. (3.2) is closely related to Eq. (3.1). In fact, as high-
lighted in some specific applications [103–108], the GPBE can be simplified by pre-
suming a specific form for the NDF, f(t, x, ξ, ub) = n(t, x, ξ) δ(ub − ⟨ub|ξ⟩), which
is called the monokinetic assumption. This is equivalent to assuming that, at a
given time t and location x, the bubbles with the same internal coordinates move
with the same velocity ⟨ub|ξ⟩, i.e. the mean velocity conditioned on the internal
coordinates [103]:

⟨ub|ξ⟩ =
∫

ubf dub / n(t, x, ξ). (3.3)

where n(t, x, ξ) =
∫

f dub is the marginal NDF. Clearly, the mean conditional ve-
locity, ⟨ub|ξ⟩, is identical to Ug(ξ). The mean conditional velocity can be calculated
in different ways, by assuming for example a continuous parametric functional de-
fined over the space of a chosen internal coordinate [57], or can be obtained by
adopting the Eulerian CFD models explained in Chapter 2. It is noteworthy that
Eulerian CFD models, i.e. the TFM and MFM, can be derived from the GBPE
(see Figure 3.1), for which the derivation can be found elsewhere [57, 103, 104, 106,
107].

GPBE in Turbulent Flow

In turbulent flows, in which turbulence is caused by instabilities in the liquid
phase, the velocity of the liquid phase Ul(t, x) is a random vector field characterized
by fluctuations that result in fluctuations of the NDF defined previously. The direct
solution of the GPBE/PBE, which resolves all the relevant length and time scales, is
computationally expensive and cheaper solutions are often sought. One alternative
is to define a Reynolds-averaged NDF ⟨f⟩(t, x, ξ, ub) over an infinitely large number
of realizations of the liquid phase velocity Ul [57] and derive the following equation:

∂t⟨f⟩ + ∂x · (ub⟨f⟩) + ∂ξ · (⟨Gf⟩) + ∂ub · (⟨Af⟩) = ⟨S⟩, (3.4)

leading to a Reynolds-averaged Navier-Stokes (RANS) multiphase formulation. The
terms ⟨Gf⟩, ⟨Af⟩ and ⟨S⟩ are generally not closed because the relations describing
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GPBE

PBE

Moment transport eqs.

Boltzmann equation

Eulerian hydrodynamic description

Two-fluid model

integrate out ξ
integrate out u

+ monokinetic assumption

integrate out ξ

+ moment closure

integrate out u

+ closure for velocity fluctuations

Figure 3.1: The relationship between the GPBE, PBE, moments and Eulerian CFD
models

the continuous and discontinuous events can depend on the liquid phase velocity,
Ul. The above-mentioned terms are usually expressed as the summation of a mean
field contribution and an additional contribution due to fluctuations, the latter of
which needs a closure approximation. For example, Drew used a kinetic equation
describing the evolution of particles in turbulent flows to derive an Eulerian mo-
mentum balance equation that includes a drag force due to the mean fields and an
additional contribution, called turbulent dispersion force, due to turbulent fluctua-
tions [109]. It is noteworthy that spatial filtering [110] and Large Eddy Simulation
(LES) based on the self-conditioned NDF [111] can be also used to derive the GPBE
of the same form of Eq. (3.4).

3.1.2 Discrete Events
The principal discrete events relevant to gas-liquid systems are the coalescence

and break-up processes. For these two processes, the source term S in Eq. (3.1)
has the following mathematical form on the assumption that the only internal
coordinate is the mass (or the volume) of the bubbles (space and time dependency
is omitted for brevity) [102]:

S(ξ) = 1
2

∫ ξ

0
a′(ξ − ξ′, ξ) n(ξ − ξ′) n(ξ) dξ′ − n(ξ)

∫ ∞

0
a′(ξ, ξ′) n(ξ′) dξ′

+
∫ ∞

ξ
b′(ξ′) β′(ξ|ξ′) n(ξ′) dξ′ − b′(ξ) n(ξ), (3.5)

where a′(ξ, ξ′) denotes the rate of the coalescence between the bubbles whose inter-
nal coordinates are equal to ξ and ξ′ (i.e. coalescence kernel) and b′(ξ) the rate of
break-up of bubbles whose internal coordinate is equal to ξ (i.e. break-up kernel).
In addition, β′(ξ|ξ′) is the so-called daughter distribution and statistically defines
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the number of daughter bubbles, whose internal coordinate is equal to ξ, born due
to the break-up of a bubble with the internal coordinate of ξ′. On the right-hand
side of Eq. (3.5), the first and third terms describe the birth of new bubbles due to
coalescence and break-up respectively, whereas the second and fourth terms take
into account the death of bubbles due to coalescence and break-up respectively.

In some cases, it is more convenient to formulate the PBE in terms of a length-
based NDF, as done also in this thesis. Then, n(t, x, L) dx determines the expected
number of bubbles with size between L and L + dL at spatial position x and time
instant t. Moreover, the PBE has the same shape as expressed by Eq. (3.1), except
that the source term S takes the following form [112]:

S(L) = L

2

∫ L

0

a((L3 − L′3)1/3, L′)
(L3 − L′3)2/3 n((L3 − L′3)1/3) n(L′) dL′

− n(L)
∫ ∞

0
a(L, L′) n(L′) dL′ +

∫ ∞

L
b(L′) β(L|L′) n(L′) dL′ − b(L) n(L), (3.6)

where a(L, L′) and b(L) are the length-based coalescence and break-up kernels,
respectively, and β(L|L′) the daughter size distribution. In the following, some
relations for description of the coalescence and break-up of bubbles in the gas-
liquid systems under turbulent conditions are introduced.

Coalescence Kernel

The coalescence of bubbles is a second-order process since it involves two bubbles
– considering only binary collisions. The coalescence of two bubbles is generally
modelled by splitting it into two steps: first, the bubbles should approach each
other until they are separated by a thin liquid film trapped between their interfaces
(collision step), and then, they should remain in contact for a sufficient time re-
quired for the liquid film to drain (film drainage step). As a results, the coalescence
kernels are generally formulated as the following:

a(L, L′) = γ(L, L′) η(L, L′) (3.7)

where γ(L, L′) denotes the collision frequency of bubbles of size L with bubbles
of size L′ and η(L, L′) is the probability that the collided bubbles coalesce. The
frequency of bubble collisions can be estimated by drawing an analogy with the
kinetic gas theory and prescribing a relative velocity between the bubbles (ur) [57]:

γ(L, L′) = π

4 (L + L′)2 |ur| (3.8)

The relative velocity between a pair of bubbles depends on the mechanism that
brings the two bubbles together. In turbulent flows, the collision of bubbles is
mainly controlled by the fluctuating turbulent velocity. When the bubble size is
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comparable to the length-scale of the inertial sub-range, the following relationship
can be written to estimate the collision frequency between bubbles of size L and
bubbles of size L′ [113, 114]:

γ(L, L′) = Cγ(L + L′)2
ε

1/3
l (L2/3 + L′2/3)

1/2
(3.9)

The parameter Cγ can be set to 0.88 following the work by Venneker and co-workers
[39], or 0.28 suggested by Prince and Blanch [115].

The probability of the coalescence, η(L, L′), is estimated by the relation sug-
gested by Coulaloglou and Tavlarides [113]:

η(L, L′) = exp
[
−Cηµlρlεl

σ2 ( LL′

L + L′ )
4
]

(3.10)

The parameter Cη is set to 6.0 × 109 following the work by Laakkonen and co-
workers [114]. The above relation assumes that the bubbles are deformable and
they have immobile interfaces.

Break-up Kernel

The break-up of bubbles under turbulent conditions is described by determining
the frequency of the collision of bubbles with the turbulent eddies and the proba-
bility of having bubbles broken due to these collisions. Moreover, it is necessary to
determine statistically the size of the new bubbles that are formed after the break-
up, which is generally done by defining a daughter size distribution. Following the
work by Laakkonen et al. [114], the break-up frequency of a bubble with size L is
estimated as written below:

b(L) = C1ε
1/3
c erfc

⎛⎜⎝√C2
σ

ρcε
2/3
c L

5/3
p

+ C3
µc

√
ρcρdϵ

1/3
c L

4/3
p

⎞⎟⎠ (3.11)

In the above relation, ρd denotes the density of the disperse phase. Furthermore,
the parameters C1, C2 and C3 are set to 6.0, 0.04, 0.01 as reported in their work
[114]. Concerning the daughter size distribution, they proposed the following beta
distribution:

β(L|L′) =
(

9 + 33
2 C4 + 9C2

4 + 3
2C3

4

)(
L2

L′3

)(
L3

L′3

)2 (
1 − L3

L′3

)C4

(3.12)

where the parameter C4 is set to two in accordance to the assumption of the binary
break-up [54].
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3.2 – Solution Methods for PBE

3.2 Solution Methods for PBE
Many methods are available in the literature for the numerical solution of PBEs,

each has been developed to address the challenges posed by the application of inter-
est. Some notable challenges include the number of internal coordinates, consider-
ing the element velocity as an internal coordinate (i.e. solving the GPBE), and the
physical and chemical phenomena involved. This section describes three principal
categories of methods for the solution of PBEs. The first category is called Class
or Sectional Method, which attempts to solve the PBE directly. In contrast, the
second category (Method of Moments) deals with the PBE indirectly by solving
for some integral properties of the NDF, i.e. moments. The last category is the
quadrature-based moment methods that represents a significant breakthrough in
the context of Method of Moments and therefore is addressed in a separate section.
Among the ones not covered here, we should cite Monte Carlo methods [57, 102],
which are currently too computationally expensive to be compatible with CFD
coupling.

3.2.1 Class or Sectional Method
The class or sectional method (CM) is based on the discretization of the in-

ternal coordinate space into intervals (classes or sections), such that the PBE is
transformed into a set of macroscopic balance equations in the physical domain
[102]. This method has been widely applied to polydisperse systems governed by a
univariate PBE. Let the space of the generic internal coordinate ξ be divided into
M intervals using M + 1 grid points (ξ1, ξ2, . . . , ξM+1), therefore, the ith interval is
defined as Ii = [ξi, ξi+1). The number density of elements in the interval Ii is given
by Ni(t, x) =

∫ ξi+1
ξi

n(t, x, ξ) dξ, where n(t, x, ξ) is the NDF in Eq. (3.1). Then, the
discretized formulation of Eq. (3.1) for the generic ith interval is:

∂tNi + ∂x · (UiNi) +
∫ ξi+1

ξi

∂ξ(Gn) dξ =
∫ ξi+1

ξi

S dξ (3.13)

where Ui is the velocity by which the elements of the ith interval are transported
in the physical space. The integrals in Eq. (3.13) are not closed since they generally
depend on the NDF and cannot be expressed in terms of Ni [102]. A closed form of
Eq. (3.13) can be achieved by assuming a functional form for the NDF. Kumar and
Ramkrishna [116] proposed a general procedure in which the NDF is approximated
with the following form:

n(t, x, ξ) =
M∑

i=1
Ni δ(ξ − ζi). (3.14)

The above approximation implies that all the elements belonging to the interval
i are concentrated at a pivotal point ζi inside the interval. Another common ap-
proximation assumes a constant number density in each interval, i.e. n(t, x, ξ) =
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Ni for ξi < ξ < ξi+1 [117]. In the following, the procedure proposed by Kumar and
Ramkrishna [116] is introduced without going into full detail. For the sake of sim-
plicity, the system is assumed to be homogeneous, i.e. the variables of interest, e.g.
the NDF, have no dependency on the physical space. Moreover, the contribution
due to the continuous changes is neglected at this stage and will be touched upon
later.

In the case of coalescence and break-up, the right-hand side of Eq. (3.13) can
be written in the following closed form by assuming ξ to be a conserved property
[102]:

∫ ξi+1

ξi

S dξ = 1
2

i−1∑
j=1

Nj

∑
k

(ζj+ζk)∈Ii

a(ζj, ζk) Nk − Ni

M∑
j=1

a(ζi, ζj) Nj

+
M∑
j=i

b(ζj) Nj

∫ ξi+1

ξi

β(ξ|ζj) dξ − b(ξi) Ni.

(3.15)

Kumar and Ramkrishna [116] explained in detail that the above formulation is not
internally consistent, i.e. it does not generally preserve the integral properties of the
NDF such as its moments. It is noteworthy that low-order moments of the NDF are
associated with the conserved properties of the disperse phase. The cause of this
internal inconsistency lies in the assignment of a pivotal point to the born elements,
produced by the birth (first and third) terms in Eq. (3.15). For instance, let two
elements belonging to the intervals Ij and Ik with pivotal points ζj and ζk coalesce to
form a new element i with ξi = ζj +ζk. Then, the value ξi determines which interval
the element i belongs to. However, in an arbitrarily discretized space, ξi may not
necessarily coincide with the pivotal point of the assigned interval. The same issue
may arise when an element breaks into two daughter elements, which should be
assigned to two intervals. Kumar and Ramkrishna [116] proposed to assign the
born elements to the nearby pivotal points, such that two integral properties of the
NDF are preserved. This approach, known as the fixed-pivot approach, is quite
general and is internally consistent, as far as two integral properties of the NDF
are concerned [116]. It is noteworthy that the number of conserved moments can
be increased by distributing the born elements to more than two pivotal points as
formulated by Alopaeus et al. [118].

Despite the competitive advantages of the fixed-pivot approach over previously
developed approaches [119], Kumar and Ramkrishna [116] illustrated that the fixed-
pivot approach overpredicts the NDF, particularly in the case of coalescence. They
stated that the over-prediction issue arises due to the fixed pivotal points and
proposed a new approach based on moving pivotal points. This method involves
the solution for the number density (or a property of the NDF) at moving pivotal
points, the location of which is governed by a differential equation. The locations
of pivotal points change in such a way as to ensure preservation of the targeted
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properties. In another attempt to improve the predictions, a new technique was
developed, called the cell-averaging technique, which assigns the born elements
to the pivotal points on the basis of the average value of their internal coordinates
[120]. Numerical tests showed that the cell-averaging technique improves the results
considerably, on which more details can be found elsewhere [120].

Concerning the continuous change of the internal coordinate, the third term on
the left-hand side of Eq. (3.13) can be written as follows:∫ ξi+1

ξi

∂ξ(Gn) dξ = (Gn)|ξi+1 − (Gn)|ξi
, (3.16)

and it can be interpreted as the net flux of elements to/from the interval Ii, which
is equal to the difference between the fluxes at the bounds of Ii. However, the NDF
at the bounds of intervals is not known and must be approximated by interpolating
the values at two neighbouring pivotal points. The upwind scheme is the simplest
interpolation approach. Consider a generic bound ξi at which the number density
n(ξi) is needed. If the rate of continuous process at the bound G(ξi) is positive, then
n(ξi) = Ni−1, otherwise n(ξi) = Ni. The upwind scheme is first-order and therefore
it suffers from numerical diffusion [57]. Numerical diffusion can be avoided by
integration over the characteristic curves [121], but this method is not suited for
being incorporated in CFD codes. A more viable alternative is employing high-
order schemes [122–124] which, however, do not guarantee the positivity of the Ni

[121]. To overcome this issue numerous methods have been proposed [102, 121]
Last, class or sectional methods can be extended to bi- and multi-variate PBEs

[125, 126]. However, these extensions are not covered here as they are currently
not compatible with CFD implementations because of their exceedingly large com-
putational cost [51, 52, 54].

3.2.2 Method of Moments
The previous section mentioned several difficulties in tracking the evolution of

the NDF through the direct solution of the PBE, which mainly arise due to the
discretization of the internal coordinate space. In a pioneering work, Hulburt and
Katz argued that the NDF contains too much information for many engineering
applications and proposed an approximate system of description that tracks the
evolution of moments of the NDF instead of the NFD itself [127]. In the most
general form, the moments of the NDF are defined as:

mk1,k2,...,kd,kd+1,kd+2,kd+3(t, x) = ⟨ξk1
1 ξk2

2 . . . ξkd
d u

kd+1
1 u

kd+2
2 u

kd+3
3 ⟩

=
∫

Ωξ

∫
Ωub

ξk1
1 ξk2

2 . . . ξkd
d u

kd+1
1 u

kd+2
2 u

kd+3
3 f(t, x, ξ, ub) dξ dub,

(3.17)
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where k = (k1, k2, . . . , kd, kd+1, kd+2, kd+3) is the exponent vector. Each element of
k is the order of the moment with respect to the corresponding internal coordinate
or velocity component. The moments offer two key advantages that make the
method of moments (MOM) attractive. First, the moments are functions of only
time and space, i.e. they are Eulerian fields, and therefore an approach based on
the moments is perfectly compatible with the solution methods readily available in
CFD codes. The second advantage is that the low-order moments are related to
some macroscopic properties of the disperse phase, which are physically meaningful
and generally measurable. It is noteworthy that, in many applications, the ultimate
aim of solving the PBE is to predict these macroscopic properties of the disperse
phase.

A simplified example helps to elaborate on the subject without loss of gener-
ality. Let the internal coordinates consist of the mass of the elements ξ = M
and the velocity. Then, the MOM involves the solution of a number of transport
equations written in terms of the moments of the NDF. The moments ⟨ξ0u0

1u
0
2u

0
3⟩,

⟨ξ1u0
1u

0
2u

0
3⟩, and ⟨ξ0u1

1u
0
2u

0
3⟩, ⟨ξ0u0

1u
1
2u

0
3⟩ and ⟨ξ0u0

1u
0
2u

1
3⟩ exemplify the importance

of low-order moments since, they represent respectively: the total particle number
density, the average particle mass density and the three components of the total
particle momentum density.

The transport equation for a generic moment, ⟨ξk1uk2
1 uk3

2 uk4
3 ⟩, is derived by

multiplying the GPBE, Eq. (3.2), with the function g(ξ, ub) = ξk1uk2
1 uk3

2 uk4
3 , and

by integrating over the internal coordinate phase space:

∂t

(∫
R+

dξ
∫
R3

gf dub

)
+ ∂x ·

(∫
R+

dξ
∫
R3

ubgf dub

)
+
∫
R+

dξ
∫
R3

g ∂ξ(Gf) dub +
∫
R+

dξ
∫
R3

g ∂ub · (Af) dub =
∫
R+

dξ
∫
R3

gS dub

(3.18)

The first term is the derivative of the moment with respect to time, ∂t⟨ξk1uk2
1 uk3

2 uk4
3 ⟩.

The second term is the moment transport in the physical space, which appears as
the spatial derivative of a higher-order moment

∂x ·
(∫

R+
dξ
∫
R3

ubgf dub

)
= ∂x1⟨ξk1uk2+1

1 uk3
2 uk4

3 ⟩ + ∂x2⟨ξk1uk2
1 uk3+1

2 uk4
3 ⟩

+ ∂x3⟨ξk1uk2
1 uk3

2 uk4+1
3 ⟩, (3.19)

giving rise to the closure problem described in Section 3.2.2. The third term on the
left-hand side of Eq. (3.18) can be simplified further by integration by part [57]:∫

R+
dξ
∫
R3

g ∂ξ(Gf) dub = −
∫
R3

(gGf)|ξ=0 dub −
∫
R+

dξ
∫
R3

∂ξ(g) Gf dub. (3.20)

The first term on the right-hand side takes into account the appearance/disappearance
of the disperse phase elements at the origin, which may be nonzero depending on
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the sign of G, i.e. if g(ξ) is not zero and negative at the origin [57, 128]. Likewise,
the integration by part simplifies the fourth term on the left-hand side of Eq. (3.18):∫

R+
dξ
∫
R3

g ∂ub · (Af) dub = −
∫
R+

dξ
∫
R3

Af · ∂ub(g) dub. (3.21)

Closure Problem in MOM

The moment transport equations, i.e. Eq. (3.18), are not in closed form, except
in a few simple cases [57]. One reason is that a set of transport equations written for
a number of moments may contain terms that depend on higher-order moments.
The addition of new moment transport equations for the higher-order moments
would not solve the problem because the new equations give rise to new higher-
order moments. However, the higher-order moments can be readily calculated if the
NDF is known. In general, the knowledge of the NDF is also needed to calculate the
source term and transport terms in the space of internal coordinates and velocity,
see Eq. (3.18). This is the main issue raised by the MOM, which is known as
the closure problem. Several methods have been developed to close the moment
transport equations, such as: interpolative closures [129], reconstruction of the NDF
with an assumed functional form [130–132] and approximating the NDF using a
quadrature formula [58, 112, 133]. The reader can find more details on developed
closures in [57, 134]. Here, we focuses on the closures based on the quadrature
formula, known as Quadrature-Based Moment Methods (QBMMs), which has more
general applicability than other proposed closures.

3.2.3 Quadrature-Based Moment Methods
In QBMMs, the NDF is approximated with an N -node quadrature formula,

i.e. a summation of N weighted kernel density functions, each centered on a
node/abscissa of a Gaussian quadrature approximation. The most commonly em-
ployed kernel density function is the Dirac delta function. The idea originated with
McGraw [133], who employed an N -node Gaussian quadrature to approximate the
integrals in the moment transport equations for the solution of a univariate PBE
and named the approach quadrature method of moments (QMOM). The algorithm
calculates the N abscissas and N weights of the quadrature from the 2N trans-
ported moments. In another work, Marchisio and Fox [58] developed a similar
method, named the direct quadrature method of moments (DQMOM), by which
the quadrature approximation is transported in space and time such that the mo-
ments evolve according to the proper transport equations. In the following sections,
both approaches are explained in detail. Moreover, the extension of the QMOM to
bi- and multi-variate PBEs (i.e. the conditional quadrature method of moments,
CQMOM) is also discussed. Last, an introduction is given on the extended quadra-
ture method of moments (EQMOM), which is useful in applications that require a
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continuous reconstruction of the NDF.

Quadrature Method of Moments

McGraw [133] proposed that the unclosed integrals of the moment transport
equations could be approximated by employing an N -node Gaussian quadrature
formula. It is equivalent to assuming the following functional form to approximate
the NDF (for a univariate problem):

n(t, x, ξ) ≈
N∑

p=1
wp(t, x) δ[ξ − ξp(t, x)] (3.22)

where wp(t, x) and ξp(t, x) are the weight and abscissa of the node p. In the above
expression, δ denotes the Dirac delta function. The moment of order k of the
approximated NDF can be expressed as follows:

mk =
∫
R+

ξkn(ξ) dξ ≈
N∑

p=1
wp ξk

p (3.23)

where mk is an alternative notation for ⟨ξk⟩. The above relationship implies that
knowledge about the first 2N moments enables us to determine the N weights and
N abscissas of the quadrature approximation in Eq. (3.22) by solving the following
set of nonlinear equations:

m0 =
N∑

p=1
wp , m1 =

N∑
p=1

wp ξ1
p , . . . m2N−1 =

N∑
p=1

wp ξ2N−1
p . (3.24)

The above set of nonlinear equations are usually solved by employing well-conditioned
recursive inversion algorithms such as the product-difference (PD) algorithm [135]
and the Chebyshev algorithm [136]. The latter has the advantage of being appli-
cable to distributions with zero mean value, i.e. m1 = 0, in contrast to the PD
algorithm [57]. It is noteworthy that the weights and abscissas obtained from the
solution of Eq. (3.24) reproduce exactly the moments up to order 2N − 1.

The QMOM employs an N -node quadrature approximation to solve the trans-
port equations for a set of moments of a PBE. The procedure of the QMOM can be
explained by writing the transport equation of a generic moment of order k derived
from the PBE (Eq. (3.1)):

∂t(mk) + ∂x · (Ug,kmk) = δk,0 G(0) n(0) + k
∫
R+

ξk−1 Gn dξ +
∫
R+

ξkS dξ, (3.25)

where δk,0 is the Kronecker delta and Ug,k denotes the transport velocity of the
k-order moment defined by:

Ud,k = 1
mk

∫
R+

ξkUd(ξ) n dξ. (3.26)
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The first term on the right-hand side of Eq. (3.25) appears only in the transport
equation of the zeroth-order moment.

This term is particularly challenging in the case of negative G, or in other
words when the disperse phase elements are shrinking and disappearing. More
detailed discussion on the subject can be found in [106, 137]. In the latter reference,
a method is suggested to reconstruct a continuous NDF by using the maximum
entropy maximization, which enables the evaluation of the NDF at the origin (i.e.
ξ = 0). In addition, a robust and efficient quadrature-based method was developed
by Yuan and co-workers [138] to reconstruct a continuous NDF, see Section 3.2.3.
The second term on the right-hand side of Eq. (3.25) can be approximated using
the N -node Gaussian quadrature formula:

k
∫
R+

ξk−1 G(ξ)n(ξ) dξ ≈ k
N∑

p=1
wpξk−1

p G(ξp). (3.27)

The source term in the case of coalescence and break-up is approximated likewise
(assuming that ξ is a conserved property such as mass and volume of elements) [57]:

∫
R+

ξkS dξ ≈ 1
2

N∑
p=1

wp

N∑
q=1

(ξp + ξq)ka(ξp, ξq) wq −
N∑

p=1
ξk

p a(ξp, ξq) wp

+
N∑

p=1

(∫
R+

ξkβ(ξ|ξp) dξ
)

b(ξp) wp −
N∑

p=1
ξk

p b(ξp) wp.

(3.28)

The weights and abscissas of the quadrature formula in Eqs. (3.27) and (3.28)
are determined by inverting the first 2N moments. Therefore, it is necessary to
track the evolution of the first 2N moments by solving the corresponding transport
equations. At each time step, the quadrature formula is determined by means of
an inversion algorithm, which uses the 2N transported moments available from the
previous time step or the initial conditions. It is noteworthy that the inversion
algorithm fails if the moments are not realizable, i.e. the moment set is not inside
the moment space. To explain the moment space, one should note that any number
density function n(ξ) defined on a support Ωξ can be associated with a positive
measure (µ) such that dµ = n(ξ)dξ. One can consider all the possible measures
defined on the same support Ωξ, which together form a space of measures, denoted
by P . Then, each possible measure µ ∈ P determines a possible vector of k
moments (from order 0 to k): mk = (m0, m1, . . . , mk). Eventually, the kth-order
moment space (Mk) on the support Ωξ is defined as the space formed by all the
possible mk, each corresponding to a µ ∈ P or mathematically: Mk = {mk =∫

Ωξ
(ξ0, ξ1, . . . , ξk) dµ | µ ∈ P}. A set of moments (m0, m1, . . . , mk) should belong

to the moment space Mk to be realizable, otherwise no positive measure can be
found with such a set of moments. The characterization of the moment space Mk

for three common supports Ωξ = (−∞, ∞), Ωξ = (0, ∞) and Ωξ = (0,1) is found
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in [139]. For problems with semi-infinite positive supports, the positivity of the
following Hankel determinants guarantees the realizability of the moment set mk

[140]:

H2p+q =

⏐⏐⏐⏐⏐⏐⏐⏐
mq . . . mp+q
... . . . ...

mp+q . . . m2p+q

⏐⏐⏐⏐⏐⏐⏐⏐ ≥ 0 for q = 0,1 and {p|p ∈ N0, 2p + q ≤ k}

(3.29)
The realizability issue is mainly due to the numerical methods that deal with

the discretized moment transport equations, which are not the same as the exact
equations. This fact necessitates employing numerical methods that are designed
to prevent the realizability issue [59, 62–64, 141].

In general, a quadrature formula with more nodes yields more accurate approx-
imation of integrals in the moment transport equations and an approximation of
higher quality for the NDF. However, a quadrature with more nodes means more
moments to be tracked, hence the need for more computational resources. In ad-
dition, the recursive algorithms for the calculation of the weights and abscissas
become less stable as the number of nodes increases, and convergence gets difficult
for typically N > 10 [57]. However, Marchisio and colleagues [112, 142] showed that
satisfactory predictions can be achieved by employing a quadrature approximation
with 2 ≤ N ≤ 4 for simple coalescence and break-up problems. Moreover, QMOM
predictions have acceptably small overall error not only for the tracked moments
but also for higher-order moments [112].

Concerning bi- and multi-variate PBEs, the main challenge is the determination
of the weights and (multidimensional) abscissas of the quadrature from the mixed
moments, since the PD and Chebyshev algorithms are applicable only to univariate
quadratures. The next section focuses on the extension of the QMOM to such cases
by using conditional moments.

Conditional Quadrature Method of Moments

This section deals with the application of the QBMM to the solution of bi-
and multi-variate PBEs. Let the NDF be defined over the space (Ωξ) of d internal
coordinates, ξ = (ξ1, ξ2, . . . , ξd). Then, the NDF can be approximated with the
following functional form:

n(t, x, ξ) ≈
N∑

p=1
wp(t, x) δ[ξ − ξp(t, x)] , δ[ξ − ξp(t, x)] =

d∏
α=1

δ[ξα − ξα;p(t, x)]

(3.30)
where wp(t, x) is the weight of the node p with abscissas ξp = (ξ1;p, ξ2;p, . . . , ξd;p)
located in the joint space of the internal coordinates. The reader should bear in
mind that the above quadrature is not a Gaussian quadrature. Moreover, univariate
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inversion methods such as the PD and Chebyshev algorithms are not applicable to
multivariate density functions. The moments of the above approximation can be
expressed as follows:

⟨ξk1
1 ξk2

2 . . . ξkd
d ⟩ = mk1,k2,...,kd

=
N∑

p=1
wp

d∏
α=1

ξkα
α;p. (3.31)

The closure problem can be overcome by determining the quadrature approxima-
tion of order N , defined by N weights and N d-dimensional abscissas/nodes. The
weights and abscissas of the quadrature nodes can be found by using a set of N(d+1)
moments. The inversion approach is desired to retain some main properties of uni-
variate inversion algorithms [57].

First, it should be noniterative otherwise its application to practical CFD sim-
ulations will be computationally expensive. Second, it should construct a mathe-
matically and physically meaningful quadrature approximation – in other words,
abscissas should be located in the support of the internal coordinates and weights
should be non-negative. Last, the weights and abscissas obtained from the moments
of an N -point density function should represent exactly the same N -point density
function. Several methods have been developed to determine the high-dimensional
quadrature points, such as the brute-force algorithm [143], the tensor-product algo-
rithm [60, 144–146] and the conditional quadrature method of moments (CQMOM)
[147, 148], just to cite the most popular. Only the last method is discussed here
since it is generally more stable and accurate.

For the sake of brevity, the explanation focuses on bi-variate NDFs. The exten-
sion of the following procedure to more than two internal coordinates can be found
in [57]. In addition, the application of the CQMOM to the kinetic equations, i.e.
three velocity components as the internal coordinates, is discussed by Yuan and
Fox [148]. In the CQMOM, the NDF is approximated by the following functional
form:

n(t, x, ξ) ≈
N1∑

p1=1

N2∑
p2=1

wp1(t, x) wp2,p1(t, x) δ[ξ1 −ξ1;p1(t, x)] δ[ξ2 −ξ2;p2,p1(t, x)], (3.32)

where wp1 and ξ1;p1 are the weights and abscissas calculated from the pure moments
with respect to the first internal coordinate (ξ1) by using a univariate inversion
algorithm. Instead, wp2,p1 and ξ2;p2,p1 are the conditional weights and abscissas to
be obtained by conditioning the second internal coordinate (ξ2) on each abscissa
of the first one (ξ1;p1). The calculation of the conditional weights and abscissas
exploits the relationship between the mixed moments and the conditional NDF
(n2|1). First, the conditional NDF is defined by:

n2|1(ξ2|ξ1) = n(ξ1, ξ2)
n1(ξ1)

, (3.33)
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where n1(ξ1) =
∫

Ωξ2
n(ξ1, ξ2) dξ2 is the marginal NDF of ξ1. The moments of n1(ξ1)

are the same as the pure moments of n(ξ1, ξ2) with respect to ξ1 and therefore can
be expressed in terms of wp1 and ξ1;p1 . Then, the mixed moments can be written
as follows:

mk1,k2 =
∫

Ωξ1

ξk1
1 n1(ξ1) dξ1

∫
Ωξ2

ξk2
2 n2|1(ξ2|ξ1) dξ2

=
N1∑

p1=1
wp1ξk1

1;p1

∫
Ωξ2

ξk2
2 n2|1(ξ2|ξk1

1;p1) dξ2 =
N1∑

p1=1
wp1ξk1

1;p1⟨ξk2
2 ⟩(ξ1;p1),

(3.34)

where ⟨ξk2
2 ⟩(ξ1;p1) denotes the conditional moments. Using the above relationship,

the N1(2N2 − 1) conditional moments can be obtained from the solution of the
linear systems of the following form written for k2 = 0, ...,2N2 − 1:⎡⎢⎢⎢⎢⎣

1 . . . 1
ξ1;1 . . . ξ1;N1
... . . . ...

ξN1−1
1;1 . . . ξN1−1

1;N1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

w1
w2

. . .
wN1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

⟨ξk2
2 ⟩(ξ1;1)

⟨ξk2
2 ⟩(ξ1;2)

...
⟨ξk2

2 ⟩(ξ1;N1)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
m0,k2

m1,k2
...

mN1−1,k2

⎤⎥⎥⎥⎥⎦ .

(3.35)
The above linear system of equations, known as Vandermonde linear system, is non-
singular as long as the abscissas ξ1;p1 are distinct. The reader is referred to [149] for
an efficient algorithm to solve the linear systems of the Vandermonde form. Finally,
for each ξ1;p1 a univariate inversion algorithm is applied to the corresponding set
of conditional moments to find the corresponding conditional weights (wp2,p1) and
abscissas (ξ2;p2,p1). Although the pure moments can be kept realizable by employing
an appropriate numerical scheme, the realizability of the conditional moments is
not guaranteed. In this case, the realizability issue can be overcome by applying
the 1-D adaptive quadrature technique proposed by Yuan and Fox [148]. With this
technique, the maximum number of conditional moments belonging to the moment
space is determined and consequently, the number of nodes for the second internal
coordinate (at each ξ1;p1) is adjusted accordingly.

One should pay attention to the selected order of internal coordinates’ con-
ditioning as it changes the set of controlled moments (i.e. moments used in the
reconstruction of the NDF). Nevertheless, all the moments controlled in the CQ-
MOM belong to the optimal moment set; see Section 3.2.3 for the definition and
importance of this set.

Direct Quadrature Method of Moments

The direct quadrature method of moments (DQMOM) was first introduced by
Marchisio and Fox [58] to avoid the need for an inversion algorithm, particularly in
the case of bi- and multi-variate problems. Although the inversion of moments in
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bi- and multi-variate problems was later overcome by the CQMOM, the DQMOM
has received considerable attention from the scientific community. Furthermore,
the DQMOM can be applied to univariate problems.

In contrast to the QMOM and CQMOM, the DQMOM employs transport equa-
tions written in terms of the weights wp and weighted abscissas ςα;p = wpξα;p. There-
fore, there is no need to employ an inversion algorithm except for the initialization
of the weights and abscissas according to the initial conditions of the moments. Let
the NDF be defined over the space of two internal coordinates and governed by the
following bi-variate PBE:

∂tn + ∂x · (⟨ub|ξ1, ξ2⟩n) + ∂ξ1(G1n) + ∂ξ2(G2n) =
∫

S dub. (3.36)

The DQMOM approximates the NDF with the functional form in Eq. (3.30).
Then, the following transport equations can be written for the weights and weighted
abscissas [58]:

∂twp + ∂x · (⟨ub⟩pwp) = sw
p ,

∂t(ς1;p) + ∂x · (⟨ub⟩pς1;p) = sς
1,p,

∂t(ς2;p) + ∂x · (⟨ub⟩pς2;p) = sς
2,p,

(3.37)

where ⟨ub⟩p = ⟨ub|ξ1,p, ξ2,p⟩ denotes the velocity of the quadrature node p, and sw
p ,

sς
1,p and sς

1,p are the source terms of the transport equations to be determined. The
unknown source terms can be found by first replacing the NDF in Eq. (3.36) with
the functional form in Eq. (3.30) specialized for a bi-variate problem and then by
applying the moment transformation of a generic order k = (k1, k2) [58]:

N∑
p=1

(1 − k1 − k2)ξk1
1,pξk2

2,psw
p −

N∑
p=1

k1ξ
k1−1
1,p ξk2

2,psς
1,p +

N∑
p=1

k2ξ
k1
1,pξk2−1

2,p sς
2,p = h̄k1,k2 , (3.38)

where h̄k1,k2 takes into account the change of the moment due to the continuous and
discontinuous events and therefore is problem dependent. A system of 3N linear
equations (equal to the number of unknowns) can be formed by writing Eq. (3.38)
for 3N moments of different order. The solution of the linear system can be ex-
pressed in the matrix form s = A−1h, where s = [sw

1 . . . sw
N sς

1,1 . . . sς
1,N sς

2,1 . . . sς
2,N ]T

and A is the coefficient matrix. The matrix A should be non-singular and therefore
requires some considerations. First, the abscissas must remain distinct in order to
prevent singularity. Thus, using too many nodes is not recommended since the
probability of two nodes approaching each other increases with the addition of
more nodes [57]. Another important point is the choice of the moment set, which
is studied by Fox in detail [150]. Fox established a methodology to choose a set of
moments, called the optimal moment set, that results in a non-singular coefficient
matrix A. Eventually, Author reported the optimal moment sets for problems with
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1 ≤ d ≤ 3. The concept was developed by using N = rd nodes for r ∈ Z>0, which
treats all the internal coordinates equally. It is noteworthy that there are other
choices for the moment set, which are valid but not optimal. However, one should
try to use a moment set that covers the important moments, i.e. those with physical
significance, and that includes enough mixed moments to avoid losing the correla-
tion between the internal coordinates. For more details, the reader is referred to
the discussion of choosing the moment set in [57].

Extended Quadrature Method of Moments

The previous QBMMs approximate the NDF with an N -point discontinuous
distribution, i.e. a summation of N weighted Dirac delta functions. However,
some applications require a continuous reconstructed NDF to correctly model the
phenomena involved, e.g. evaporating sprays [137]. Yuan et al. [138] suggested
a method, called the extended quadrature method of moments (EQMOM), which
employs a parametric continuous kernel density function (KDF) instead of the Dirac
delta function:

n(t, x, ξ) ≈
N∑

p=1
wp(t, x) δσ[ξ; ξp(t, x)], (3.39)

where δσ(ξ; ξp) is a chosen KDF, which depends on the parameter σ. The weights
and abscissas associated with the KDF are denoted by wp and ξp. The determi-
nation of the parameter σ requires that one additional moment should be tracked,
in comparison to the 2N moments tracked in the QMOM. The KDF is required to
reduce smoothly to the Dirac delta function in the limit of σ → 0, meaning that
the quadrature can be reconstructed from the first 2N moments when σ = 0. The
choice of the KDF is problem dependent, i.e. the support of the KDF should be
consistent with the support of the internal coordinate. Common KDFs are Gaussian
distribution with infinite support (−∞, ∞), gamma and log-normal distributions
with semi-infinite positive support [0, ∞) and beta distribution with finite support
[0, 1]. Moreover, it is practically important that the selected KDF can be defined in
terms of the weight function w(θ) for a known family of orthogonal polynomials. In
the following, the algorithm for the calculation of the weights and abscissas of the
quadrature approximation as well as the parameter σ are explained for a univariate
NDF with a semi-infinite positive support. The application of the EQMOM to
problems with infinite or finite supports is similar and can be found elsewhere [57,
138]. In addition, the reader is referred to [57] for the extension of the EQMOM to
multivariate problems.

As mentioned previously, a suitable choice of the KDF for problems with sup-
port of [0, ∞) is the gamma distribution. Then, the NDF is approximated by the
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following summation of N weighted parameterized gamma distributions:

n(ξ) ≈
N∑

p=1
wp

ξλp−1e−ξ/σ

Γ(λp)σλp
and λp(t, x) = ξp

σ
, (3.40)

where Γ is the gamma function. The moments of the NDF can be expressed as:

mk(t, x) =
N∑

p=1
wp

Γ(λp + k)
Γ(λp) σk =

N∑
p=1

wpξk
p +

N∑
p=1

wpPk−1(ξp, σ), (3.41)

where Pk−1(ξp, σ) is a homogeneous polynomial of order k−1 with respect to ξp and
σ. The summation ∑N

p=1 wpξk
p is indeed the kth-order moment of the quadrature

in the limit σ = 0, and here is denoted by m∗
k. Eq. (3.41) can be written for

the first 2N + 1 moments to calculate the weights and abscissas as well as the
parameter σ of the quadrature. An important observation is that the right-hand
side of Eq. (3.41) can be rewritten in terms of only m∗

k and σ. Subsequently, the
two sets of moments m = (m0, m1, . . . , m2N) and m∗ = (m∗

0, m∗
1, . . . , m∗

2N) can
be related through the matrix form m = B(σ)m∗. The matrix B(σ) is a lower-
triangular matrix, which allows us to calculate the moment m∗

k from the moments
(m0, m1, . . . , mk) for a given value of σ. Eventually, the following iterative approach
can be used to determine the quadrature approximation [138]:

1. Guess the parameter σ and calculate the first 2N moments (m∗
0, m∗

1, . . . , m∗
2N−1)

using m∗ = B−1(σ)m

2. Find the weights wp and abscissas ξp from the moments (m∗
0, m∗

1, . . . , m∗
2N−1)

by employing the adaptive quadrature algorithm,

3. Use the weights and abscissas to calculate m∗
2N = ∑N

p=1 wpξ2N
p ,

4. Calculate the scalar function J(σ) = m2N − m∗
2N −∑N

p=1 wpP2N−1(ξp, σ)

5. Guess a new σ until the convergence J(σ) = 0 is achieved for the smallest σ.
In the above approach, the adaptive quadrature algorithm allows us to cope

with the non-realizable set of moments. Once the quadrature is determined, it
can be used to close the terms appearing in the moment transport equations, i.e.
Eq. (3.39). For this purpose, a general integral of the NDF is considered:∫

Ωξ

g(ξ)n(ξ) dξ =
N∑

p=1
wp

∫
Ωξ

g(ξ)δσ(ξ; ξp) dξ =
N∑

p=1

N ′∑
q=1

wpw(p)
q g(ξ(p)

q ), (3.42)

where g(ξ) is a generic function of the internal coordinate. In Eq. (3.42), the integral
of the KDF δσ(ξ; ξp) is approximated by a quadrature formula, for which the weights
w(p)

q and abscissas ξ(p)
q can be calculated from the recursion coefficients that are

known in advance. Moreover, the number of nodes of the second quadrature (N ′)
does not depend on N and can be increased independently to improve the accuracy.
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3.2.4 Selection of the Solution Method
A key factor in selection of the solution method is the number of internal co-

ordinates. For univariate problems, the CM and QMOM are regarded as the first
candidates. The CM is more suitable for simulation of systems in which the NDF
can be measured directly. In contrast, the QMOM provides information about some
(usually measurable) integral properties of the NDF. From the computational point
of view, the QMOM is less demanding than the CM. In fact, achieving a reasonable
accuracy by the CM generally requires a large number of intervals/classes, which is
computationally expensive, particularly when disperse phase elements span a wide
region of the phase space [112]. Therefore, the QMOM is the preferred method
for the CFD simulation of spatially heterogeneous systems, specifically those of
large-scale [105]. Furthermore, the CM should use high-order schemes when the
system under study involves continuous events, in particular if the number of in-
tervals cannot be increased sufficiently. However, employing high-order schemes
usually leads to instabilities. In contrast, QBMMs handle continuous events easily,
if the growth rate is positive. In the case of negative growth rates, e.g. evapora-
tion/dissolution, the EQMOM can be used to estimate the value of the NDF at
the origin of the relevant internal coordinate. Moreover, the EQMOM should be
generally used when the particulate processes of interest are highly localized in the
phase space [151]. In fact, with other QBMMs, some phenomena may be ignored
if there is no node/abscissa in the region where they are active. Furthermore, the
addition of nodes does not necessarily improve the situation as the QMOM shows
unpredictable behaviour in response to the increase in the number of nodes, when
highly localized phenomena are present [151]. In such cases, the CM and EQMOM
are more appropriate.

In the case of bi- and multi-variate PBEs, QBMMs are generally the preferred
methods. Both the DQMOM and CQMOM were developed to overcome the difficul-
ties of moment inversion in bi- and multi-variate problems. However, the CQMOM
has some advantages over the DQMOM. First, the equivalence between the DQ-
MOM and QMOM/CQMOM is lost in pure hyperbolic PBEs [57], in contrast to
spatially homogeneous systems. Moreover, the DQMOM is not valid for purely
hyperbolic PBEs in the presence of (spatial or time) discontinuity in the weights
and abscissas, because the transport equations in Eq. (3.37) are derived on the as-
sumption that the weights and abscissas are continuous functions of time and space
[57]. Another point is that the DQMOM does not guarantee the conservation of
the moments except for the moments of order zero and one, and needs corrective
terms to respect the conservation of the moments of higher-order [57]. Last, when
a continuous NDF is needed, the CQMOM can be extended to use a KDF other
than the Dirac delta function, i.e. the extended conditional quadrature method of
moments [57].
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3.3 Implementation in CFD
As mentioned previously, the solution of the GPBE/PBE provides detailed in-

formation about the disperse phase, which can result in a more accurate solution.
For instance, a more accurate estimation of the drag force can be obtained by using
the instantaneous size distribution of the disperse phase elements instead of a fixed
constant element size. At the same time, the solution of the GPBE/PBE requires
knowledge of the flow fields. Therefore, it is necessary to adopt a suitable approach
to couple the CFD and GPBE/PBE, as explained in the following section.

3.3.1 Monokinetic Models
Monokinetic models, e.g. the TFM and MFM, assume zero velocity dispersion

around the mean velocity (or mean velocities) of elements located at the same spa-
tial coordinates at a given time and characterized by the same internal coordinate.
This assumption is valid for elements with small Stokes numbers (St < 1) [152].
Within this context, the simplest approach assigns one velocity, Ud(t, x), to all
elements of the disperse phase, which depends only on the spatial coordinates and
time and not on the internal coordinates. The common methods for obtaining the
velocity of the disperse phase, required to solve the PBE, include the mixture and
two-fluid models [40, 47, 49–51, 55, 105, 153–155], although the dusty gas approach
[156] and the equilibrium Eulerian approach [152] can be used for sufficiently small
elements [76], see Figure 3.2. At the same time, the polydispersity of the elements
can be described through the solution of the PBE, Eq. (3.1), by using a suitable
method, as described in the previous section.
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Figure 3.2: Applicability of Eulerian CFD models for the simulation of multiphase flows
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When the CM is used to solve the PBE, the coupling terms are evaluated using
the properties of each class of the disperse elements. In contrast, if we adopt the
QMOM, the coupling terms are calculated by using either the average properties of
the disperse elements, which are associated with the moments, or the quadrature
nodes separately [54].

The assumption of identical element velocity can be relaxed partially by em-
ploying a multifluid approach, where the elements are grouped into several phases
based on the value of an internal coordinate (usually size). This approach, called
the multifluid model (MFM), is particularly useful when the system under study
is highly polydisperse, see Figure 3.3. When the CM is chosen to solve the PBE
[40, 42, 45, 103, 157], each class is assumed to move with its own velocity. In the
case of the QMOM and DQMOM [105, 108, 158, 159], each node of the quadrature
moves with a unique velocity. The velocity of each class (or node in the case of the
QMOM and DQMOM) can be obtained by solving a momentum balance equation
written for the corresponding class (or node), see Chapter 2.

ξ

n(ξ)

monodisperse

Polydispersity index (PDI)

ξ

n(ξ)

low polydisperse

ξ

n(ξ)

high polydisperse

Figure 3.3: Polydispersity index indicates how wide is the distribution of disperse phase
elements over the space of the internal coordinate. The gray arrows in above plots can
be thought of as the nodes of the quadrature that approximates the underlying NDF
(shown by the solid line) or as the number of element groups required to consider the
polydispersity appropriately.

The monokinetic assumption is not valid in the case of elements with large
Stokes numbers, since large elements do not adapt quickly to the surrounding fluid
velocity and therefore the effect of their initial conditions lasts for a long time [152].
For instance, this assumption may lead to nonphysical predictions in dilute systems
consisting of particles characterized by large Stokes numbers, where particle tra-
jectory crossing (PTC) can occur [64, 145]. The PTC refers to a situation in dilute
systems where the particles of different velocity (regardless of their properties) can
cross each other without collision. A possible approach to describing such systems
is adoption of a polykinetic model.
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3.3.2 Polykinetic Models
It is necessary to include the element velocity as an internal coordinate, when

dealing with disperse systems far from equilibrium or consisting of elements char-
acterized by very large Stokes numbers. In such cases, the evolution of the disperse
phase in space and time is entirely governed by the GPBE, Eq. (3.2), while the con-
tinuous phase is described by Eqs. (2.9) and (2.10). The interaction between the
phases is taken into account through the exchange terms in the governing equations
of both phases. The quadrature-based methods are preferred to solve the GPBE
since the application of the CM to this equation is not tractable. In this regard,
the QMOM, DQMOM and specifically CQMOM are promising tools to solve the
GPBE [57, 64, 106, 145–148].

When the disperse system is very dilute, the effect of the disperse phase on
the flow field of the continuous phase can be assumed negligible [57, 160]. Thus,
one-way coupling suffices to describe the effect of the continuous phase on the
evolution of the disperse phase elements. The flow fields of the continuous phase
are predicted by the solution of the single-phase Navier-Stokes equations. At each
time-step, the governing equations of the continuous phase are solved to predict
the flow fields of the continuous phase, which eventually will be used to estimate
the closure relations in the GPBE. It is possible to advance the GPBE with several
smaller time-steps within each time-step of the CFD solver, if the time-scale of the
phenomena affecting the elements is comparably smaller than the characteristic
time-scale of the continuous phase [160].

However, the effect of disperse elements on flow fields of the continuous phase
becomes significant as the number density of elements increases. Thus, govern-
ing equations of the continuous phase should include exchange terms due to the
presence of the disperse phase elements, e.g. Eqs. (2.9) and (2.10) [161, 162]. Con-
vergence issues may arise in the two-way coupling due to the explicit exchange
terms included in the governing equations. For instance, the drag force generally
depends on the relative velocity of the phases and, if handled explicitly, hinders
convergence. The convergence rate can be improved by adopting the partial elim-
ination algorithm [163]. The application of the partial elimination algorithm to
CFD-QMOM simulations is explained by Passalacqua and co-workers [160, 161].

3.3.3 Numerical Issues of QBMM
Efficient numerical methods for solving the PBE must provide sufficiently ac-

curate solutions as well as ensure the stability of the simulation. A major reason
of simulation instabilities is the appearance of non-physical solutions during the
simulation, i.e. the realizability issue associated with the QBMM. The realizability
issue appears mostly when standard high-order schemes are employed for the in-
dependent advection of the moments [61]. These schemes aim mainly at achieving
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high-order and oscillation-free solutions for transported variables. However, the mo-
ments are linked variables that belong to the moment space, therefore, a selected
numerical scheme must additionally ensure that the moment space is preserved.
Unfortunately, only 1st-order schemes, e.g. the upwind scheme, are guaranteed to
yield realizable moment sets provided that the Courant–Friedrichs–Lewy (CFL)
condition is satisfied [64]. It is noteworthy that the CFL condition generally serves
as the criterion for the stability of the CFD simulations. The 1st-order schemes,
albeit being very stable, generally produce diffused solutions for computationally
affordable grid sizes. Therefore, if high-order solutions are required, one must em-
ploy high-order schemes that are specifically designed to overcome the realizability
issue.

In a pioneer work, Vikas and coworkers proposed the quasi-high-order realizable
scheme, which interpolates separately the weights and abscissas of the quadrature
(instead of the moments) from the cell centers to the faces [62]. In this approach,
the quadrature weights on the faces are obtained with a high-resolution (HR) to-
tal variation diminishing (TVD) scheme whereas the quadrature abscissas on the
faces are obtained by using the 1st-order upwind scheme. With this technique, the
realizability issue is avoided if a criterion for the time-step is fulfilled [62]. This ap-
proach can be applied for the solution of both PBEs and GPBEs. Moreover, it can
be simply implemented in CFD codes, regardless of the spatial dimensionality and
mesh type. Another notable approach preserves the moment space by advecting a
sequence of positive variables, called ζ, which are connected to the moments [63].
The application of the original version of this approach to arbitrary unstructured
grids is not straightforward. Nevertheless, Passalacqua and coworker extended the
applicability of this approach to unstructured meshes [164].

In addition to the realizability issue, the boundedness of the solution is another
important numerical aspect because the low-order moments are associated with
some average physical properties of the elements, which are bounded in nature [66].
This aspect should be considered in the selection of the numerical solution method
if a bounded solution for the moments is desired. In Chapter 5, we argue that an
oscillation-free (bounded) solution for the moments is not necessarily guaranteed
when the high-resolution TVD schemes are not applied directly to the moments,
as in the case of the quasi-second-order realizable scheme. Eventually, we propose
a technique to apply the high-resolution TVD schemes directly to the moments
without encountering the realizability issue, which is based on using an identical
limiter (equal-limiter) for all the transported moments.

3.3.4 QMOM for Compressible Fluids
The density of a disperse gas phase may vary in the domain due to, for example,

the change in the hydrostatic pressure. The change in the gas phase density must
be taken into account in the PBE, if the internal coordinates depend on it. For
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instance, the bubble size (or volume) in gas-liquid flows changes as the gas density
increases or decreases. In this case, the time evolution of a length- or volume-
based NDF is affected by the density change. In the following, the derivation
of the PBE for a length-based NDF, nL(t, x, L), is provided. Here, the size of
the bubble is denoted by L. For this purpose, it is convenient to start from the
mass-based definitions because it does not depend on the gas density, i.e. it is a
conserved quantity. Thus, we begin by defining the mass-based NDF, nM(t, x, M),
in such a way that nM dM determines the number of bubbles with mass between
M and M + dM located around point x at time t. By this definition, the following
population balance equation can be written (assuming negligible interphase mass
transfer):

∂t(nM) + ∂x · (UgnM) = S ′ (3.43)
where S ′(t, x, M)dM is the rate of discrete changes in the number of bubbles with
mass between M and M +dM due to the coalescence and break-up phenomena. In
the next step, the mass-based moment of generic order k′, m′

k′ , is defined as follows:

m′
k′(t, x) =

∫ ∞

0
nM(t, x, M)Mk′

dM (3.44)

Using this definition, the mass-based PBE, Eq. (3.43), can be transformed to the
transport equation for the mass-based moment of generic order k′ as written below:

∂tm
′
k′ + ∂x · (Ugm′

k′) = S̄ ′
k′ (3.45)

where S̄ ′
k′ is only function of x and t, and denotes the following integral:

S̄ ′
k′(t, x) =

∫ ∞

0
S ′(t, x, M)Mk′

dM (3.46)

Now, the mass of each bubble is related to its size by the the following relation,
M = π

6 ρgL3, on the assumption that the bubble shape is spherical. Moreover, it
is trivial to show that the length-interval between L and L + dL can be mapped
approximately (∼ O(dL2)) onto the mass-interval between M and M + dM , where
dM = π

2 ρgL2dL. Then it follows that the number of bubbles in both intervals is the
same – in other words nMdM = nLdL. This equality helps to relate the mass-based
moments to the length-based ones:

m′
k′ =

∫ ∞

0
nMMk′

dM =
∫ ∞

0
nL(π

6 ρgL3)k′
dL = (π

6 ρg)k′
m3k′ = (π

6 ρg)k/3mk

where k is equal to 3k′. Then, the above relation is used to substitute the mass-
based moments on the left-hand side of Eq. (3.45) with the length-based ones:

LHS = (π

6 )k/3
{
∂t

[
(ρg)k/3mk

]
+ ∂x ·

[
Ug(ρg)k/3mk

]}
= (π

6 ρg)k/3 [∂tmk + ∂x · (Ugmk)] + k

3(π

6 )k/3(ρg)−1+k/3 mk [∂tρg + Ug · ∂xρg]

= (π

6 ρg)k/3
[
∂tmk + ∂x · (Ugmk) + k

3mk
1
ρg

Dρg

Dt

]
, (3.47)
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where D

Dt
denotes the material derivative and 1

ρg

Dρg

Dt
is the volume dilatation of

the gas phase calculated by the CFD solver.
The right-hand side of Eq. (3.45) defines how the moments (either mass-based

or length-based) evolve under the effect of the coalescence and break-up phenom-
ena. However, referring to Eq. (3.46), it is based on the mass-based rate of bubble
birth/death, i.e. S ′(t, x, M). However, the objective is to obtain moment trans-
port equations that are fully length-based, which allows us to use directly length-
based kernels for the estimation of the coalescence and break-up contributions. To
achieve it, a length-based rate of birth/death of bubbles, S(t, x, L), is defined such
that S(t, x, L)dL specifies the discrete change in the number of bubbles with the
length between L and L + dL due to the coalescence and break-up phenomena.
As mentioned before, the mass-based interval between M and M + dM can be
mapped to the length-based one, L and L + dL. Thus, the changes in the number
of bubbles due to the discrete processes in both intervals are the same – in other
words S ′dM = SdL. Now, the right-hand side of Eq. (3.45) can be transformed as
follows:

RHS =
∫ ∞

0
S ′Mk′

dM =
∫ ∞

0
S(π

6 ρgL3)k/3dL = (π

6 ρg)k/3
∫ ∞

0
SLkdL = (π

6 ρg)k/3 S̄k

(3.48)
Then, the length-based moment transport equation follows from Eqs. (3.47) and (3.48):

∂tmk + ∂x · (Ugmk) + k

3mk
1
ρg

Dρg

Dt
= S̄k (3.49)

3.4 CFD-PBM Codes
Apart from the numerous in-house codes reported in the literature, there are

several commercial and open-source CFD codes that incorporate the PBE. Table 3.1
summarizes some available CFD-PBM codes along with their main features. Our
choice of software for incorporating PBE into CFD is OpenFOAM, which is an open-
source software written based on C++ programming language. The big advantage
of OpenFOAM is the availability of the source code, which offers great flexibility
for additions and modifications.

3.4.1 In-House Code Using OpenFOAM
As reported in Table 3.1, the OpenFOAM software offers the possibility of

solving PBE through specific built-in solvers, e.g. reactingEulerFoam. However, in
this thesis, we use our own implementation of the PBE in another built-in solver
of OpenFOAM, which is developed for simulation of two-phase flows, called as
twoPhaseEulerFoam. Figure 3.4 depicts the incorporation of the PBE into the
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Table 3.1: Commercial and open-source CFD codes with the implementation of PBE

CFD code Governing
equations

Solution
methods Notes

OpenFOAMa Eq. (3.1)
Eq. (3.2)

CM
QMOMb

CQMOMb

EQMOMb

– Multifluid approach is available
– Possibility of solving several

population balances
– Realizable advection schemes

are implemented

Ansys Fluent Eq. (3.1) CM
QMOM

DQMOM

– Multifluid approach is available

Ansys CFX Eq. (3.1) CM – Multifluid approach is available
– PBE is written in terms of

mass-based NDF
– Continuous events and nucleation

are not available

StarCMM Eq. (3.1) CM – Multifluid approach is available
– Adaptive discretization

aopen-source; bas part of the OpenQBMM project (https://www.openqbmm.org)

TFM. It should be noted that the implementation is mainly aimed to track the
evolution of the bubble size distribution. In other words, the code solves the PBE
written in terms of a univariate NDF, which defines the distribution of the bubbles
over the bubble size as the internal coordinate. At the beginning of each time-step,
the inversion algorithm is used to calculate the quadrature abscissas and weights
from the moments of the previous time-step. Both PD and Chebyshev inversion
algorithms are implemented. It should be noted that the Chebyshev algorithm is
modified based on the 1-D adaptive quadrature technique proposed by Yuan et al.
[148]. Then, the source terms due to the coalescence and break-up of bubbles are
calculated by using the quadrature approximation. The next step is to solve the
moment transport equations by inserting the disperse phase velocity (calculated by
the TFM in the previous time step) and the source terms into Eq. (5.3). Finally,
the two-way coupling is achieved by calculating the Sauter mean diameter from the
moments of the NDF (that indeed represents the bubble size distribution), which
is eventually used in the constitutive relations of the TFM.

47



3 – Population Balance Modelling

Begin time step

Apply the
inversion algorithm

Calculate the coalescence
and the breakage

Solve the moment
transport equations

Calculate the Sauter
mean diameter

Solve for the αg

Perform PISO algorithm
to solve for the flow fields

End time step

PBM

Figure 3.4: Flow diagram of the PBM implementation coupled with two-fluid solver of
OpenFOAM, i.e. twoPhaseEulerFoam
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Chapter 4

CFD Simulation of Bubbly Flows*

This chapter deals with the Eulerian-Eulerian CFD simulation of turbulent
bubbly flows with particular attention to the interfacial forces, especially the lift and
wall lubrication forces. In this regard, two set of closure relations are selected and
the numerical predictions obtained by each set are compared with the experimental
data of an air/water two-phase flow in an adiabatic vertical pipe [9]. It is noteworthy
that these closures are employed in two prominent models recently proposed for the
simulation of bubbly flows [21, 165]. To our knowledge, this is the first time that
the selected closures are tested against this experimental data, characterized by
a developing profile, using OpenFOAM software (v4.1). In fact, the experimental
data includes the measurements of several interesting properties at different axial
heights, tracking the flow development through the pipe and providing improved
insight into the performance of the selected models. A sensitivity analysis on the lift
coefficient is additionally performed for each test case to obtain the best agreement
on the basis of the gas volume fraction predictions, which allows us to draw further
conclusions on the employed closures, as well as providing insights toward future
improvements.

4.1 Geometry and Operating Conditions of the
Simulated Flow

The experimental setup simulated in this thesis is the TOPFLOW test facility at
Helmholtz-Zentrum Dresden-Rossendorf (HZDR), shown in Figure 4.1. Moreover,

*This chapter is mainly based on the following published article:
M. Shiea, A. Buffo, E. Baglietto, D. Lucas, M. Vanni, D. L. Marchisio, "Evaluation of Hydro-
dynamic Closures for Bubbly Regime CFD Simulations in Developing Pipe Flow". In: Chemical
Engineering & Technology 42 (2019), pp. 1618–1626.
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the corresponding data, used here as the benchmark, is taken from the report by
Beyer and co-workers [9].

Figure 4.1: Schematic diagram of the TOPFLOW test facility

The experimental rig consists of a vertical pipe with inner diameter of 0.1953
m and height of 8 m, in which water and air bubbles flow upward concurrently.
The pipe operates at constant temperature of 30°C. The radial profiles of the gas
volume fraction, gas velocity and bubble size distribution were measured via a wire
mesh sensor located at the top of the pipe. The gas phase, air, is injected through
one of the injection rings located at the specified distances below the measuring
sensor, see Table 4.1. The outlet pressure is adjusted in such a way to have the
same pressure of 2.5 bars at the active injection ring. Thus, it can be thought of
as fixing the position of the injection ring and moving the measuring sensor. This
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technique allows us to study the development of the flow in the axial direction.
Moreover, each injection ring consists of 72 orifices with the diameter of 1 mm,
equally distributed around the pipe to mimic the bubble generation at the solid
wall with a given rate.

The measurements were conducted by a two-level low-temperature wire-mesh
sensor with a resolution of 64x64. It belongs to the intrusive measuring techniques,
and is based on the difference of electrical conductivity between water (slightly
conductive) and air (insulator). More details on the design of the measuring sensor
is available in the reference [9]. Moreover, general information on wire-mesh sensors
and their advantages and disadvantages can be found in the literature [166–169].
Here, it suffices to mention that several uncertainties exist about data obtained
by wire-mesh sensors due to different sources such as the calculation of the void
fraction from the conductance measurements, the effect of the (intrusive) sensor on
the flow field and the physical dimension of the sensor [169]. This fact is also true
for the available experimental data used in this thesis, and should be borne in mind
when comparing the simulation results with the experiments.

Table 4.1: The distance of the air injection rings from the wire-mesh sensor

Distance from
the sensor (m) 0.22 0.34 0.49 0.61 1.44 1.55 2.48 2.6 4.42 4.53

Height to
diameter ratio 1.1 1.7 2.5 3.1 7.4 7.9 12.7 13.3 22.6 23.2

Measurements related to six different combinations of liquid and gas superficial
velocities are selected for the purpose of validation. All the six operating condi-
tions are in bubbly flow regime. The corresponding air and water inlet flow rates
along with the average bubble sizes are reported in Table 4.2. The simulations
are conducted separately in the first "nominally" 2-meter and 5-meter portions of
the pipe, therefore, two average bubble sizes are evaluated using the corresponding
experimental data as reported in Table 4.2. Here, the nominal 2-meter and 5-meter
columns are long enough to compare the simulation predictions with the available
experimental data up to the distance 1.55 (m) and 4.53 (m) between the air injec-
tion point and the wire-mesh sensor, respectively. The calculation of the average
bubble diameter from the measured experimental data is described in Appendix C.

For the above range of bubble sizes (4.05 to 9.11 mm), the terminal velocity
of bubbles in partially-contaminated water at 30°C varies between 0.236 to 0.246
m/s, obtained by making a balance between the buoyancy and drag forces and by
using Tomiyama’s correlation for the drag coefficient, Eq. (2.13). Thus, the bubble
Reynolds number calculated by using the terminal velocity changes between 1191
to 2796 for the reported range of bubble sizes.
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Table 4.2: Experimental conditions of the simulated test cases; the case number corre-
sponds to the classification by Beyer et al. [9]

Case
No.

Superficial
liq. velocity

(m/s)

Superficial
gas velocity

(m/s)

dave
b (mm)

(2-meter)
dave

b (mm)
(5-meter) Rel

008 1.017 0.0025 4.05 4.24 2.48 × 105

042 1.611 0.0096 4.25 4.36 3.93 × 105

040 0.641 0.0096 4.93 5.01 1.56 × 105

028 0.405 0.0062 5.22 5.34 9.88 × 104

063 1.017 0.0235 6.50 6.46 2.48 × 105

072 0.405 0.0368 9.11 7.65 9.88 × 104

It is noteworthy that the average bubble size of the selected test cases remains
virtually constant along the length of the pipe except for the case 072, which expe-
riences a noticeable drop at the beginning of the flow up to the height of 1.55 m,
see Figure 4.2.

Last, Beyer and co-workers pointed out that the mass flow rates of the gas
phase calculated from integrating the measured profiles show an increase of about
20% in comparison to the more precise values obtained from the flow controller
[9]. Therefore, in a recent work by the group at HZDR, all radial profiles of the
air volume fraction were divided by a factor of 1.2 in order to compensate for that
increase [165]. The same correction is applied here to all the radial profiles of the
air volume fraction reported in the subsequent figures.

4.2 Simulation Setup

4.2.1 Solver Details and Settings
The adopted simulation method is the Eulerian-Eulerian two-fluid model, de-

scribed in Chapter 2. Moreover, although the system under study is poly-disperse
by nature, the investigation of the interfacial forces (aimed by this chapter) is con-
ducted by assuming mono-disperse condition, i.e. imposing a fixed bubble size
obtained from the experimental data reported in Table 4.2, which is the most com-
mon preliminary assumption used for studying practical industrial-scale problems.
Furthermore, the average bubble size does change negligibly along the axial direc-
tion for all the selected test cases, except for the test case 072, see Figure 4.2. The
polydispersity and change of the average bubble size is addressed in Chapter 6 by
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Figure 4.2: Axial change of the average bubble size for the selected test cases (H = 5 m)

coupling the CFD with the PBM.
The implementation of the two-fluid model in the OpenFOAM CFD software

v4.1, twoPhaseEulerFoam, is used to solve the corresponding governing equations.
This solver is written based on the PIMPLE algorithm, which is an iterative im-
plicit method based on the PISO (pressure-implicit with splitting of operators)
and SIMPLE (semi-implicit method for pressure linked equations) algorithms. The
equations to be solved include the balance equation for the gas volume fraction
(mass conservation) and two momentum balance equations for both gas and liquid
phases. In each time step, first the balance equation for the gas volume fraction
is solved using the field values of the previous time-step/PIMPLE-iteration. The
solver uses an explicit method developed for the convective-only transport equa-
tions, called Multidimensional Universal Limiter for Explicit Solution (MULES),
to solve the balance equation for the gas volume fraction. It serves to keep the
solution of the gas volume fraction bounded. Next, the liquid volume fraction is
calculated using the fact that the summation of the phase volume fractions is equal
to one, αg + αl = 1. Then, the momentum balance equations are written using the
velocities of the previous time-step/Pimple-iteration, which are subsequently used
to write a Poisson equation for the pressure. The Poisson equation indeed forces
the mass conservation. It is noteworthy that OpenFOAM uses the Rhie and Chow
interpolation [170] to compute the pressure gradient in the direction normal to the
faces, which is needed for the solution of the Poisson equation. Once the pressure is
calculated, the velocities can be corrected accordingly. The iterations will be con-
tinued until a specified convergence criterion is achieved in each time-step or the
maximum correction loops are performed. Those numerical schemes and settings
that are different with respect to the default recommendations of the OpenFOAM
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software are reported in Table 4.3.

Table 4.3: Discretization schemes and solver settings

Discretization schemes solver settings

Gradient
Scheme

Multidirectional
Cell-limited Least
Squares

No. of updates to all equations in
each time step (nOuterCorrector) 10

Divergence
Scheme

LimitedLinear 1.0
for air volume
fraction

No. of solving pressure equation
and correcting momentum
(nCorrector)

3

Laplacian
Scheme Linear Corrected

No. of updates to the explicit
non-orthogonal correction
(nNonOrthogonalCorrector)

3

snGrad
Scheme Corrected

No. of loops for the solution of the
air volume fraction equation
(nAlphaCorr and nAlphaSubCycles)

2
and
3

It is worth explaining that the limited gradient scheme is used to cope with
sharp profiles that may occur in some test cases, particularly near the wall. Gradi-
ent limiters may cause the numerical diffusion, however, contour plots of some pre-
liminary simulations showed that it happens only in the circumferential direction in
this specific system. Hence the average radial profiles remain virtually unchanged.
Moreover, the divergence scheme LimitedLinear is used for the discretization of the
convective term of all the solved balance equations. It is a 2nd-order TVD (Total
Variation Diminishing) scheme. Furthermore, the non-orthogonality of the grid is
compensated by adding explicit corrections to the interpolated face values required
by the discretization schemes. Since the corrections are explicit (calculated based
on the values of the previous iteration), the pressure equation is solved more than
once in each PISO loop to update these corrections. The number of corrections is in-
dicated as nNonOrthogonalCorrector in Table 4.3. Moreover, nCorrector reported
in Table 4.3 is the number of PISO loops, which update the velocities after solving
the pressure equation in each PIMPLE loop. Finally, PIMPLE loops update the
velocity equations using the values of the previous timestep or PIMPLE iteration.
The number of PIMPLE loops is specified as nOuterCorrector in Table 4.3.

Last, all the interfacial forces described in Chapter 2 are available in twoPhaseEuler-
Foam solver, except for Sugrue’s correlation and Lubchenko’s approach, which are
implemented by modifying the original solver.

54



4.2 – Simulation Setup

4.2.2 Mesh Design
To speed-up the model assessment, two different configurations are selected as

the simulation domain, with the pipe heights of 1.806 m (137088 cells) and 5.206
m (365568 cells), corresponding to the first nominally 2-meter portion and the first
nominally 5-meter portion of the experimental setup. The idea is to use the first
geometry to tune the lift coefficient (when necessary), whereas the second geometry
is employed to assess the agreement with experiments, without any further adjust-
ment. The selected domains are discretized by using the multiblock structured
o-grid type mesh shown in Figure 4.3.

Figure 4.3: The designed mesh for the purpose of simulation. a) cross-section of the
mesh; b) the injection boundary; c) three-dimensional view of the mesh.

The mesh size is selected according to a grid independence study considering
several factors, i.e. achieving grid independent results, reasonable computational
time, the capability of capturing the profile near the wall and avoiding the viscous
sublayer close to the wall. Some details on the grid independence study can be
found in Appendix D. The symmetry of the system allows us to simulate a quarter
of the pipe, resulting in a significant reduction in the number of computational
cells. Moreover, the injection ring is modelled as a circular shell of 6 mm height
around the wall at a distance of 20 cm from the bottom of the pipe, in order to
mimic the behavior of the real system.

4.2.3 Boundary Conditions
The adopted boundary conditions are similar to those normally used for single-

phase flow: imposed liquid velocity is specified at the bottom of the domain, while
constant gas velocity is used for the side injection boundary, a constant pressure
conditions is used at the outlet and symmetry boundary conditions applied on the

55



4 – CFD Simulation of Bubbly Flows

symmetry planes. The imposed liquid velocity at the bottom of the pipe is defined
as a fully developed turbulent radial profile. It should be noted that the liquid
velocity has no-slip condition on the wall, whereas air is allowed to slip over the
wall. Furthermore, the standard single-phase wall functions are used to estimate
the near-wall behavior of the non-resolved velocity profile.

4.2.4 Investigated models for Interfacial Forces
This section explains the set of models selected for the simulation of the TOPFLOW

test facility. Before introducing the selected models, it is enlightening to perform
a study on the role of the interfacial forces on the predictions. Figure 4.4 shows
the predicted results obtained from the simulation of the 2-meter configuration op-
erating at experimental condition 028. The predictions include the radial profiles
of the air volume fraction and phase velocities at two sections, one close to the
injection ring (at a distance of 0.49 m) and the other far from the injection ring (at
a distance of 1.55 m). The simulations are done without emphasizing on the choice
of a particular relation to model each force. Moreover, the contribution of virtual
mass is assumed negligible in this thesis, since the effect of this force is significant
in the case of strongly accelerating flows, whereas, the pipe flow under study is
stationary and the phase velocities change gradually in the axial direction.

The drag force, modelled by using Tomiyama’s correlation (Eq. (2.13)) for the
drag coefficient, is included in all the simulations, and is required to balance the
buoyancy since it is the only force acting in the vertical direction in the system
under study. As expected, the drag force alone is not able to reproduce the spread
of the gas phase in the radial direction. Bubbles are injected at the wall, and a
radial force is necessary to address the redistribution of bubbles. Not surprisingly,
the predicted gas phase velocities are also incorrect, as the accumulation of the gas
phase near the wall drives the high gas peak in the first computational cell.

The lift force is described by using a constant coefficient with the Shaver and
Podowski damping factor (Eq. (2.19)). In the current system, the lift force acts
radially, but its direction (outward or inward) depends mostly on the bubble size
and liquid velocity. Here, for this experimental condition (028), the lift coefficient
is set to 0.03, consistently with the value reported by Shaver and Podowski [32].
While in the general case the lift force can have relevant effect on the gas radial
distribution, in the present case, its role is negligible due to the small value of the
lift coefficient, as apparent by comparing the predictions obtained by employing
only the drag force with those obtained by employing both the drag and lift forces,
yellow and green lines of Figure 4.4 respectively. Nevertheless, the small effect
of the lift force under this condition enables us to identify better the role of the
turbulent dispersion and the wall lubrication forces, as explained in the following.

As mentioned in Chapter 2, a force is indeed required to push the gas away from
the wall. The turbulent dispersion force, expressed by Burns’ model (Eq. (2.24)),
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Figure 4.4: Comparison of the experimental data (hollow markers) with predictions
obtained by including different combination of forces in the simulation of experimental
condition 028: 1- only drag force (yellow solid line); 2- drag and lift forces (green dot-dash
line); 3- drag, lift and turbulent dispersion forces (red solid line); 4- drag, lift, turbulent
dispersion and wall lubrication forces (blue solid line).

works against the gradient of the void fraction distribution, and therefore helps in
spreading the gas phase considerably (continuous red line in Figure 4.4). The dis-
crepancy between the measured and predicted results at the lower sections suggests
that the turbulent dispersion contribution is not sufficient to describe the spread
of the gas phase in regions near the injection ring, and a further contribution to
drive the gas away from the wall is required. It is noteworthy that the predicted
radial profiles of the air velocity are also improved by the addition of the turbulent
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dispersion force as a consequence of the improved predictions for the gas volume
fraction.

However, the results obtained by the different combinations of drag, lift and
turbulent dispersion forces indicate that these forces alone are not capable of de-
scribing the peak near the wall. Only adding the wall lubrication force, here by
employing Lubchenko’s approach (Eq. (2.27)), results in the appearance of the
near-wall-peak in the radial profiles of the gas volume fraction (continuous blue
line in Figure 4.4), in agreement with the experimental observation. It is, there-
fore, necessary to include this contribution to describe properly the radial spread
of the gas phase.

After studying the effect of the interfacial forces, four set of models are con-
sidered to be investigated, as summarized in Table 4.4. In Model I, the interfacial
forces are estimated using the closures relations suggested by Rzehak and Krep-
per [165] for the simulation of bubbly flows. Model II adopts the same closures of
Model I, with the exception of the lift coefficient formulation, which is optimized for
each experimental condition to produce the best possible agreement between the
simulation predictions in the 2-meter column and the experimental data. Model
III is inspired from the model recently proposed by Sugrue [21]. Again, in Model
IV, closures reproduce those of Model III except for the optimized lift coefficient,
which is varied for each experimental condition to have the simulation results in
the 2-meter pipe match the experimental data.

Table 4.4: Selected set of models for the purpose of simulation

Model
No.

Drag
coefficient

Lift
coefficient

Turbulent
dispersion

force

Wall
lubrication

force

I Tomiyama (a) Eq. (2.16) by Tomiyama Burns (b) Eq. (2.26) by
Hosokawa

II Tomiyama (a) Constant optimized
coefficient Burns (b) Eq. (2.26) by

Hosokawa

III Tomiyama (a)
Eq. (2.20) by Sugrue

with damping factor by
Shaver and Podowski (c)

Burns (b) Eq. (2.27) by
Lubchenko

IV Tomiyama (a)

Constant optimized
coefficient with damping

factor by Shaver and
Podowski (c)

Burns (b) Eq. (2.27) by
Lubchenko

a) Eq. (2.13); b) Eq. (2.24); c) Eq. (2.19)
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The value of the lift coefficients used in Models II and IV are optimized for each
experimental condition by simulating the 2-meter pipe and attempting to achieve
the best agreement with the measured radial profile of the air volume fraction. It
should be clarified that the purpose of this optimization is not to quantify the lift
coefficient since there exist several uncertainties concerning other aspects of the sim-
ulation, e.g. turbulence modelling. These uncertainties cannot be resolved unless
more comprehensive experimental data including the liquid velocity and turbulence
parameters is gathered. Nevertheless, the optimization results illuminate several
issues such as the effect of the lift coefficient sign, the deficiency of the evaluated
correlations and the importance of studying the lift coefficient under developing
conditions. The optimization is done by minimizing the following error function:

Relative Error =

∑
i

⎛⎜⎜⎜⎝
∑

j

⏐⏐⏐αsim.
j − αexp.

j

⏐⏐⏐ (R2
j − R2

j−1

)
∑

j

αexp.
j

(
R2

j − R2
j−1

)
⎞⎟⎟⎟⎠
⏐⏐⏐⏐⏐⏐⏐⏐⏐
at Li

· (Li − Li−1)

∑
i

(Li − Li−1)
(4.1)

In the above expression, Rj and Li denote, respectively, the radial and axial coor-
dinates of the locations at which local experimental data is available. In addition,
αexp.

j and αsim.
j are the experimental and predicted local air volume fraction at Rj

respectively.
The same models are then tested on the 5-meter pipe and their capability to

reproduce the experimental observations is assessed.

4.2.5 Turbulence Modelling
In this study, only continuous phase turbulence is considered in the simulations

since the density of the disperse phase is much smaller than that of the continuous
phase. The RANS approach is adopted in this thesis, along with the Boussinesq
approximation. The turbulent viscosity is calculated by using the standard k−ε
model, scaled by the liquid phase volume fraction. A complete description of the
k−ε model can be found in the literature [26].

It should be noted that the bubble-induced turbulence is not included in this
thesis to avoid introducing further uncertainties. Although bubbles influence the
structure of the turbulence in the liquid phase [27-30], many ambiguities surround
the application of the available approaches for considering the bubble-induced tur-
bulence. For instance, in the context of two-equation models such as k−ε model,
the most common practice adds source terms to the transport equations of k and ε
[4, 31]. However, no consensus on the implementation of this approach is achieved
yet, particularly on the choice of the time scale to estimate the ε source term [32].
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4.3 Results and Discussion
As explained before, the simulations are conducted in two configurations with

the nominal heights of 2-meter and 5-meter corresponding to the first two meters
and the first five meters of the pipe, respectively. In the following, the results
obtained from the simulation of each configuration are reported in two separate
parts. It should be noted that the "axial height" shown on each plot indicates the
distance of the sampled section from the air injection point. Moreover, for some
experimental conditions with very low gas content in the center of the pipe, the
"Normalized Radial Distance" axis starts from a value higher than zero to increase
the resolution of the graphs near the wall.

4.3.1 Simulation of the 2-meter Configuration
The simulations of the 2-meter pipe, which are much faster to be carried out,

aim at finding an optimum lift coefficient for Models II and IV. These Models
differ in the expression employed for the wall lubrication force, see Table 4.4. It
is worth reiterating that Model IV uses Lubchenko’s approach for modelling the
wall lubrication force, which requires a damping factor being applied to the lift
coefficient in regions close to the wall. Eventually, the optimum lift coefficients are
employed in Models II and IV to simulate the 5-meter configuration and to analyze
the corresponding predictions. In the following, two figures are reported for each
experimental condition, each obtained by employing one of the two wall lubrication
models used in Models II and IV. Finally, the lift coefficients to be used in Model
II and IV are plotted along with those estimated by the correlations developed by
Tomiyama and Sugrue, see Figure 4.17.

Experimental Condition 008

Figures 4.5 and 4.6 show the radial profile of the air volume fraction obtained
by using, respectively, Hosokawa’s correlation and Lubchenko’s approach for the
wall lubrication force under experimental condition 008. As can be seen in these
figures, the lift coefficient can be varied to achieve a satisfactory agreement with
the experimental data. For this experimental condition, the radial profiles of liquid
and air velocity are monotonically decreasing from the column center to the wall,
see Figures A.1 and 4.18. Thus, employing a positive lift coefficient yields to lift
forces that push the bubbles towards the wall. At the same time, the wall lubri-
cation force acts in the reverse direction only in the region close to the wall. As
a result, a wall-peaked profile is predicted, which matches the experimental data.
As can be seen in Figures 4.5 and 4.6, the location of the peak predicted by both
wall lubrication models is in good agreement with the experimental data for the
attempted values of the lift coefficient. Then, the spread of the gas phase in the
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radial direction can match the experiments by tuning the lift coefficient. Consid-
ering all six sections in the first two meters of the pipe, the lift coefficients that
reproduces best the experimental data are 0.15 and 0.19 for the cases of employing
Hosokawa’s correlation and Lubchenko’s approach, respectively.

Figure 4.5: The radial profile of the air volume fraction obtained for experimental
condition 008 by employing Hosokawa’s correlation for the wall lubrication force and
different lift coefficients: CL by Tomiyama (red curve); CL = 0.16 (green curve); CL =
0.15 (blue curve); CL = 0.14 (violet curve); CL = 0.1 (yellow curve).
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Figure 4.6: The radial profile of the air volume fraction obtained for experimental
condition 008 by employing Lubchenko’s approach for the wall lubrication force and
different lift coefficients: CL by Sugrue (red curve); CL = 0.15 (green curve); CL = 0.18
(blue curve); CL = 0.19 (violet curve); CL = 0.2 (yellow curve).

Experimental Condition 042

For this experimental condition, the same argument presented for experimental
condition 008 can be put forward, as illustrated by Figures 4.7 and 4.8. Eventually,
the optimum lift coefficients for this experimental condition are 0.14 and 0.19 for
the wall lubrication models by Hosokawa and Lubchenko, respectively.

It is noteworthy that this experimental condition has also monotonically de-
creasing velocity profile for both the liquid and air phases (same as experimental
condition 008), as shown in Figures A.3 and 4.19. Moreover, both of these exper-
imental conditions have smaller average bubble sizes than the other investigated
experimental conditions, see Table 4.2.
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Figure 4.7: The radial profile of the air volume fraction obtained for experimental
condition 042 by employing Hosokawa’s correlation for the wall lubrication force and
different lift coefficients: CL by Tomiyama (red curve); CL = 0.15 (green curve); CL =
0.14 (blue curve); CL = 0.13 (violet curve); CL = 0.1 (yellow curve).
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Figure 4.8: The radial profile of the air volume fraction obtained for experimental
condition 042 by employing Lubchenko’s approach for the wall lubrication force and
different lift coefficients: CL by Sugrue (red curve); CL = 0.15 (green curve); CL = 0.17
(blue curve); CL = 0.19 (violet curve); CL = 0.2 (yellow curve).

Experimental Condition 040

Figure 4.9 shows the effect of changing the lift coefficient on the radial profiles
of the air volume fraction for experimental condition 040 in the case of employing
Hosokawa’s correlation to calculate the wall lubrication force. In this experimental
condition, the liquid and air velocity profiles have a peak near the wall, as can
be seen in Figures A.5 and 4.20. Therefore, the lift force has different sign at the
different sides of the peak of the liquid velocity profile. In the case of using a
positive lift coefficient, the lift force pushes bubbles against the wall at the right
side of the peak of the liquid velocity profile, while it has a reverse effect at the
other side of the peak. The profiles obtained by using the positive lift coefficients
in Figure 4.9, particularly the red and green ones, show how the interaction of
the lift and wall lubrication forces causes a peak to appear in the profile of the
air volume fraction. On the contrary, a negative lift coefficient results in a lift
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force that pushes the bubbles towards the peak of liquid velocity profile regardless
of the bubble location. The yellow profile in Figure 4.9 shows that the lift force
(calculated with the negative coefficient) and the wall lubrication force together
push the bubbles from the wall at the right side of the peak of liquid velocity
profile. At the left side of the peak of the liquid velocity profile, the lift force
(calculated with the negative coefficient) pushes the bubbles towards the peak of
the liquid velocity profile. Consequently, the peak of the air volume fraction profile
coincides with the one of the liquid velocity profile, however, the location of the peak
is not in agreement with the experiments. The optimum lift coefficient obtained
for this experimental condition is 0.14, if the wall lubrication force is modelled by
Hosokawa’s correlation.

Figure 4.9: The radial profile of the air volume fraction obtained for experimental
condition 040 by employing Hosokawa’s correlation for the wall lubrication force and
different lift coefficients: CL by Tomiyama (red curve); CL = 0.14 (green curve); CL = 0.1
(blue curve); CL = 0.08 (violet curve); CL = −0.05 (yellow curve).

The above argument is also valid when Lubchenko’s approach is employed to
model the wall lubrication force, as can be seen in Figure 4.10. The predictions
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obtained by employing Lubchenko’s approach does not result in zero gas volume
fraction close to the wall, which is an advantage over Hosokawa’s model. Moreover,
Lubchenko’s approach tends to predict the peak of the air volume fraction profile at
the radius of the average bubble diameter, which is in agreement with the measured
data for this experimental condition. The optimum lift coefficient to be used with
Lubchenko’s approach for experimental condition 040 is -0.015.

Figure 4.10: The radial profile of the air volume fraction obtained for experimental
condition 040 by employing Lubchenko’s approach for the wall lubrication force and
different lift coefficients: CL by Sugrue (red curve); CL = 0 (green curve); CL = −0.015
(blue curve); CL = −0.025 (violet curve); CL = −0.05 (yellow curve).

Experimental Condition 028

Likewise, in this experimental condition, the liquid velocity profile has a peak
near the wall, as can be seen from Figure A.7. Therefore, the direction of the lift
force depends on the position of the bubble with respect to this peak. Particularly,
when a negative lift coefficient is used, the gas phase is pushed toward the peak of
the liquid velocity profile from both sides of this peak. Figure 4.11 shows that the
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larger is the absolute value of the negative lift coefficient, the more the gas phase
is squeezed to cause a higher peak in the air volume fraction profile. Considering
the wall lubrication force, the profiles in Figure 4.11 are obtained by employing
Hosokawa’s correlation and, as mentioned previously, they suffer from the free–of–
gas zone near the wall, particularly in the case of using negative lift coefficients.
The reason is that, in such cases, both the lift and wall lubrication forces push the
gas phase from the wall and this situation worsens by using negative coefficients of
larger absolute values. Nevertheless, in this experimental condition, the optimum
lift coefficient to be used with Hosokawa’s wall lubrication force is found to be -0.25,
which can be considered as a very large negative value. It is noteworthy that with
this lift coefficient, the free–of–gas zone near the wall is unacceptably wide.

Figure 4.11: The radial profile of the air volume fraction obtained for experimental
condition 028 by employing Hosokawa’s correlation for the wall force and different lift
coefficients: CL by Tomiyama (red curve); CL = 0.05 (green curve); CL = −0.05 (blue
curve); CL = −0.15 (violet curve); CL = −0.25 (yellow curve); CL = −0.27 (brown
curve).

In the case of employing Lubchenko’s approach, the air volume fraction profiles
shown in Figure 4.12 reflect a similar trend as the lift coefficient changes, especially
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when it has negative value. However, the change in the profiles near the wall are
very small, which can be attributed to the damping factor applied to the lift force
near the wall (by using the model by Shaver and Podowski).

Figure 4.12: The radial profile of the air volume fraction obtained for experimental
condition 028 by employing Lubchenko’s approach for the wall force and different lift
coefficients: CL by Sugrue (red curve); CL = 0.05 (green curve); CL = 0.025 (blue
curve); CL = 0 (violet curve); CL = −0.05 (yellow curve); CL = −0.1 (brown curve).

In addition, the predictions obtained by employing several positive lift coeffi-
cients are shown Figure 4.12 and the optimized lift coefficient found to be used with
Lubchenko’s approach in this experimental condition is 0.025, which is indeed very
small and therefore the produced lift force has negligible effect on the distribution of
the gas in the radial direction. In other words, the radial distribution is mainly the
outcome of the turbulent dispersion and wall lubrication forces. Another notable
point is that the free–of–gas zone does not appear by employing Lubchenko’s ap-
proach, which is an advantage over Hosokawa’s correlation. However, Lubchenko’s
approach causes the peak of the air volume fraction profile to be located at a dis-
tance equal to the bubble radius from the wall, which does not match exactly the
one observed in the experiments.
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Experimental Condition 063

For this experimental condition, the predictions for air volume fraction obtained
by employing Hosokawa’s correlation and Lubchenko’s approach are shown in Fig-
ures 4.13 and 4.14, respectively. In general, the same argument made in the case
of experimental conditions 040 and 028 applies also to this experimental condition.
When the wall lubrication force is modelled by Hosokawa’s correlation, a negative
lift coefficient produces a lift force that works in the same direction of the wall
lubrication force in regions close to the wall. As a result, the peak in the air vol-
ume fraction profile is displaced too much towards the center of the column, when
compared to the experimental data. Moreover, a large free–of–gas zone is created
near the wall. The optimized lift coefficient is found to be 0.07, although a nega-
tive lift coefficient is expected. An explanation can be the large non-physical wall
lubrication force predicted due to the larger bubble size, which eventually displaces
the peak in the air volume fraction too much in the case of employing a negative
lift coefficient.

Figure 4.13: The radial profiles of the air volume fraction obtained for experimental
condition 063 by employing Hosokawa’s correlation for wall force and different lift coef-
ficients: CL by Tomiyama (red curve); CL = 0 (green curve); CL = 0.06 (blue curve);
CL = 0.07 (violet curve); CL = 0.08 (yellow curve); CL = 0.15 (brown curve).
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In the case of modelling the wall lubrication force with Lubchenko’s approach,
the change in the lift coefficient (even sign change) does not show a significant
effect on the predictions in the simulated portion of the pipe. Nevertheless, the
optimized lift coefficient is found to be -0.05. Similar to the two previous exper-
imental conditions, the free–of–gas zone does not appear in the predictions with
this wall lubrication model.

Figure 4.14: The radial profile of the air volume fraction obtained for experimental
condition 063 by employing Lubchenko’s approach for the wall lubrication force and
different lift coefficients: CL by Sugrue (red curve); CL = 0 (green curve); CL = −0.04
(blue curve); CL = −0.05 (violet curve); CL = −0.06 (yellow curve); CL = −0.1 (brown
curve).

Experimental Condition 072

This experimental condition have the largest average bubble size than the others.
Moreover, the measurements show a considerable decrease in the average bubble
size along the first 1.5 m length of the pipe from the injection ring, see Figure 4.2.
When Hosokawa’s correlation is used, negative lift coefficients reproduce the peak
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observed in the measured air volume fraction profiles. The optimized one is found to
be -0.1. However, similar to experimental conditions 040, 028 and 063, the profiles
suffer from the fact that no gas phase exist near the wall due to the exaggerated
wall lubrication force.

Figure 4.15: The radial profile of the air volume fraction obtained for experimental
condition 072 by employing Hosokawa’s correlation for the wall lubrication force and
different lift coefficients: CL = −0.025 (red curve); CL = −0.05 (green curve), CL =
−0.07 (blue curve), CL = −0.1 (violet curve), CL = −0.15 (yellow curve).

Concerning the predictions obtained by employing Lubchenko’s approach, the
same argument made for experimental condition 063 applies also here. The op-
timized lift coefficient is found to be 0.1, which is positive and not expected, al-
though the change in the lift coefficient does not show a considerable effect on the
predicted air volume fraction profiles in the simulated portion of the column. Last,
the predicted location of the peak of the air volume fraction profile does not match
the experiments. However, the good point is that, in this experimental condition,
Lubchenko’s approach allows the gas phase to exist near the wall in contrast to
Hosokawa’s correlation.
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Figure 4.16: The radial profile of the air volume fraction obtained for experimental
condition 072 by employing Lubchenko’s approach for the wall lubrication force and
different lift coefficients: CL by Sugrue (red curve); CL = −0.05 (green curve); CL = 0
(blue curve); CL = 0.08 (violet curve); CL = 0.1 (yellow curve); CL = 0.12 (brown curve).

Optimized Lift Coefficients

The lift coefficients predicted by Tomiyama and Sugrue correlations, employed
in Models I and III respectively, together with the optimized values to be used in
Models II and IV (based on the simulations of 2-meter pipe) are plotted in Fig-
ure 4.17. Concerning experimental conditions 008 and 042, which have monotonic
phase velocity profiles and smaller bubbles sizes, the optimized lift coefficients to
be used in models II and IV, and those estimated by Tomiyama’s and Sugrue’s cor-
relations are all positive. For these experimental conditions and considering only
the first two-meter of the pipe, Tomiyama’s correlation overestimates the lift coef-
ficient, whereas Sugrue’s correlation underestimates it. It is worth reiterating that,
for these experimental conditions, the predicted air volume fraction profiles show
a clear trend as the lift coefficient is changed by employing either wall lubrication
model (i.e. Hosokawa’s correlation and Lubchenko’s approach). This facilitates
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finding an optimized lift coefficient to be used by either wall lubrication model in
these experimental conditions. Moreover, the values obtained to be used in Models
II and IV are close to each other, see Figure 4.17. However, this is not true for the
other test cases, which have non-monotonic phase velocity profiles and larger bub-
ble sizes, as it is hard to observe a clear trend since the optimization gives positive
and negative values of the lift coefficient, see Figure 4.17. For instance, the positive
optimized lift coefficient found to be used in model II for experimental condition
063 and to be used in model IV for experimental conditions 028 and (particularly)
072 are not expected. In fact, in the following section, the importance of using neg-
ative lift coefficient for these experimental conditions are illustrated by considering
the results of the simulation of the 5-meter pipe.

Figure 4.17: Optimized lift coefficients for the simulated experimental conditions in
comparison to the estimated ones by Tomiyama’s (red × markers) and Sugrue’s (Blue
area) correlations. Black curve depicts Tomiyama’s correlation. Yellow + and green

markers correspond to optimized lift coefficients in the case of modelling the wall
lubrication force with Hosokawa’s correlation and Lubchenko’s approach respectively.
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4.3.2 Simulation of the 5-meter Configuration
In this section, the four models in Table 4.4 are employed to simulate the 5-

meter pipe operating under the six experimental conditions, and eventually they
are evaluated by considering their corresponding predictions for the radial profiles
of the air volume fraction and air velocity under each experimental condition. The
other predictions for which no experimental data is available, i.e. the radial profiles
of the liquid velocity and turbulence parameters, are reported in Appendix A. It
is noteworthy that the arguments presented previously based on the results of the
2-meter pipe simulations apply also here, and the results shown in the following
help in making conclusions considering a larger portion of the column.

Experimental Condition 008

For experimental condition 008, both Models I and III result in their maximal
lift coefficient, 0.288 and 0.03 respectively. As it can be seen from Figure 4.18,
Model I predicts a high value for the lift coefficient that prevents the gas bubbles
from spreading towards the center of the pipe while the lift coefficient estimated
by Model III is not large enough to push the bubbles towards the wall. Instead,
Models II and IV show good agreement with the experimental radial profiles of the
air volume fraction in the first two meters of the pipe, for which the lift coefficient
is optimized. However, it is evident that larger discrepancy arises in the sections
higher than two meters. It implies that good agreement could be achieved at high
sections if a smaller value of the lift coefficient were used, however, at the expense
of losing the agreement in the lower sections of the pipe. All the models predict
satisfactorily the measured air velocity profile except Model I, where a non-physical
accumulation of the gas near the wall results to an unexpected behavior in the
velocity profile, see Figure 4.18. It can be associated with the numerical issues that
emerge due to the very large gradient across a few layers of the cells near the wall.
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Figure 4.18: Radial profiles of the air volume fraction and velocity predicted by the
tested models versus the experimental data (hollow markers) for experimental condition
008. Red curve: Model I; yellow curve: Model II (CL = 0.15); blue curve: Model III; and
green curve: Model IV (CL = 0.19).

Experimental Condition 042

Similar findings are obtained for experimental condition 042, shown in Fig-
ure 4.19. The common features of these two experimental conditions (i.e. 008 and
042) that make them distinct from the other conditions are the monotonically de-
creasing velocity profile in the radial direction, lower total gas holdup and smaller
average bubble diameter.

75



4 – CFD Simulation of Bubbly Flows

Figure 4.19: Radial profiles of the air volume fraction and velocity predicted by the
tested models versus the experimental data (hollow markers) for experimental condition
042. Red curve: Model I; yellow curve: Model II (CL = 0.14); blue curve: Model III; and
green curve: Model IV (CL = 0.19).

Experimental Condition 040

For experimental condition 040, the profiles of the air volume fraction obtained
by Model III (Figure 4.20) are quite satisfactory in the entire domain. The esti-
mated lift coefficient by this closure equals 0.03, while Model IV has the optimized
lift coefficient of -0.015, obtained from simulations of the 2-meter pipe. Comparing
the results obtained by Models III and IV at the lower levels reveals that they per-
form almost identically, thus any lift coefficient value around zero can be considered
optimal in the first 2-meter portion of the pipe (see also Figure 4.10). However,
employing small positive lift coefficients, e.g. Model III, results in good agreement
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not only at the lower sections but also at the higher ones. It indicates that the
difference between using positive and negative lift coefficients becomes more appar-
ent in the upper sections. On the contrary, the air volume fractions predicted by
Models I and II are comparatively worse than those obtained by employing Model
III. This finding could be associated with the high value of the lift coefficient. Re-
garding the air velocity profiles, the results obtained by all the models are in good
agreement with the experimental data (Figure 4.20).

Figure 4.20: Radial profiles of the air volume fraction and velocity predicted by the
tested models versus the experimental data (hollow markers) for experimental condition
040. Red curve: Model I; yellow curve: Model II (CL = 0.15); blue curve: Model III; and
green curve: Model IV (CL = −0.015).
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Figure 4.21: Radial profiles of the air volume fraction and velocity predicted by the
tested models versus the experimental data (hollow markers) for experimental condition
028. Red curve: Model I; yellow curve: Model II (CL = −0.25); blue curve: Model III;
and green curve: Model IV (CL = 0.025).

Experimental Condition 028

Observing the air volume fractions reported in Figure 4.21 reveals that Model
I, III and IV predict a peak near the wall at the last cross-section, which is not in
agreement with the measurements. However, no peak is seen in the profile at the
last cross-section predicted by the Model II, which is the only model with a negative
lift coefficient. Considering the entire column, it is difficult to choose one of the
models that performs averagely well. While Model II may seem as a candidate, its
predictions suffer from the free-of-gas zone near the wall, which is also the case for
Model I, due to the wall lubrication model by Hosokawa. In contrast, this problem
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is not seen in the predictions by Model III and IV, which employ Lubchenko’s
approach to model the wall lubrication force. However, the predictions at the last
cross-section by Model III and IV are not satisfactorily, which can be associated
with the positive lift coefficient. Therefore, it is interesting to perform another
simulation using Model IV but with a negative lift coefficient (here -0.05) instead
of the positive one. It is noteworthy that the change in the lift coefficient (including
its sign) did not modify the predictions considerably in the first 2-meter portion of
the column, see Figure 4.12, however it (specifically the change in the sign) may
have a considerable effect in the higher sections, which are not considered to find an
optimized coefficient. Figure 4.22 compares the predictions obtained by Model IV
using the (positive) optimized lift coefficient (0.025) and the newly chosen negative
coefficient (-0.05). While the predicted air volume fraction profiles at the lower
section are almost the same, the one obtained by the negative lift coefficient show
much better agreement with the experimental data at higher sections. Therefore,
it confirms that the sign of the lift coefficient shows its effect at higher sections in
this specific pipe flow.

Figure 4.22: Effect of the lift coefficient sign on the predictions obtained by Model IV
at high sections under experimental condition 028: green curve (CL = 0.025); orange
curve (CL = −0.05)
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Experimental Condition 063

Figure 4.23 shows the predicted air volume fraction and velocity profiles for
experimental condition 063. Similar to experimental condition 028, the models
with negative lift coefficient (here Model I and IV) predict much better at higher
sections. It is worth noting that Model IV and III differ in the sign of the lift
coefficient, see Figure 4.17. While their predictions at the lower sections are almost
the same, they are different as the flow develops. In fact, Sugrue’s model predicts
positive lift coefficients for this experimental condition, leading to discrepancies at
the higher sections. In other words, it does not predict the inversion of the lift
coefficient, which helps in improving the results, particularly at the higher sections.
The same difference, i.e. effect of the negative lift coefficient at the higher sections,
can be observed by comparing the prediction by Models I and II.

Concerning Model I, the wall peak in the predicted volume fraction profiles are
farther from the wall than the one demonstrated by the experimental data, as seen
previously from the results obtained in the 2-meter configuration (Figure 4.13).
This is associated with Hosokawa’s wall lubrication model that leads to a strong
force near the wall. The predicted volume fraction profiles demonstrate how this
strong force pushes away virtually all the gas from the wall, which is not consistent
with the experimental data. Moreover, the too underestimated negative lift coeffi-
cient by Tomiyama correlation contributes to pushing the gas phase from the wall.
In contrast, the wall lubrication force modelled by Lubchenko’s approach (employed
in Models III and IV) allows the gas phase to exist near the wall. However, this
model seems to place the peak of the air volume fraction profile at a distance equal
to the radius of the bubbles from the wall, which is closer to the wall than the one
of the experimental data. Among the predictions, the one obtained by Model IV
shows good agreement, particularly at higher sections.
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Figure 4.23: Radial profiles of the air volume fraction and air velocity predicted by the
tested models versus the experimental data (hollow markers) for experimental condition
063. Red curve: Model I; yellow curve: Model II (CL = 0.07); blue curve: Model III; and
green curve: Model IV (CL = −0.05).

Experimental Condition 072

For experimental condition 072, Model II provides the overall best agreement
when considering all the sections, see Figure 4.24. However, this model employs
Hosokawa’s correlation, which causes a free-of-gas zone near the wall.

The comparison of predictions by Model I and II indicates that Tomiyama’s
model underestimates the lift coefficient. In fact, the large peak in the red profile
of Figure 4.24 at the lowest section and the excessive spread of the gas toward the
center of the pipe are due to the large negative lift coefficient.

Concerning Model III and IV, the discrepancies seen at the higher sections,
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particularly the peak near the wall at the two last sections, can be associated with
the positive lift coefficient. Therefore, similar to experimental condition 028, it is
helpful to perform a simulation by using a negative lift coefficient (here -0.05) in
Model IV. Figure 4.25 illustrates the necessity of employing negative lift coefficient
to describe the migration of the bubbles towards the center of the pipe at higher
sections. Moreover, a better description of the bubble migration towards the center
of the pipe improves the predicted radial profile of the velocity at higher sections.

Figure 4.24: Radial profiles of the air volume fraction and velocity predicted by the
tested models versus the experimental data (hollow markers) for experimental condition
072. Red curve: Model I; yellow curve: Model II (CL = −0.05); blue curve: Model III;
and green curve: Model IV (CL = 0.1).
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Figure 4.25: Effect of the lift coefficient sign on the predictions obtained by Model IV
at high sections under experimental condition 072: green curve (CL = 0.025); orange
curve (CL = −0.05).

4.3.3 Concluding Remarks
The simulation results revealed some valuable information that can be leveraged

both for the application of the models and for the further extension of them. In the
present framework, Tomiyama’s correlation seems to overestimate the lift coefficient
for small bubbles and underestimate the lift coefficient for large bubbles (> 5 mm).
Since Tomiyama’s correlation was developed based on laminar experiments (Re <
50), it could be postulated that the lift force is smaller for bubbles moving in
turbulent flows (in this thesis Re > 1000) than in laminar flows, as already discussed
by Shaver and Podowski [32] and Sugrue [21], but further it seems that the Eötvös
number does not contain all the necessary physics to prescribe correctly the lift
coefficient.

On the contrary, Sugrue’s correlation leads to small positive lift coefficients for
small bubbles that have noticeable effect on the volume fraction profiles only at
the upper sections of the column and their effect on the profiles in the lower part
of the system is insignificant. Since Sugrue’s correlation was developed based on
the measurements of the fully-developed outlet profiles, it is not surprising that
the estimated lift coefficients are much smaller than those optimized for the lower
sections. This fact highlights the importance of studying developing flows for ad-
vancing knowledge on the lift force.

Concerning the optimized lift coefficients in Models II and IV, the results of the
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5-meter simulations obtained for the operating conditions with monotonic phase ve-
locity profiles and smaller bubbles sizes, i.e. experimental conditions 008 and 042,
yield acceptable predictions. However, the predictions in the 5-meter configuration
obtained for the other operating conditions by employing the optimized lift coeffi-
cients are not generally satisfactory, particularly at higher sections. One reason is
identified to be the positive sign of the lift coefficient, which caused discrepancies
particularly at higher sections. In fact, it was shown that for larger bubble sizes (>
5 mm), employing a negative lift coefficient yield more satisfactory results at both
lower and higher sections. In this regard, Tomiyama’s correlation predicts correctly
negative lift coefficients for this range of bubble sizes, although the inversion of the
lift coefficient occurs at the bubble size around 6 mm instead of 5 mm. In contrast,
Sugrue’s correlation may predict positive lift coefficients for this range of bubble
size, giving rise to relatively larger deviation from the experimental data. This
shows the limitation of Sugrue’s correlation in predicting the inversion of the lift
force required for the satisfactory description of the radial profiles of the air volume
fraction.

Regarding the wall lubrication models, it is evident that both models can re-
produce the measured gas volume fraction for the experimental cases with bubble
sizes smaller than 5 mm, provided that an appropriate lift coefficient is employed.
However, their predictions of the air volume fraction deviate from the experimen-
tal ones when the bubble size is larger than 5 mm. In this range, the model of
Hosokawa predicts a force of such a large magnitude, see Figure B.1, that essen-
tially creates a region with no gas near the wall, in contrast to the experimental
observation. This behavior of Hosokawa’s model or other similar models has been
previously reported in the literature [19]. However, this exaggerated force might be
avoided if a poly-disperse approach was adopted, since this approach could poten-
tially describe the separation of small and large bubbles observed experimentally
by Lucas and Tomiyama [23], i.e. small bubbles tend to stay near the wall and large
bubbles move mostly in the center. In contrast, the approach by Lubchenko and
co-workers produces more physical results, even though the predicted location of
the peak is not in agreement with the experimental data. This approach allows the
disperse phase to exist near the wall, which is crucial in various CFD simulations
such as those involving heat transfer and bubble nucleation and those coupled with
population balance models. Therefore, this approach is adopted for the CFD-PBM
simulations in Chapter 6.
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Chapter 5

Scheme for Advection of Moments*

As mentioned in Chapter 3, a primary cause of instabilities in the CFD-PBM
simulation of multiphase flows is the realizability issue. Confining the discussion
to the finite-volume method, the most common cause of the non-realizability (also
known as numerical moment corruption) lies in the spatial discretization of the
transport term of the moment transport equation, when high-order spatial dis-
cretization schemes are used. This problem is often related to the convective term,
as in many cases the governing equations have a hyperbolic form. Desjardins et
al. [64] demonstrated that the 1st-order scheme guarantees the realizability of
the moments, provided the CFL (Courant-Friedrichs-Lewy) condition is respected.
Despite this advantage, the 1st-order scheme results in highly diffusive solutions,
leading sometimes to unacceptable predictions, hence the necessity of adopting
high-order schemes. However, employing high-order finite-volume schemes for the
independent transport of the moments may cause the realizability issue [61]. There-
fore, the development of a realizable high-order scheme for the solution of moment
transport equations is crucial. In this regard, Vikas and co-workers [62] presented
the so-called realizable quasi-high-order schemes, based on the evaluation of the
moment fluxes at the cell faces using the interpolated nodes and weights of the
quadrature. With this method, the quadrature interpolation is performed by ap-
plying a 1st-order scheme to the quadrature nodes and a high-order scheme to the
quadrature weights. This approach produces less diffusive solutions and guarantees
the realizability of the transported moments, provided a criterion on the time step is
respected. However, no analysis was conducted on the boundedness property of this
approach, which can not be ignored since unbounded predictions are not physically
allowed [66]. Kah et al. [59] formulated a 2nd-order kinetic scheme that makes use

*This chapter is mainly based on the following (in press) article:
M. Shiea, A. Buffo, M. Vanni, D. L. Marchisio, "A novel finite-volume TVD scheme to over-
come non-realizability problem in quadrature-based moment methods", accepted for publication
in Journal of Computational Physics.
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5 – Scheme for Advection of Moments

of the canonical moments to transport the moments indirectly while maintaining
them in the moment space. However, the application of their method to simulations
with more than four moments involves difficult algebra [63]. Recently, Laurent and
co-workers [63] developed a similar approach based on the reconstruction of the
coefficients ζk (for its definition refer to [63]) instead of the canonical moments.
However, their original scheme cannot be applied easily to unstructured grids and
therefore they suggested a simplified version of their scheme, which involves division
of the cells into three parts as proposed by Berthon [171].

This chapter introduces a new technique, called the equal-limiter scheme, to
overcome the non-realizability problem when 2nd-order TVD (Total Variation Di-
minishing) schemes are applied to the moment transport equations. The technique
is based on using an equal limiter (given by a flux-limiter function) for all the
moments, and we show that it is effective to avoid non-realizable set of moments.
Moreover, its application to three-dimensional unstructured grids is straightfor-
ward.

The chapter is organized as follows. First, we prove that, in a one-dimensional
Riemann problem, the concept of equal-limiter emerges naturally if no source term
is included in the moment transport equations. Next, the importance of using
an identical limiter(given by a limiter function) for all the moments is clarified in
a general case by solving the local Riemann problem at each cell face, and the
role of the time step in maintaining the realizability of the moments is explained.
Moreover, we discuss the application of the equal-limiter scheme to CFD codes,
without any assumption on the velocity field or type of the mesh grid. In the final
part, a comparison between several techniques is performed by solving moment
transport equations in some one- and two-dimensional test cases.

5.1 TVD Scheme for Moment Transport Equa-
tion

5.1.1 Moment Transport Equation
Let us consider the following univariate PBE with the size of the elements of a

generic disperse phase, L, as the internal coordinate:

∂tnL + ∂x · (UdnL) + ∂L(L̇nL) = S , (5.1)

where Ud ≡ Ud(x, t) is the velocity of the disperse phase and L̇ represents the
continuous rate of the change in the size of elements due to the continuous processes
(e.g. mass transfer driven growth). It is worth remarking that the velocity of the
disperse phase appearing in Eq. (3.1) does not depend on the size of the elements.
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The kth-order moment of nL with respect to L is:

mk(t, x) =
∫ ∞

0
nL(t, x, L) Lk dL . (5.2)

As mentioned in Chapter 3, the lower-order moments of a given NDF are associated
with various integral properties of the population represented by that NDF. For
instance, in this case, the 3rd-order moment with respect to L is proportional to
the volume fraction of the disperse phase. The above moment definition can be
used to derive the moment transport equations from Eq. (3.1), as explained in
Chapter 3. For the sake of simplicity, from now on we assume a one-dimensional
case where the velocity is constant (ud) and the contribution of the continuous
processes is negligible (L̇ = 0). The transport equation for the kth-order moment
reduces to the following partial differential equation:

∂tm
k + ud∂xmk = S̄k . (5.3)

In general, the source term S̄k is a complex multidimensional integral that depends
on the NDF itself. In this regard, the QMOM can be used to close the moment
transport equations by approximating the NDF as a summation of some delta
functions centered on the quadrature abscissas (Lα):

nL(L) =
N∑

p=1
wpδ(L − Lp) . (5.4)

The weights and abscissas are determined from the transported moments by em-
ploying an inversion algorithm (such as the PD and Chebyshev algorithms), pro-
vided the set of moments is realizable. This is usually referred to as the moment
problem [140]: in particular, when the support of the NDF is ΩL =]0, +∞[ as in
this case, it is called finite Stieltjes moment problem. When the support of the
NDF is different, i.e. ΩL =] − ∞, +∞[ or ΩL =]0,1[, we refer to finite Hamburger
and finite Hausdorff moment problems, respectively. These three different supports
result in different constraints on the transported set of moments to ensure its real-
izability [139, 140]. However, the non-realizability problem is common to all these
cases and poses the main challenge in practical applications of the QMOM. In the
finite-volume method, this can happen particularly during the interpolation of the
moments on the faces to calculate the flux of the moments at faces if high-resolution
TVD schemes are employed.

5.1.2 Finite-Volume Method
As mentioned before, this chapter focuses on the realizability issue in the context

of the finite-volume method. The general formulation of the finite-volume method
can be found in the specialized literature [65, 172], and therefore is omitted here.
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Let a single-stage explicit method be adopted to march in time and the source terms
be handled using the fractional-step approach [65]. In this way, the finite-volume
method transforms Eq. (5.3) into the following discretized form, written for the
generic cell i of size ∆x in the spatial domain:

mk∗
i = mk

i − ∆t

∆x
(F k

i+1/2 − F k
i−1/2) , (5.5)

(mk
i )n+1 = mk∗

i − ∆t S̄k
i , (5.6)

where mk
i , mk∗

i and (mk
i )n+1 refer to, respectively, the moment value at the current

time (tn), the intermediate value of the fractional-step approach and the moment
value at the new time (tn+1) after a time step of ∆t. Furthermore, F k

i−1/2 and F k
i+1/2

denote the numerical flux along the left and right faces of the cell i respectively, each
depends on the neighboring cell values at time tn according to the selected numerical
flux function. From now on, our primary focus is on Eq. (5.5), particularly the
calculation of the flux of the moments at the faces. The effect of the source term
will be clarified afterwards.

It is desirable to calculate the fluxes using high-resolution schemes that are
formulated on the basis of slope-limiter methods. These methods use a high-order
scheme where the solution is smooth enough, otherwise they switch to a low-order
one to prevent non-physical oscillations in the numerical solution [65]. In this way,
the solution exhibits higher order of accuracy than the 1st-order solution, without
losing the boundedness. Using the Lax-Wendroff scheme as the high-order scheme
and the upwind scheme as the low-order one, we form the so-called flux-limiter
methods with the following numerical flux functions [65]:

F k
i−1/2 = u−

d mk
i + u+

d mk
i−1 + 1

2 |ud|
(

1 − |ud|∆t

∆x

)
ϕ(θk

i−1/2)∆mk
i−1/2 , (5.7)

F k
i+1/2 = u−

d mk
i+1 + u+

d mk
i + 1

2 |ud|
(

1 − |ud|∆t

∆x

)
ϕ(θk

i+1/2)∆mk
i+1/2 , (5.8)

where
u+

d = 1
2(ud + |ud|) and u−

d = 1
2(ud − |ud|) . (5.9)

In addition, ∆mk
i−1/2 and ∆mk

i+1/2 are respectively the jumps across the left and
right faces, defined following the below convention:

∆mk
i−1/2 = mk

i − mk
i−1 . (5.10)

The flux-limiter ϕ is a function of the smoothness of mk at the face (θk
i±1/2). The

smoothness is commonly defined as the following [65]:

θk
i−1/2 =

∆mk
I−1/2

∆mk
i−1/2

with I =
{

i − 1 if ū > 0
i + 1 if ū < 0 . (5.11)
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A variety of flux-limiter functions are available in the literature such as minmod
[173] and van Leer [174]. For instance, the minmod flux-limiter can be expressed
mathematically as written below [175]:

ϕ(θk
i−1/2) = max{0, min(θk

i−1/2, 1)} . (5.12)

Substituting the numerical fluxes in Eq. (5.5) yields the following discretized
equation:

mk∗
i = mk

i − ∆t

∆x
u+

d (mk
i − mk

i−1) − ∆t

∆x
u−

d (mk
i+1 − mk

i )

− 1
2

|ud|∆t

∆x

(
1 − |ud|∆t

∆x

) [
ϕ(θk

i+1/2)∆mk
i+1/2 − ϕ(θk

i−1/2)∆mk
i−1/2

]
. (5.13)

5.2 The Concept of Equal-Limiter
The flux-limiter methods have been developed to address the issue of bound-

edness that occurs in the case of employing high-order schemes to solve hyperbolic
problems. One would ideally desire to use these methods for the solution of the
moment transport equations, particularly when the 1st-order accuracy is not suf-
ficient to describe the behavior of the system under study. However, in general,
the non-realizability problem hinders their direct practice for the solution of mo-
ment transport equations. We intend to demonstrate that this limitation can be
overcome by selecting an equal limiter for all the moments.

The starting point is to show that the idea of equal-limiter emerges in the case
of employing 2nd-order TVD schemes for the pure moment advection with no source
term ((mk

i )n+1 = mk∗
i ) in a Riemann problem example. We also show that in this

case, the moments remain realizable. Then, the discussion continues to highlight
the advantage of employing equal-limiter in a more general context, where the effect
of aggregation and breakage is also taken into account.

The argument begins with rewriting Eq. (5.13) for the case ud > 0 without loss
of generality*:

(mk
i )n+1 = mk

i − νd(mk
i − mk

i−1)

− 1
2νd(1 − νd)

[
ϕ(θk

i+1/2)∆mk
i+1/2 − ϕ(θk

i−1/2)∆mk
i−1/2

]
, (5.14)

where νd = ud∆t/∆x is the Courant number. The smoothnesses at the left and
right faces are written following Eq. (5.11):

θk
i−1/2 = mk

i−1 − mk
i−2

mk
i − mk

i−1
and θk

i+1/2 = mk
i − mk

i−1
mk

i+1 − mk
i

. (5.15)

*The case ud < 0 can be formulated similarly and leads to the same conclusions
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Now let us consider a Riemann problem example with the following initial data:

mk(0, x) = ◦
m

k =
{ ◦

m
k
l if x < 0

◦
m

k
r if x > 0

, (5.16)

where ◦
m

k
l and ◦

m
k
r are the moments of the initial left and right NDFs, ◦

nL,l and ◦
nL,r,

and consequently constitute two realizable sets of moments. It is postulated that
the numerical solution of the kth-order moment at any generic cell i and any time
step tn, including the zero time, can be expressed as:

mk
i = ◦

m
k
r − an

i ( ◦
m

k
r − ◦

m
k
l ) and 0 ≤ an

i ≤ 1 , (5.17)

where an
i is a constant that changes with the cell index i and the time step but not

with the moment order or value. In other words, this constant is the same for all
the moments of a given cell at each time step. It is worth mentioning that the initial
data (Eq. (5.16)) corresponds to a0

i = 1 for xi < 0 and a0
i = 0 for xi > 0. Next

step is to substitute Eq. (5.17) in Eq. (5.14), which, after simplifications, yields the
following:

(mk
i )n+1 = ◦

m
k
r − an

i ( ◦
m

k
r − ◦

m
k
l ) + νd(an

i − an
i−1)(

◦
m

k
r − ◦

m
k
l )

+ 1
2νd(1 − νd)

[
ϕ

(
an

i − an
i−1

an
i+1 − an

i

)
(an

i+1 − an
i )

− ϕ

(
an

i−1 − an
i−2

an
i − an

i−1

)
(an

i − an
i−1)

]
( ◦
m

k
r − ◦

m
k
l )

= ◦
m

k
r − an+1

i ( ◦
m

k
r − ◦

m
k
l ) ,

(5.18)

and an+1
i collects several coefficients that do not depend on the moment values:

an+1
i =an

i − νd(an
i − an

i−1)

− 1
2νd(1 − νd)

[
ϕ

(
an

i − an
i−1

an
i+1 − an

i

)
(an

i+1 − an
i )

− ϕ

(
an

i−1 − an
i−2

an
i − an

i−1

)
(an

i − an
i−1)

]
.

(5.19)

Equation (5.19) has the same structure of Eq. (5.14), therefore, it appears that an
i

is the solution of an advection equation for the variable a obtained by the 2nd-order
TVD finite-volume scheme. As a consequence, it is guaranteed that an+1

i remains
bounded to the values of the previous time step, i.e. between 0 and 1. Now it can
be concluded that the postulated solution at time step tn is also valid at the next
time step, tn+1:

(mk
i )n+1 = ◦

m
k
r − an+1

i ( ◦
m

k
r − ◦

m
k
l ) , 0 ≤ an+1

i ≤ 1 . (5.20)
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As mentioned before, the initial data (Eq. (5.16)) can be expressed by Eq. (5.17),
therefore, the postulated solution is indeed the solution of Eq. (5.14) at any time
step with the initial data defined by Eq. (5.16). Moreover, it can be proved that
the solution guarantees the realizability of the moments at any time step if the
initial set is realizable. To proceed with the proof, the following notation is used
for representing the set of moments:

W =
[
m0 m1 ... m2N−1

]T
. (5.21)

It is worth reiterating that N is the number of quadrature nodes. The set of
moments can be defined as below:

W =
∫ ∞

0
nLq(L) dL , (5.22)

where q(L) = [L0 L1 ... L2N−1]T .
Equation (5.20) can be written for the set of moments by using the notation intro-
duced in Eq. (5.21):

Wn+1
i =

◦
Wr − an+1

i (
◦

Wr −
◦

Wl) . (5.23)
It should be emphasized that Eq. (5.23) is derived based on the fact that an+1

i

is identical for all the moments. The proof follows by substituting Eq. (5.22) in
Eq. (5.23) and performing some manipulations:∫ ∞

0
nn+1

L,i q(L) dL =
∫ ∞

0

[
(1 − an+1

i ) ◦
nL,r + an+1

i
◦
nL,l

]
q(L) dL (5.24)

or
nn+1

L,i = (1 − an+1
i ) ◦

nL,r + an+1
i

◦
nL,l . (5.25)

The above equation guarantees the non-negativity of the nn+1
L,i because both ◦

nL,r

and ◦
nL,l are defined to be non-negative NDFs and 0 ≤ an+1

i ≤ 1. Consequently, the
moment set of cell i at time step tn+1 is realizable, see [64].

Returning back to the equal-limiter concept, it is previously highlighted that
an identical an+1

i for all the moments is essential to keep the moment set realizable
in a Riemann problem example. The identical an+1

i originates, in turn, from the
equal limiters calculated at the left and right faces (i.e., Eq. (5.18)):

ϕ(θk
i−1/2) = ϕ

(
an

i−1 − an
i−2

an
i − an

i−1

)
and ϕ(θk

i+1/2) = ϕ

(
an

i − an
i−1

an
i+1 − an

i

)
. (5.26)

When source terms are present, the limiters are not generally identical for all the
moments, because in this case, the smoothness of the moments may change differ-
ently and this may cause the non-realizability of the transported moment set. This
suggests to find a technique to employ an identical limiter in the calculation of the
moment fluxes at the faces.
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Again Eq. (5.13) is rewritten for the case of ud > 0 (here a local Riemann
problem is solved at each face of cell i):

mk∗
i = mk

i − νd(mk
i − mk

i−1)

− 1
2νd(1 − νd)[ϕ(θk

i+1/2)∆mk
i+1/2 − ϕ(θk

i−1/2)∆mk
i−1/2] , (5.27)

which can be rearranged by collecting the terms containing the moment of cells
i − 1, i and i + 1 as follows:

mk∗
i = Bk

i mk
i−1 + Ck

i mk
i − Dk

i mk
i+1 (5.28)

with

Bk
i = νd − 1

2νd(1 − νd)ϕ(θk
i−1/2)

Ck
i = 1 − νd + 1

2νd(1 − νd)[ϕ(θk
i+1/2) + ϕ(θk

i−1/2)]

Dk
i = 1

2νd(1 − νd)ϕ(θk
i+1/2) . (5.29)

Writing Eq. (5.28) for the set of moments of order k = 1, 2, ..., 2N − 1 yields:⎛⎜⎜⎜⎜⎝
m0∗

i

m1∗
i
...

m2N−1∗
i

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
B0

i m0
i−1

B1
i m1

i−1
...

B2N−1
i m2N−1

i−1

⎞⎟⎟⎟⎟⎠
  

set i-1

+

⎛⎜⎜⎜⎜⎝
C0

i m0
i

C1
i m1

i
...

C2N−1
i m2N−1

i

⎞⎟⎟⎟⎟⎠
  

set i

−

⎛⎜⎜⎜⎜⎝
D0

i m0
i+1

D1
i m1

i+1
...

D2N−1
i m2N−1

i+1

⎞⎟⎟⎟⎟⎠
  

set i+1

.

(5.30)
The three sets of moments in Eq. (5.30) can easily become non-realizable because,
in general, the coefficients Bk

i as well as Ck
i and Dk

i might differ from one moment to
another (belonging to the same moment set) as a consequence of unequal limiters.
Marchisio and Fox [57] showed that a small change in just one moment can make a
consistent set of moments non-realizable. However, if identical limiters are selected
to estimate the fluxes of all the moments at the left and right faces, Eq. (5.30) can
be written as follows:∫ ∞

0
n∗

L,iq(L) dL =
∫ ∞

0
(BinL,i−1 + CinL,i − DinL,i+1)q(L) dL (5.31)

or
n∗

L,i = BinL,i−1 + CinL,i − DinL,i+1 , (5.32)
where Bi as well as Ci and Di are defined as below by choosing an equal limiter at
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the left face, ϕ(θi−1/2), and one at the right face, ϕ(θi+1/2), for all the moments:

Bi = νd − 1
2νd(1 − νd)ϕ(θi−1/2)

Ci = 1 − νd + 1
2νd(1 − νd)[ϕ(θi+1/2) + ϕ(θi−1/2)]

Di = 1
2νd(1 − νd)ϕ(θi+1/2) . (5.33)

It should be noted that there is still no proof for the moment realizability in the
case of employing equal limiters when source terms in the moment transport equa-
tion are present, because the last term in Eq. (5.32) is negative [62, 64]. However,
the contribution of the negative term can be kept small enough through adjusting
the time step since the coefficient Di diminishes as the time step is reduced to zero.
In other words, the non-realizability problem can be prevented by adjusting the
time step, whereas it can arise easily regardless of the time step if the limiters are
calculated independently. One should be careful when the moment sets lie on the
boundary of the moment space. In this case, the underlying number density func-
tions are indeed some point distributions, i.e. summation of some weighted delta
functions. Therefore, if the moment sets in Eq. (5.30) are near or on the boundary
of the moment space, reduction of the time step cannot resolve the realizability
issue since the supports of the corresponding underlying number density functions
in Eq. (5.32) may hardly match each other. A possible remedy can be adopting
the 1-D adaptive quadrature technique proposed by Yuan and co-workers [148]. By
this technique, the maximum number of quadrature nodes is selected in such a way
that the moments required to calculate the quadrature weights and abscissas form
a set that is located in the interior of the moment space.

The final point to be addressed is the choice of an equal flux-limiter at each
face. In fact, the constraint on the boundedness of the solution narrows the choice
of the equal flux-limiter. As mentioned before, the 2nd-order TVD schemes have
the notable feature of preserving the solution bounded. It is extremely useful for
the QMOM since the low-order moments are proportional to physical properties
that are bounded in nature, such as mean size, surface area and volume fraction.
Harten [176] established the sufficient criteria for a scheme to be TVD, which
provide constraints on the flux-limiter functions:⎧⎨⎩ϕ(θ) = 0 if θ < 0

0 ≤ ϕ(θ) ≤ min(2θ,2) if θ ≥ 0
. (5.34)

Figure 5.1 represents these constraints graphically (shaded area) following the work
of Sweby [175]. Moreover, it depicts the 2nd-order region proposed by Sweby [175]
(hatched area) within which the flux-limiter functions lie. Two examples of such
functions are shown by the solid line (minmod limiter [173]) and the dashed line
(van Leer limiter [174]).
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Figure 5.1: Flux-limiter functions. The shaded area specifies the TVD region and the
hatched area is the 2nd-order region by Sweby [175]. The minmod [173] and van Leer
[174] limiter functions are shown by the continuous and dashed curves respectively.

The flux-limiter functions in the literature share the common feature of being
non-decreasing functions of θ. Using this feature, it is simple to show that the
smallest flux-limiter among all the limiters of the moments is an obvious choice
that guarantees the boundedness of all the moments. The flux-limiters calculated
independently by a general limiter function at a given face, e, can be represented
as ϕ(θk

e ) with k = 0,1, ...,2N − 1. These limiters respect the conditions expressed
in Eq. (5.34): ⎧⎨⎩ϕ(θk

e ) = 0 if θk
e < 0

0 ≤ ϕ(θk
e ) ≤ min(2θk

e ,2) if θk
e ≥ 0

. (5.35)

Suppose that ϕmin
e denotes the limiter with the minimum value:

ϕmin
e = ϕ(θm

e ) ≤ ϕ(θk
e ) for k = 0,1, ...,2N − 1 , (5.36)

where
θm

e ∈ {θk
e | k ∈ {0,1, ...,2N − 1}} , (5.37)

and since the flux-limiter functions are non-decreasing:

θm
e ≤ θk

e for k = 0,1, ...,2N − 1 . (5.38)

In addition, the upper boundary of the TVD region shown in Eq. (5.35), min(2θk
e ,2),

is a non-decreasing function, therefore:

min(2θm
e ,2) ≤ min(2θk

e ,2) for k = 0,1, ...,2N − 1 , (5.39)
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since ϕmin
e respects the conditions specified in Eq. (5.35), it can be concluded that:

0 ≤ ϕmin
e ≤ min(2θk

e ,2) for k = 0,1, ...,2N − 1 , (5.40)

in other words, ϕmin
e falls always in the TVD region specified in Figure 5.1 for all the

moments. As a result, the moments remain bounded using this limiter, following
the proof given by Harten [176].

It should be mentioned that, in general, the minimum limiter can fall outside the
2nd-order region of Sweby for some moments, hence resulting in solutions with accu-
racy of lower order. Nevertheless, the numerical results reported in the next section
show remarkable improvements in comparison to the 1st-order solutions. More im-
portantly, the results indicate a significant advantage of the proposed scheme over
the realizable high-order scheme of Vikas et al. [62] since it is able to produce
bounded solutions.

5.3 Application to CFD Codes
This section focuses on the application of the equal-limiter scheme to CFD codes,

which is indeed our ultimate goal of introducing this scheme. For this purpose, the
following three-dimensional conservative transport equation is considered for the
kth-order moment:

∂tm
k + ∂x · (Udmk) = 0 . (5.41)

The source term is not included since the focus is only on the advection of the
moments. In the context of finite volume methods, Eq. (5.41) is integrated over
the volume of each computational cell and then the integral of the convective term
over the volume of each cell is replaced with the net flux of the kth-order moment
through the faces of that cell (Gauss’s theorem). Therefore, the following semi-
discretized equation is obtained for a generic cell i [172]:

dmk
i

dt
+ 1

∆V i

∑
e

(Ud,e · n̂e)Sem
k
e = 0 , (5.42)

where mk
e and Ud,e are the moment of order k and the velocity at a generic face e

of cell i respectively. In addition, n̂e and Se denote respectively the outward unit
normal vector and the surface area of face e and ∆V i is the volume of cell i. The
transient term in Eq. (5.42) is not discretized for the reason that becomes clear
later. In CFD codes, the flux of the velocity field at the cell faces, i.e. (Ud,e · n̂e)Se,
is generally known. However, the value of the moments at the faces (mk

e) is not
available and should be interpolated from the values at the centers of neighbouring
cells.

It is common to interpolate the fields from cell centers to faces by employing
a high-resolution TVD scheme. The idea behind these schemes is to increase the
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accuracy and, simultaneously, preserve the monotonicity. A high-resolution TVD
scheme can be thought of as a combination of a high-order scheme and a 1st-order
monotone one. The high-order contribution is more important where the solution
is smooth, while the 1st-order contribution prevails near the discontinuities. The
implementation of high-resolution TVD schemes in CFD codes is usually on the
basis of central-difference (CD) scheme, of which the anti-diffusive contribution is
limited to prevent oscillations in the solution [177, 178]:

mk
e = mk

U
upwind

+ ϕk
e λe(mk

D − mk
U)  

anti-diffusive flux

, (5.43)

where mk
U and mk

D refer to the values of the moment of order k at the centers of the
upwind and downwind cell neighbours of face e, respectively. The selection of the
upwind and downwind cells is based on the direction of the velocity field at face e
(see Figure 5.2), which is the same for all the moments. In addition, the coefficient
λe takes on a positive constant value between 0 and 0.5, which depends on the
distances between the center of face e and the centers of the two neighbouring
cells. The second term on the right-hand side of Eq. (5.43) is the anti-diffusive
flux, which decreases the numerical diffusion of the upwind contribution (the first
term on the right-hand side of Eq. (5.43)). However, the anti-diffusive term is
limited by ϕk

e to avoid any non-physical over- or under-shoots appearing in the
results. The smoother becomes the profile of the transported moment, the larger
is the value of the limiter, until it reaches the maximum imposed by the limiter
function (one in the case of minmod flux-limiter). Therefore, the interpolation
scheme expressed by Eq. (5.43) can change from the upwind scheme (ϕk

e = 0) to
the CD scheme (ϕk

e = 1) as the smoothness increases. It is worth reiterating that
ϕk

e depends on the smoothness of the transported moment of order k near face e
determined by Eq. (5.11). However, in unstructured meshes, the determination
of the smoothness (θk

e ) is not generally straightforward, particularly due to the
difficulty in recognising the far upwind cell for face e, e.g. cell "UU" in Figure 5.2.
The reader is referred to the work by Jasak et al. [179] for more detail on the
estimation of θk

e in arbitrarily unstructured meshes. It is noteworthy that the same
method is adopted in OpenFOAM software.

UU U e D

velocity

Figure 5.2: One-dimensional schematic diagram of a finite-volume cell
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The value of the limiter depends on the local profile of the variable and it can
be very different for the various transported variables. Unfortunately, this aspect
may give rise to the non-realizability problem of the moments, when standard
TVD schemes (Eq. (5.43)) are applied independently for the convection of different
moments [62, 64].

The advantage of employing an identical limiter can be illustrated by rearrang-
ing Eq. (5.43) and writing it for a set of 2N − 1 moments as follows:⎛⎜⎜⎜⎜⎝

m0
e

m1
e

...
m2N−1

e

⎞⎟⎟⎟⎟⎠
  

set e

=

⎛⎜⎜⎜⎜⎝
(1 − λeϕ

0
e)m0

U

(1 − λeϕ
1
e)m1

U
...

(1 − λeϕ
2N−1
e )m2N−1

U

⎞⎟⎟⎟⎟⎠
  

set U

+

⎛⎜⎜⎜⎜⎝
λeϕ

0
em

0
D

λeϕ
1
em

1
D

...
λeϕ

2N−1
e m2N−1

D

⎞⎟⎟⎟⎟⎠
  

set D

. (5.44)

Since the limiters for different moments, ϕ0
e, ϕ1

e, . . . , ϕ2N−1
e are not generally the

same, the moment sets "U" and "D" can easily become non-realizable, leading to
the non-realizable set of interpolated moments at face e. However, selecting an
identical limiter, let it be ϕmin

e , guarantees the realizability of the interpolated
moment set e, as long as the moment sets "U" and "D" are realizable:⎛⎜⎜⎜⎜⎝

m0
e

m1
e

...
m2N−1

e

⎞⎟⎟⎟⎟⎠
  

set e

= (1 − λeϕ
min
e )

⎛⎜⎜⎜⎜⎝
m0

U

m1
U
...

m2N−1
U

⎞⎟⎟⎟⎟⎠
  

set U

+λeϕ
min
e

⎛⎜⎜⎜⎜⎝
m0

D

m1
D
...

m2N−1
D

⎞⎟⎟⎟⎟⎠
  

set D

. (5.45)

It is worth reiterating that the value of limiter ϕmin
e is between 0 and 2. Moreover,

the moment sets "U" and "D" belong to the previous time step if an explicit method
is used to advance in time, and therefore they are realizable.

It should be noted that the realizability of the interpolated moments on the
faces does not ensure the realizability of the calculated moments at the new time
step. To elaborate, let the transient term in Eq. (5.42) be integrated using an
explicit Euler scheme [172] and then write the fully-discretized equation for the set
of 2N − 1 moments:

Wn+1
i = Wn

i − ∆t

∆V i

∑
e

(Un
d,e · n̂e)SeWn

e . (5.46)

The use of an identical limiter for all the moments guarantees that the moment set
Wn

e be realizable, and therefore an underlying number density function (nn
L,e) can

be associated with it. This allows us to write Eq. (5.46) as the following:

nn+1
L,i = nn

L,i − ∆t

∆V i

∑
e

(Un
d,e · n̂e)Sen

n
L,e . (5.47)
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The summation in the above equation can be separated into two contributions of
in-going and out-going fluxes:

nn+1
L,i = nn

L,i − ∆t

∆V i

∑
e

min[(Un
d,e · n̂e), 0]Sen

n
L,e  

in-going fluxes

− ∆t

∆V i

∑
e

max[(Un
d,e · n̂e), 0]Sen

n
L,e  

out-going fluxes

.

(5.48)
The in-going fluxes have positive sign and cannot rise the realizability issue, whereas,
the outgoing fluxes have negative sign and can cause realizability issue, i.e. negativ-
ity of nn+1

L,i . However, the out-going fluxes can be still decomposed into two separate
upwind and downwind contributions corresponding to the upwind and downwind
neighbouring cells of the corresponding faces. It is noteworthy that the upwind cell
of these faces indeed coincides with cell i since the flux at these faces is out-going.
Thus, the first and third terms on the right-hand side of Eq. (5.48) can be written
as follows:(

1 − (1 − λeϕ
min
e ) ∆t

∆V i

∑
e

max[(Un
d,e · n̂e), 0]Se

)
nn

L,i

− (1 − λeϕ
min
e ) ∆t

∆V i

∑
e

max[(Un
d,e · n̂e), 0]Sen

n
L,De

, (5.49)

where nn
L,De

denotes the (downwind) neighbouring cell separated by face e from cell
i. As can be seen, the entire contribution of the cell i is positive as long as the
coefficient behind nn

L,i is positive, leading to the following CFL-like condition:

∆t

∆V i

∑
e

max[(Un
d,e · n̂e), 0]Se < 1 (5.50)

Therefore, the only remaining negative contributions are due to the information
(distributions) of the downwind cells (with respect to cell i) that propagates back
into cell i, which is the characteristic of high-order schemes. These negative contri-
butions can generally lead to the realizability issue, i.e. negativity of nn+1

L,i . However,
as discussed previously for the one-dimensional constant-velocity case, the negative
contributions can be kept small (in comparison to the contribution of nn

L,i) by con-
trolling the time step. It is noteworthy that this technique may fail when the
moment sets are near/at the boundary of the moment space, as explained before.
Returning back to the time-integration of the transient term in Eq. (5.42), it should
be noted that one notable advantage of the equal-limiter scheme is the possibility
of using implicit time-integration for the advection of the moments. This is due to
the fact that the equal-limiter scheme interpolates the moments directly, whereas,
for instance, the quasi-high-order scheme is normally implemented by using explicit
time-integration schemes.

Last, the proposed technique is very simple from the computational point of
view and can be easily implemented in three-dimensional CFD solvers. The only
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additional steps are comparing the limiter values calculated for the moments at
each face and then replacing all of them with the smallest one.

5.4 Numerical Examples
This section evaluates the performance of the proposed technique for the ad-

vection of moments in two different parts. The first one is focused on comparing
the predictions obtained by three schemes for the advection of the moments in a
mono-dimensional constant-velocity problem. The second part evaluates the per-
formance of the schemes by solving the moment transport equations coupled with
the CFD simulation of a two-dimensional transient lid-driven cavity flow. In both
parts, the results obtained by the equal-limiter scheme are compared with those
obtained by the 1st-order upwind scheme and the quasi-2nd-order scheme by Vikas
et al. [62]. These schemes are described in the following:

Upwind scheme. The upwind scheme assumes that the value on the face is
equal to the value of the cell located at the upstream side of the face. Referring to
Figure 5.2:

mk
e = mk

U . (5.51)
It is commonly employed to solve the moment transport equations, since it is proved
to preserve the realizability of the moment set provided the CFL condition is re-
spected [64]. Moreover, the upwind scheme satisfies the monotonicity condition, i.e.
a monotonic distribution before advection remains monotonic after advection [65].
The main drawbacks of the scheme are the 1st-order accuracy and the significant
numerical diffusion appearing in the results, especially when coarse computational
grids are used.

Quasi-2nd-order realizable scheme. Vikas and co-workers [62] presented an ap-
proach to develop realizable high-order schemes that are applicable to the QBMM.
The central idea is to interpolate the quadrature weights and abscissas separately
and then to evaluate the moment fluxes by using the interpolated weights and
abscissas. They proved that the moments remain realizable when the quadrature
abscissas are interpolated using the upwind scheme whereas the quadrature weights
are interpolated using a high-order TVD scheme, provided the time-step (∆t) fulfills
the following criterion:

∆t ≤ ∆Vi × wn
i,p∑

e wn
e,p max(Un

d,e · n̂e, 0)Se

∀p ∈ 1, 2, . . . , N , (5.52)

where wn
i,p and wn

e,p are cell and face values of the weight of the quadrature node p.
The above criterion should be fulfilled in all the cells of the simulation domain.

The implementation of this scheme includes the following steps:
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5 – Scheme for Advection of Moments

1. Calculate the quadrature abscissas and weights from the moments in each cell
by applying the inversion algorithm.

2. Interpolate the quadrature abscissas on the faces using the upwind scheme.
3. Interpolate the quadrature weights on the faces by employing the high-resolution

TVD scheme with minmod flux-limiter described in the previous section.
4. Reconstruct the moments on the faces by inserting the interpolated abscissas

and weights of the quadrature into Eq. (3.23).
Last, it is noteworthy that the quasi-2nd-order scheme does not necessarily re-

spect the boundedness criteria established by Harten [176].

5.4.1 One-Dimensional Advection with Constant-Velocity
This part employs the equal-limiter scheme for the advection of moments in

spatially mono-dimensional problems with the disperse particle size as the only
internal coordinate of the PBE. The first example deals with the pure advection
of the moments without any source term, while the next examples include the
aggregation/breakage source terms in the moment transport equations.

All the cases use a 3-node quadrature to approximate the NDF. This number
of nodes requires to track the first 6 moments with respect to the particle size,
m0, m1, ..., m5. The calculation of the weights and nodes is done by using the
Chebyshev algorithm. The spatial problems are defined over the spatial domain
[0,1], which is discretized to cells of identical size ∆x = 0.01. The fluxes at the faces
are calculated by using high-resolution limited-flux methods. The limiters, in turn,
are computed using the minmod function, as it was also used by Vikas et al [62].
Two ghost cells at the left side of the domain and one ghost cell at the right side
are considered to cope with the three-cell stencil required by the employed high-
resolution schemes. The advection velocity, ud, is set to 1.0 and ∆t is calculated
by fixing the CFL condition equal to 0.5. The following solution procedure is used
to advance in time, starting from the initial data, which is based on the explicit
fractional-step method for the time integration:

1. Initialize the moments in the interior domain.

2. Apply the boundary conditions at the two left ghost cells.

3. Calculate the limiters for all the moments at each face.

4. Find the minimum limiter at each face.

5. Calculate the flux of the moments using the minimum limiter at each face.

6. Compute the intermediate values of the moments at each interior cell using
the fluxes at the corresponding left and right faces after a time step equal to
∆t.

100



5.4 – Numerical Examples

7. Find the weights and the nodes of the quadrature at each interior cell using
the intermediate values of the moments.

8. Calculate the source contributions at each interior cell using the corresponding
quadrature approximation of the NDF.

9. Advance the intermediate values of the moments at each interior cell by one
time step ∆t using the calculated source terms.

10. Apply the boundary condition at the right ghost cell using zero-order extrap-
olation from the last interior cell of the domain.

11. Repeat steps 3 to 10 until obtaining the solution at the desired time.

Steps 8 and 9 (fractional-step approach) are obviously required only if source terms
are present. In this thesis, the source terms are treated by a single-stage method
as explained in steps 8 and 9. However, these steps can be modified to use a
two-stage method, leading to higher accuracy for the fractional-step approach as
explained by LeVeque [65]. It should be emphasized that this suggestion concerns
the application of two-stage methods only for updating the intermediate moments
by the source terms. Therefore, no realizability issue is generally expected in the
case of using two-stage methods instead of one-stage method only to treat the source
terms, provided that the intermediate moments after the advection are realizable.
Furthermore, step 7 is done even in the case without source term to check the
realizability of the moments.

More details on the problem settings are presented for each case separately.

Pure advection of the moments

The first example is the one-dimensional pure advection of the moments, i.e. no
source term, with the following initial and boundary conditions:

IC : mk(0, xi) = ◦
m

k for i = 0, 1, 2, ..., p

BC (ghost cells) :
{

mk(tn, x−1) = mk(tn, x−2) = mk
b

mk(tn, xp+1) = mk(tn, xp) , (5.53)

where the interior cells are numbered from 0 to p. The initial conditions ◦
m

k and the
boundary conditions mk

b are two sets of scaled moments having the shape of different
log-normal distributions,

◦
Y and Yb. The parameters of the distributions, i.e. the

mean and the standard deviation of the corresponding normal distributions, are
respectively ( ◦

µ,
◦
σ) = (ln(0.008), 0.22) and (µb, σb) = (ln(0.005), 0.2). Furthermore,

the zero-order moments are ◦
m

0 = 20000 and m0
b = 800000 respectively. It should be

noted that the two log-normal distributions have different parameters to avoid their
quadrature approximations having the same nodes. Otherwise, the interpolated
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nodes on the faces are identical to those of the cells regardless of the employed
scheme. Then, it is trivial to show that, in this special case, the quasi-2nd-order
scheme proposed by Vikas et al. [62] is essentially the same as applying the 2nd-
order scheme directly to the moments.

Figure 5.3 compares the results obtained by employing the 1st-order scheme,
quasi-2nd-order scheme and the proposed equal-limiter scheme. Furthermore, the
analytical solution is plotted in Figure 5.3 to provide a benchmark. It is pointless
to report the results by the standard 2nd-order TVD scheme since, as proved before,
the corresponding results would be identical to those obtained by the equal-limiter
scheme in this example. As expected, the solution given by the 1st-order scheme is
very diffusive. The quasi-2nd-order scheme improves the accuracy of the results by
applying the 2nd-order scheme to the weights. However, applying a TVD scheme
to the weights does not guarantee the boundedness of the transported moments,
hence the appearance of the non-physical oscillations in the solutions. The least
oscillations belong to the moment of order zero as expected, since it is simply equiv-
alent to the sum of the weights, the variable to which the TVD scheme is applied in
the quasi-2nd-order scheme. The oscillations become more intense as the moment
order increases. It should be noted that, according to our tests, the oscillations
may increase or vanish depending on the characteristics of the underlying NDFs.
The best predictions belong to the equal-limiter scheme, which is indeed the full
2nd-order TVD scheme since this numerical example is the same as the pure ad-
vection Riemann problem studied in Section 5.2. Consequently, the predictions are
bounded and without any oscillation.

Moment advection with source term

The next examples deal with a more practical application. The moments of
a particle size distribution are introduced and advected in the domain while they
are subject to local changes due to the effect of the aggregation/breakage of the
particles. The initial and boundary conditions are the same as the case of pure
advection (see Eq. (5.53)). In the following, two cases are presented, in which
the aggregation and breakage are considered separately. Both aggregation and
breakage are modelled by assuming a constant kernel. For the case of breakage, the
daughter size distribution is expressed by assuming the symmetric fragmentation
of the particles [112]. The reasoning behind these simplistic assumptions is the
possibility of obtaining analytical solutions for the moments of the NDF.

Constant aggregation kernel. In this case, the source term in Eq. (5.6) is
calculated as below [112]:

S̄k
i = 1

2

3∑
p=1

wi,p

3∑
q=1

wi,q(L3
i,p + L3

i,q)k/3 a −
3∑

p=1
Lk

i,pwi,p

3∑
q=1

wi,q a , (5.54)
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Figure 5.3: Comparison of the results obtained by employing different schemes for
the case of pure advection: 1) analytical solution (dot-dashed line); 2) upwind scheme
(continuous line); 3) quasi 2nd-order scheme (dotted line); 4) equal-limiter scheme (dashed
line)

where a = 10−5 (m3 · s−1) is the aggregation kernel.
The solutions obtained by the studied schemes are shown in Figure 5.4. As

it can be seen, both the quasi-2nd-order and equal-limiter schemes improve the
accuracy of the results with respect to the 1st-order scheme. It is notable that,
despite employing the minimum limiter, the equal-limiter scheme produces almost
comparable results to those of the quasi-2nd-order scheme. Moreover, the solutions
of m3 indicate that only the 1st-order and equal-limiter schemes are bounded, as
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Figure 5.4: Comparison of the results obtained by employing different schemes for the
case of constant aggregation kernel: 1) analytical solution if available (dot-dashed line); 2)
upwind scheme (continuous line); 3) quasi 2nd-order scheme (dotted line); 4) equal-limiter
scheme (dashed line)

expected. Instead, a slight degree of over- and under-shoot exists in the solution
of the quasi-2nd-order scheme. The appearance of these spurious oscillations is
certainly due to the numerics as both the aggregation and breakage of the particles
have no effect on the moment of order three with respect to the particle size.
Although no analytical solution is available for m5, some degree of over- and under-
shoots can be observed visually in the solution obtained by the quasi-2nd-order
scheme. Again it can be seen that the amplitude of the oscillations are intensified
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as the moment order increases. It is worth mentioning that employing the standard
2nd-order TVD scheme is not feasible because the moments get corrupted shortly
after starting the simulation and consequently the Chebyshev algorithm fails to
calculate the weights and the abscissas required for the source calculation. Even
reducing the time step by a factor of 100, equivalent to an impractically small
CFL value of 0.005, cannot remedy the non-realizability problem. This shows the
effectiveness of the proposed equal-limiter scheme in preserving the realizability of
the moments when the 2nd-order TVD schemes are employed.

Symmetric constant breakage kernel. In this case, the source term in Eq. (5.6)
is calculated as below [112]:

S̄k
i =

3∑
p=1

wi,p2(3−k)/3Lk
i,p b −

3∑
p=1

wi,pLk
i,p b , (5.55)

where b = 4 (s−1) is the breakage kernel.
Figure 5.5 depicts the results provided by the studied schemes along with the

analytical solutions. The same comments presented for the case of pure aggregation
apply also to this case with the difference that here the oscillating behavior of the
quasi 2nd-order scheme is more intense. This further highlights the advantage of the
equal-limiter scheme whenever the boundedness of the solution is strictly required.
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Figure 5.5: Comparison of the results obtained by employing different schemes for the
case of symmetric constant breakage kernel: 1) analytical solution (dot-dashed line); 2)
upwind scheme (continuous line); 3) quasi 2nd-order scheme (dotted line); 4) equal-limiter
scheme (dashed line)

5.4.2 Pure Advection in Two-Dimensional Transient Flow
The previous part presents satisfactory results obtained by the equal-limiter

scheme in some examples based on the one-dimensional constant-velocity Riemann
problem. However, it is important to examine the predictions obtainable by the
proposed scheme in systems with higher dimensions and realistic flow fields, e.g.
non-uniform and/or transient velocity. For this purpose, a familiar two-dimensional
transient flow, known as the lid-driven cavity, is selected to compare the results for
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the pure advection of moments obtained by employing the upwind, quasi-2nd-order
and equal-limiter schemes. The moments belong to a distribution that represents a
population of micro-droplets transported by a carrier liquid. The micro-droplets are
assumed to have negligible inertia and therefore they move with the same velocity
as the carrier liquid.

The simulation domain is a square with the length (Lw) of 10 cm and it is
discretized by a structured uniform Cartesian grid comprising of 10000 square cells
of size 1 mm. The flow is confined by four boundaries of type wall, of which the
top one moves with the velocity (Uw) of 1 m/s while the others are fixed. The
kinematic viscosity of the liquid (νl) is set to 2.5 × 10−4 (m2/s), which results to
Reynolds number of 400 defined by UwLw/νl. The liquid is assumed to be stagnant
at time zero and then a transient flow develops due to the constant velocity (Uw)
applied at the top wall.

The transient simulations are done by using the icoFoam solver of OpenFOAM,
which solves the governing (constant-density) Navier-Stokes equations for the liquid
phase numerically by using the PISO algorithm [172]. The time step is set to 0.0001
(s) to keep the maximum Courant number below 0.1. The solution of the velocity
field at three time instants are shown in Figure 5.6. The solver is modified to solve
simultaneously the moment transport equations. At the beginning of each time
step, the moments of the micro-droplet population are advected in time by using
the velocity field of the previous time step. Then, the flow field of the liquid phase is
updated by using the PISO algorithm. Regarding the advection of the moments, as
mentioned in Section 5.3, the implicit Euler time-integration can be used with the
advection schemes that deal with the moments directly, and therefore is adopted
here when the upwind and equal-limiter schemes are employed. In contrast, the
quasi-2nd-order scheme is implemented with Euler explicit time-integration. The
minmod limiter function is used for the interpolation of quadrature weights in the
case of employing the quasi-2nd-order scheme and for the interpolation of moments
in the case of employing the equal-limiter scheme.

Figure 5.6: Velocity field (m/s) of the simulated two-dimensional lid-driven cavity flow
at three time instants.
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Two different cases corresponding to two different initial conditions for the mo-
ments are considered. The first initial condition is defined such that there is no
micro-droplets in all the domain except for a square patch where a population of
micro droplets with the average size of 100 µm and standard deviation of 20 µm
is introduced. The population is assumed to be distributed log-normally on the
size space. The initial conditions for the moments are calculated based on this
log-normal distribution scaled to adjust the volume fraction of the micro-droplets
equal to 0.05 (assuming the spherical shape for the micro-droplets). Figure 5.7
depicts the initial conditions for the moment of order three, along with the solu-
tions for the same moment at t = 3 s obtained by employing the 1st-order upwind,
quasi-2nd-order and equal-limiter schemes. As can be seen, the solution obtained
by the upwind scheme suffers from a high numerical diffusion. In contrast, both
the quasi-2nd-order and equal-limiter schemes yield comparable results, which have
higher resolution with respect to the one obtained by the upwind scheme. It is
noteworthy that the same contour plots (but of different values) are obtained for
the other moments, which is expected since the shape of the distribution corre-
sponding to the underlying NDF remains the same in this pure advection problem.
As a result, the abscissas of the quadrature approximation are the same in all the
cells of the domain.

As mentioned previously, the quasi-2nd-order scheme interpolates the abscissas
of the quadrature with a 1st-order scheme, whereas it interpolates the weights of
the quadrature with a 2nd-order scheme. Therefore, when the quadrature abscissas
are the same throughout the domain, the entire resolution of the quasi-2nd-order
scheme is the same as the 2nd-order scheme. The reason is that the value of abscissas
on the faces are the same as those at the cell centers regardless of the employed
scheme and consequently interpolating the weights with a given 2nd-order scheme
onto the faces and then calculating the moments on the faces (using the same
abscissas) is equivalent to interpolating the moments directly onto the faces using
that 2nd-order scheme. However, this equivalency is not generally valid when the
abscissas are not the same through the domain. Thus, it is worth examining the
performance of the schemes in the case of co-existing two different distributions, i.e.
having different quadrature abscissas, in the system at time zero. For this purpose,
the same square patch (with the same population of micro-droplets) defined by
the initial conditions of the previous case is considered also here. However, it is
assumed that another population of micro-droplet exists outside the square patch,
instead of assuming no micro-droplet existing in that zone. Let the population
of micro-droplets out of the square patch be also distributed log-normally on the
size space with the average size equal to 50 µm and the standard deviation of 7.5
µm. This distribution is scaled to have the volume fraction of the micro-droplets
equal to 0.001. Then, the initial condition of the moments is defined based on this
scaled distribution, as shown in Figures 5.8 and 5.9 for the moments of order zero
and three respectively. Moreover, the predictions at t = 3 s are depicted by these
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Figure 5.7: Comparison of the studied schemes for the advection of m3 in the two-
dimensional cavity flow. (a) The initial condition at t = 0; (b) the predictions obtained
by employing the different schemes at t = 3.

figures for the mentioned moments. As it can be seen in Figure 5.8, the values
of m0 obtained by employing the quasi-2nd-order scheme do not remain bounded
between the limits defined by the initial conditions. It is noteworthy that in the
QBMM, the transported variables are indeed the moments and therefore in a pure
advection with a solenoidal velocity field, the solution for the moments should
remain bounded between the limits defined by the initial conditions. This issue
concerning the quasi-2nd-order scheme can be associated with the fact that this
scheme interpolates the weights and abscissas of the quadrature separately, and
therefore there is no guarantee that the TVD criteria [176] are respected by this
scheme. In contrast, the solution obtained by the equal-limiter scheme (when it is
used with the minimum limiter) respects the boundedness property of the moments.
Moreover, the applied change in the initial condition of the moments should not
change the pattern of the solution contour plots, since the current initial condition
with the two distributions can be changed to a problem with initial condition similar
to the previous case (micro droplets existing only in a square patches) by a change
of variables. However, the comparison between the results shown in Figure 5.9
with those depicted in Figure 5.7 highlights that only the equal-limiter scheme
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reproduces the same pattern for m3 in both cases. In addition, the pattern of the
results obtained by the equal-limiter scheme for m0 and m3 shown in Figures 5.8
and 5.9 are the same, whereas this is not the case for the results obtained by the
quasi-2nd-order scheme. This final example emphasizes the advantage of employing
a scheme that interpolates the moments directly, e.g. equal-limiter scheme, instead
of interpolating some variables related to the moments.

Figure 5.8: Comparison of the studied schemes for the advection of m0 in the two-
dimensional cavity flow in the case of existing two different distributions in the domain.
(a) The initial condition at t = 0; (b) the predictions obtained by employing the different
schemes at t = 3.
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Figure 5.9: comparison of the studied schemes for the advection of m3 in the two-
dimensional cavity flow in the case of existing two different distributions in the domain.
(a) The initial condition at t = 0; (b) the predictions obtained by employing the different
schemes at t = 3.

In the next chapter, we apply the proposed scheme for the three-dimensional
CFD-PBM simulation of the TOPFLOW facility and compare its predictions with
those of the other discretization schemes.
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Chapter 6

CFD-PBM Simulation of Bubbly
Flows

6.1 Introduction
In the previous chapter, it is shown that the separate interpolation of weights

and abscissas of the quadrature may cause non-physical oscillations in the solution
of a mono-dimensional Riemann problem. To tackle this issue, a novel TVD scheme
is proposed, in which the moments are directly interpolated on the cell faces, using
the same flux-limiter for all the moments. It is suggested to choose the minimum
limiter among the limiters calculated separately for each moment, as it guarantees
the boundedness of all the moments. Eventually, the reported numerical tests on
some mono- and two-dimensional problems evidences that this scheme helps in
overcoming the realizability issue.

This chapter investigates the applicability of the equal-limiter scheme for the
advection of moments to the CFD-PBM simulation of the TOPFLOW facility,
described in Section 4.1. In this system, the streamlines for both phases are aligned
dominantly in the axial direction of the pipe i.e. the axial component of the phase
velocities is much larger than the radial one. However, it is the radial component
of the velocities that determines the radial distribution of the phases as the flow
develops in the axial direction. Therefore, the numerical diffusion must be reduced
as much as possible, since it may falsely affect the predicted solution, especially in
the radial and circumferential directions. Thus, it is expected that the solution of
the PBE in this system requires employing high-order schemes for the convection of
the moments. This chapter, first, illustrates the possible deficiency of the 1st-order
upwind scheme in producing physical solutions. Next, we compare the predictions
obtained by employing high-order schemes including the standard 2nd-order TVD
scheme, quasi-2nd-order realizable scheme developed by Vikas and coworkers [62]
and the equal-limiter scheme introduced in the previous chapter, and also discuss
their cons and pros. Then, we propose a modification to the original equal-limiter

113



6 – CFD-PBM Simulation of Bubbly Flows

scheme to prevent this scheme from reducing virtually to the 1st-order upwind
scheme.

6.2 Numerical Details

6.2.1 Solver Details
The results shown in this chapter are obtained by using a coupled TFM-PBM

code, which is described in Chapter 3. In fact, the code is the built-in two-fluid
solver of OpenFOAM software v5.0, which is modified to solve the PBE. The TFM
predicts the turbulent flow fields, including phase volume fractions, phase velocities,
pressure, turbulent kinetic energy and turbulent dissipation rate, some of which
are needed by the PBM. At the same time, the PBM predicts the properties of the
population of gas bubbles to be used by the TFM, here the average bubble size.

Concerning the TFM, some settings are modified with respect to those used for
the fixed bubble size simulations of Chapter 4. The number of PIMPLE and PISO
loops, i.e. nOuterCorrector and nCorrector, are adjusted to one and two respec-
tively, therefore the solution algorithm can be thought of as the PISO algorithm. In
addition, the PISO algorithm is configured to perform only one iteration to correct
the non-orthogonal contributions. Moreover, the 2nd-order TVD minmod is used
as the discretization scheme for the convective terms and the gradients at the cell
centers are evaluated by using Gauss theorem. These modifications are made to
increase the speed of the simulations. As mentioned in Chapter 4, a limiter, e.g.
cellMDLimiter, can be applied for the estimation of gradients to prevent unbounded
reconstructed face values with respect to the neighbouring cell values, particularly
in the case of large gradient values. However, it causes numerical diffusion in the cir-
cumferential direction, which is not desirable. Therefore, this correction is avoided
in the following simulations.

The employed interfacial forces are selected following the results shown in Chap-
ter 4. The drag force is calculated by using Tomiyama correlation Eq. (2.13) and
the turbulent dispersion by Burns’ expression Eq. (2.24). The wall lubrication force
is modelled following Lubchenko’s approach Eq. (2.27). Finally, the lift coefficients
are chosen following the results obtained previously and summarized in Table 6.1.

Table 6.1: The lift coefficients employed for the TFM-PBM simulations

Experimental condition 008 042 040 028 063 072

Mean value 0.19 0.19 0.03 -0.05 -0.05 -0.05

The coupled TFM-PBM code is specialized for a univariate PBE and therefore it
adopts the QMOM as the solution method for the PBE. Moreover, it considers the
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change of the gas density in the PBE formulation because the bubbles experience
change in the hydrodynamic pressure as they travel upward in the TOPFLOW
facility. Therefore, Eq. (3.49) is used to track the evolution of the moments. The
source term, S̄k in Eq. (3.49), takes into account the change in the bubble size
distribution (BSD) due to break-up and coalescence, which are modelled by the
expressions described in Section 3.1.2.

Regarding the QMOM, this study uses a three-node quadrature, i.e. N = 3, fol-
lowing the work of Marchisio and co-workers [112], who recommended the QMOM
with three nodes as a reasonable trade-off between the accuracy and computa-
tional cost. This number of nodes requires tracking the evolution of the first six
moments of the NDF to calculate six unknowns consisting of three abscissas and
three weights. In other words, the transport equation, Eq. (5.3), must be written
for the moments of order zero to five, [m0 m1 ... m5]. Moreover, this study em-
ploys the Chebyshev inversion algorithm [136] modified according to the adaptive
algorithm suggested by Yuan and Fox [148]. The idea of the adaptive algorithm
is to decrease the number of nodes of the quadrature approximation (and respec-
tively the number of moments used for the inversion) to obtain always a realizable
set of moments. For instance, if the first six moments are non-realizable but the
first four moments are realizable, then the NDF will be approximated with a two-
node quadrature. It may happen that only the first two moments are realizable,
which is equivalent to a one-node quadrature approximation. In the worst case, no
quadrature approximation can be made since one or both of the first two moments
are negative. In general, it is desired to approximate the NDF with the maximum
number of quadrature nodes, i.e. in this case evaluate the source terms of the
moment transport equation (MTE) with three quadrature nodes, in as many com-
putational cells as possible. This aspect is taken into account for the comparison
of the discretization schemes employed here to discretize the convective term of the
MTEs.

As mentioned previously, in the two-way coupling, the PBM provides the TFM
with the information about the population of the bubbles. Here, this information
is the Sauter mean diameter calculated from the following definition:

d32(x, t) = 6

∫
nL(L; x, t)

(
π

6 L3
)

dL∫
nL(L; x, t)(πL2)dL

= m3(x, t)
m2(x, t) . (6.1)

The Sauter mean diameter is used wherever the TFM requires the average bubble
diameter, e.g. estimating the average drag force on the bubbles. It should be
mentioned that coalescence and break-up source terms are estimated for the cells
with the air volume fraction in the range of 10−4 − 0.3. Below this range, the gas
phase fraction is negligible and above this range, the bubbly flow assumption is
hardly valid.
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6.2.2 Boundary Conditions
The boundary conditions for the flow field in the TFM are similar to those

mentioned in Chapter 4.
The types of the boundary conditions for the moments are the same as those

used for the air volume fraction, i.e. constant values at the inlets, symmetric con-
ditions at the symmetry planes and zero gradients at the wall and the outlet. The
moment values at the inlets are obtained by imposing a log-normal distribution with
the mean value shown in Table 6.2. The mean values for experimental conditions
008, 042, 040, 028 and 063 are adjusted in such a way as to have the Sauter mean
diameter at the air inlet equal to the experimental averaged Sauter mean diameter
at the lowest measurement section. Instead, for experimental condition 072, an
extrapolation is done by using the experimental averaged Sauter mean diameter of
the first four measurement sections to estimate the Sauter mean diameter at the
inlet boundary and subsequently adjust the mean value of the inlet distribution.
The relative standard deviation of the inlet distributions is set to 15% of the mean
value. Then the distribution is scaled such that the 3rd-order moment matches the
air volume fraction at the corresponding inlet, i.e. 0.99 at the air injection surface
and 10−6 at the water inlet. It is worth mentioning that the following relation exists
between the 3rd-order moment and the air volume fraction, αg (assuming that the
bubbles have the spherical shape):

αg = π

6 m3 . (6.2)

Table 6.2: The mean of the log-normal distributions imposed at the air inlet

Experimental condition 008 042 040 028 063 072

Mean of the distribution (mm) 3.7 4.0 4.7 4.9 6.2 13.4

6.2.3 Schemes for Moments Convection
1st-order upwind interpolation scheme

The upwind scheme assumes that the value on the face is equal to the value of
the cell located at the upstream side of the face. It is commonly employed to solve
the moment transport equations, since it is proved to preserve the realizability of
the moment set provided the CFL condition is respected [64]. Moreover, the upwind
scheme satisfies the monotonicity condition, i.e. a monotonic distribution before
advection remains monotonic after advection [65]. The main drawbacks of the
scheme are the 1st-order accuracy and the significant numerical diffusion appearing
in the results, especially when coarse computational grids are used.
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Quasi-2nd-order realizable scheme

The central idea of this scheme developed by Vikas and co-workers [62] is to
interpolate the quadrature weights and abscissas separately and then to evaluate
the moment fluxes by using the interpolated weights and abscissas. They proved
that the moments remain realizable when the quadrature abscissas are interpo-
lated using the upwind scheme whereas the quadrature weights are interpolated
using a high-order TVD scheme, provided the time-step (∆t) fulfills the criterion
expressed in Eq. (5.52). Despite the increase in the accuracy, the quasi-2nd-order-
scheme does not necessarily respect the boundedness criteria established by Harten
[176], as observed in the mono- and two-dimensional examples in the previous sec-
tion. Therefore, in this chapter, the results obtained by employing this scheme are
examined for the boundedness issue.

It should be noted that numerical issues may arise in the cells where the bubble
volume fraction is very low, close to the machine precision. Therefore, the con-
vective term is neglected for the cells with air volume fraction below a very small
threshold equal to 10−12. This threshold serves to increase the robustness of the
solver by avoiding the inversion of the moments when they are negligibly small.

Equal-limiter scheme

As mentioned in the previous chapter, this scheme is proposed to deal with not
only the realizability issue but also the boundedness of the moments. It is argued
that TVD high-order schemes should be applied directly to the moments, in order
to preserve their boundedness. However, since the application of standard TVD
schemes causes the realizability issue, it is suggested to interpolate all the moments
by using the same value as the flux-limiter, i.e. the equal-limiter scheme. It should
be noted that the realizability of the interpolated moments on the cell faces does
not necessarily guarantee the realizability of the transported moments at the cell
centers. However, it can help alleviating the realizability issue, as demonstrated
in the previous chapter by some mono- and two-dimensional numerical examples.
Additionally, the simulations described in the next section indicate that employing
the equal-limiter scheme is helpful in overcoming the realizability issue also in the
case of three-dimensional simulations.

Regarding the value of the equal limiter, it is shown that employing the mini-
mum flux-limiter guarantees the boundedness of the moments. This choice of equal
limiter is depicted graphically with red markers in Figure 6.1. It is evident that
the minimum limiter is always inside the TVD region for all the moments, assuring
the boundedness of their solutions. Moreover, the implementation of this scheme
is simple. The only additional step with respect to the standard TVD schemes is
the comparison of the local limiters for the different moments to find the one with
the minimum value. Then, all the moments are locally interpolated by using the
same minimum limiter instead of being interpolated independently.
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Figure 6.1: Schematic description of the equal-limiter scheme for the convection of, in
this case, six moments. Shaded area: the TVD region [175]; hatched area: the 2nd-order
region [175]; solid black line: minmod limiter function; hollow circle: limiter calculated
based on each moment smoothness; red circle: equal-limiter using the minimum of the
limiters; green circle: equal-limiter using the average of the limiters.

It should be noted that using the minimum limiter may not be always the
best choice, since it may decrease the accuracy of the scheme. In the worst case,
the scheme reduces to the upwind scheme if the flux-limiter of a moment is zero.
Therefore, in this chapter, another approach is adopted that employs the average
limiter, i.e. calculated by averaging all the limiters of the moments, when the
accuracy of the minimum limiter is not satisfactory. This latter choice for the equal
limiter is exemplified with green markers in Figure 6.1. It is worth mentioning that
the average limiter may cause issues concerning the boundedness of the moments:
in this case, however, the constraint on the boundedness-preserving property of the
method is relaxed in favor of a better accuracy. For instance, in the case shown
in Figure 6.1, the average limiter does not respect the TVD criteria for one of the
moments, since the limiter value is located out of the TVD region, leading to a local
violation of the boundedness property. Nevertheless, the effect of such a marginal
violation of the TVD criteria leads to negligible effects in the simulation results, as
shown in the following section.
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6.3 Results

6.3.1 Part I: Convection Scheme
This part focuses mainly on the analysis and comparison of the solutions of

the QMOM obtained by employing different convection schemes in the CFD-PBM
simulation of the TOPFLOW facility (the 2-meter configuration). The analysis
attempts to address the aspects related to the accuracy and boundedness of the
solution, in addition to the moment realizability. Thus, the agreement between the
predictions and the experimental data is not of primary concern, since the pur-
pose of comparison is not the model validation but detection of any non-physical
behaviour caused by the employed numerical schemes. While appreciating the
physically acceptable flow pattern observed experimentally, the air volume fraction
obtained by the TFM is utilized as the reference to analyze the predictions of the
QMOM, in particular those for the moment of order three. There are some sound
rationales lying behind this choice of the reference solution: first, the air volume
fraction is the only flow field solved by the TFM that has a close connection with
the PBM. In fact, the transport equations of the air volume fraction and the 3rd-
order moment differ only by a constant (i.e. bubble shape factor, see Eq. (6.2)).
Second, the convective term of the transport equation for the air volume fraction is
discretized here by the 2nd-order TVD scheme, thus it is expected that the corre-
sponding solution has a satisfactory order of accuracy. Last, bubble coalescence and
break-up have no effect on the 3rd-order moment (both terms are zero) as well as
the air volume fraction, which facilitates comparing the results from the numerical
point of view.

Figures 6.2 and 6.3 depict, respectively, the contour plots and radial profiles
of the air volume fraction predicted by the TFM and by the PBE solved with the
QMOM for experimental condition 028. Concerning the TFM results, it can be
seen that the profile of the air volume fraction, blue solid line in Figure 6.3, has
features similar to those of the experimental measurements, specifically a peak close
to the wall with a sharp drop towards the wall and a slow decrease towards the
center of the column. Thus, despite the existing discrepancy between the predicted
and the measured profiles, the TFM result can be indeed used as the reference
for evaluating the predictions of the QMOM. It should be mentioned that the
discrepancy between the measurements and the TFM predictions is, to a large
extent, due to the modelling of the interfacial forces, as discussed in Chapter 4.
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Figure 6.2: Comparison of the contour plots of the air volume fraction for the test
case A at the section 1.55 (m) above the injection point. Top left) TFM; middle left)
QMOM with upwind scheme; middle right) QMOM with standard 2nd-order minmod
scheme; bottom left) quasi-2nd-order scheme; and bottom right) equal-limiter scheme
using minimum limiter.
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Figure 6.3: Comparison of the predicted profiles of the air volume fraction for the test
case A at the section 1.55 (m) above the injection point. Blue solid line: TFM; yellow
solid line: QMOM with upwind scheme; green solid line: quasi-2nd-order scheme; and red
line: equal-limiter scheme.

Let us begin the analysis of the studied schemes by discussing the results ob-
tained by using the 1st-order upwind scheme. Both the contour plot (Figure 6.2)
and the radial profile (yellow solid line in Figure 6.3) of the air volume fraction
predicted by the QMOM show a non-physical accumulation of the air in the center
of the column. It can be associated with the inherent numerical diffusion of the
upwind scheme, that occurs in all the directions including the radial one. This
observation justifies the necessity of employing high-order schemes in this specific
system. Therefore, the standard 2nd-order minmod scheme is employed. Although
the prediction for the moment of order three is satisfactory (in fact, it is identical
to those of the TFM since the same discretization scheme is used, see the contour
plots in Figure 6.2), there exist a large number of cells (7120 out of 137088) with
non-realizable sets of moments, see Figure 6.4, in which the NDF is approximated
by a quadrature consisting of less than three nodes. It is worth adding that most of
these cells are located in the region with a significant amount of air volume fraction,
thus having an impact on the local bubble size distribution.
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Figure 6.4: The cells with non-realizable issue appearing in the simulation of the test
case A due to the standard 2nd-order TVD scheme employed for the convection of the
moments.

In order to avoid the non-realizability problem, the realizable quasi-2nd-order
scheme proposed by [62] is employed for the convection of the moments. As ex-
pected, the non-realizability problem does not arise in any computational cell during
the simulation, however, the peak of the air volume fraction profile, green solid line
in Figure 6.3, increases considerably in comparison to the one predicted by the
TFM, blue solid line in Figure 6.3. This difference between the predictions can be
also noticed by comparing the corresponding contour plots, shown in Figure 6.2.
This behaviour can be associated with the fact that the realizable quasi-2nd-order
scheme does not respect the boundedness of the moments, as demonstrated in the
previous chapter. For this reason, the equal-limiter scheme (selecting the mini-
mum limiter) is employed to improve the predictions from the boundedness point
of view. Indeed, the contour plot and the radial profile of the air volume fraction,
plotted in Figures 6.2 and 6.3 respectively, show the achieved improvements in the
accuracy and boundedness of the solution. Moreover, the realizability issue is not
detected in the domain since the quadrature approximation has three meaningful
weights in all the cells located in the region where the inversion algorithm is ap-
plied. Therefore, the equal-limiter scheme with the choice of the minimum limiter

122



6.3 – Results

provides the most satisfactory result than the other attempted schemes. However,
as mentioned previously, the disadvantage of choosing the minimum limiter is that
the scheme may reduce to the upwind scheme if the local profiles of the moments
differ significantly, i.e. the shape of the NDF changes considerably along the spatial
coordinates. Thus, it is necessary to assess the schemes for the operating condi-
tions where the profiles of the moments may have large local variations, e.g. a case
with stronger coalescence and break-up phenomena. For this reason, experimental
condition 072 is simulated, since it has higher inlet gas velocity than experimental
condition 028. Moreover, the measurements for experimental condition 072 indi-
cate that the bubbles undergo intense break-up in the first portion of the pipe, see
Figure 4.2.

The contour plots and radial profiles of the air volume fraction predicted by the
TFM and by the PBE solved with the QMOM for experimental condition 072 are
shown in Figures 6.5 and 6.6, respectively. It is evident from both figures that the
solution obtained by the equal-limiter scheme using the minimum limiter is highly
diffusive. It can be associated with the fact that the minimum limiter is either
zero or close to zero for a large number of cell faces and therefore, as mentioned
previously, the scheme reduces to the first-order upwind scheme. To avoid the
exceedingly small values of the limiter, the minimum limiter is replaced by the
average one, i.e. the average of the calculated limiters of the moments. The choice
of the average limiter improves the results remarkably, as apparent from the violet
solid line in Figure 6.6. Furthermore, despite using the average limiter, which does
not necessarily respect the boundedness of all the moments, the predicted profile is
satisfactorily comparable to the one obtained by the TFM. In contrast, the profile
predicted by the quasi-2nd-order scheme presents a second peak, in addition to the
accentuated one near the wall, which is not observed in the solutions obtained by the
other schemes. This highlights more the significance of the boundedness-preserving
property of advection schemes. The last aspect to examine is the efficiency of the
scheme in preventing the non-realizability problem. It is worth observing that the
equal-limiter scheme helps to alleviate the non-realizability problem but it does
not always guarantee the realizability of the moments, as explained in Chapter 5.
In the conducted simulations, only the choice of the minimum limiter is able to
completely prevent the realizability issue, whereas the non-realizability problem
is detected in a few number of computational cells when the average limiter is
employed. These cells, however, are very limited in number (32 out of 137088)
and their effect on the simulation is negligible, particularly because these cells
are located in regions with low gas volume fractions. Therefore, the equal-limiter
scheme with the average-limiter is the best general alternative for this case, when
all three aspects – accuracy, boundedness-preserving and realizability-preserving –
are taken into account.
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Figure 6.5: Comparison of the contour plots of the air volume fraction for the test case
B at the section 1.55 (m) above the injection point. Top left) TFM; top right) QMOM
with quasi-2nd-order scheme; bottom left) equal-limiter scheme using minimum limiter;
and bottom right) equal-limiter scheme using average limiter.
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Figure 6.6: Comparison of the predicted profiles of the air volume fraction for the test
case B at the section 1.55 (m) above the injection point. Blue solid line: TFM; green
solid line: quasi-2nd-order scheme; red line: equal-limiter scheme using minimum limiter;
violet solid line: equal-limiter scheme using average limiter.

6.3.2 Part II: CFD-PBM Results
The results of the CFD-PBM simulation of the TOPFLOW facility (the 5-

meter configuration) operating under six experimental conditions (see Table 4.2)
are reported and compared with those obtained by the TFM (see Chapter 4) in
Figures 6.7 to 6.18. The reported results include the radial profiles of the Sauter
mean diameter (SMD), standard deviation (Std Dev) of the bubble size distribution
(BSD) and air volume fraction at four sections. The figures include also the exper-
imental data. It is noteworthy that, here, the Sauter mean diameter and standard
deviation of the BSD are reported and compared to the corresponding experimental
data, instead of the BSD itself. The reason is that, in the QMOM, the moments of
the BSD are predicted, and the BSD is not directly available. However, these two
parameters can represent partially the BSD.

Concerning the discretization scheme, the equal-limiter scheme with the average-
limiter is used to discretize the convective term of the moment transport equations,
following the discussion presented in Part I.
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Figure 6.7: Radial profiles of the Sauter mean diameter (green solid curve) and standard
deviation of BSD (green dashed curve) predicted by TFM-PBM against the measurements
(hollow circles and triangles, respectively) for experimental condition 008.

Figure 6.8: Radial profiles of the predicted air volume fraction against the measurements
(hollow markers) for experimental condition 008. Red curve: by TFM; green curve: by
TFM-PBM.
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Figure 6.9: Radial profiles of the Sauter mean diameter (green solid curve) and standard
deviation of BSD (green dashed curve) predicted by TFM-PBM against the measurements
(hollow circles and triangles, respectively) for experimental condition 042.

Figure 6.10: Radial profiles of the predicted air volume fraction against the measure-
ments (hollow markers) for experimental condition 042. Red curve: by TFM; green curve:
by TFM-PBM.
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Figure 6.11: Radial profiles of the Sauter mean diameter (green solid curve) and stan-
dard deviation of BSD (green dashed curve) predicted by TFM-PBM against the mea-
surements (hollow circles and triangles, respectively) for experimental condition 040.

Figure 6.12: Radial profiles of the predicted air volume fraction against the measure-
ments (hollow markers) for experimental condition 040. Red curve: by TFM; green curve:
by TFM-PBM.
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Figure 6.13: Radial profiles of the Sauter mean diameter (green solid curve) and stan-
dard deviation of BSD (green dashed curve) predicted by TFM-PBM against the mea-
surements (hollow circles and triangles, respectively) for experimental condition 028.

Figure 6.14: Radial profiles of the predicted air volume fraction against the measure-
ments (hollow markers) for experimental condition 028. Red curve: by TFM; green curve:
by TFM-PBM.

129



6 – CFD-PBM Simulation of Bubbly Flows

Figure 6.15: Radial profiles of the Sauter mean diameter (green solid curve) and stan-
dard deviation of BSD (green dashed curve) predicted by TFM-PBM against the mea-
surements (hollow circles and triangles, respectively) for experimental condition 063.

Figure 6.16: Radial profiles of the predicted air volume fraction against the measure-
ments (hollow markers) for experimental condition 063. Red curve: by TFM; green curve:
by TFM-PBM.
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Figure 6.17: Radial profiles of the Sauter mean diameter (green solid curve) and stan-
dard deviation of BSD (green dashed curve) predicted by TFM-PBM against the mea-
surements (hollow circles and triangles, respectively) for experimental condition 072.

Figure 6.18: Radial profiles of the predicted air volume fraction against the measure-
ments (hollow markers) for experimental condition 072. Red curve: by TFM; green curve:
by TFM-PBM.
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The first remark is about the effect of the PBM on the flow field predicted by
the TFM. As it can be seen, the volume fraction profiles predicted by the TFM
with and without the PBM are almost the same. It should be noted that the TFM
without the PBM needs the average bubble size to be set, for example, by using
the experimental data. In contrast, the PBM requires only the specification of the
average bubble size at the inlet boundary, which can be estimated by empirical
correlations. In the present study, one may argue that the bubble size does not
change considerably in the radial and axial directions, hence allowing the estimated
bubble size at the inlet to be used throughout the column. However, it is possible
that the bubble size changes considerably (as in the case of experimental condition
072), and it is not known in advance.

Concerning the predictions for the radial profile of the Sauter mean diameter
and and standard deviation of the BSD, it is evident that there are discrepancies
between the predictions and the experimental data. For example, an observation
common to the studied experimental conditions is the decrease in the predicted
profile near the wall, leading to the underestimation of the bubble size near the
wall in comparison to the experimental data. It is associated with the increase of
the turbulent dissipation rate at the wall, predicted by the k−ε model, on which
the coalescence and break-up kernels depend. The underestimation of the bubble
size near the wall reduces the magnitude and active zone of the wall lubrication
force, which may consequently have an adverse effect on the predictions for the
flow fields, e.g. experimental conditions 008 and 042. Moreover, there exist un-
certainties regarding the selected kernels and also the interfacial forces, which can
cause discrepancies. Nevertheless, the obtained TFM-PBM predictions present an
acceptable estimation of the bubble size considering such uncertainties. The impor-
tance of the bubble size estimation can be appreciated by focusing on experimental
condition 072, where the bubbles undergo intense break-up in the first portion of
the pipe. The green curve with circle markers in Figure 6.19 shows the predicted
Sauter mean diameter averaged over cross-sections at different axial distances from
the injection points for this experimental condition. As it can be seen, the PBM
predicts the decrease in the bubble size due to the break-up in the first portion of
the pipe, in agreement with the experimental data. Moreover, the predicted Sauter
mean diameter averaged over cross-section reaches an equilibrium state between
the coalescence and break-up, which is indicated also by the experimental data.
Nevertheless, there are still discrepancies between the predicted values and mea-
sured ones, particularly at higher sections, which bring to attention the existing
uncertainties, e.g those concerning the turbulence modelling and employed kernels.
To elaborate, let the coefficient Cγ in Eq. (3.7) be 0.28 instead of 0.88, following
the work by Prince and Blanch [115]. Then, the predicted axial change of the
Sauter mean diameter averaged over the pipe cross-section improves considerably,
as it can be observed from the yellow curve with triangle markers in Figure 6.19.
Furthermore, the predictions for the radial profile of the Sauter mean diameter
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improve, as shown in Figure 6.20. It should be noted that this comparison does
not aim to recommend any value for this coefficient, but tries to exemplify one of
the mentioned uncertainties. Obviously, these uncertainties can be reduced by the
availability of more comprehensive experimental data (i.e. including also the tur-
bulence parameters) and improved models for description of involved phenomena
such as coalescence and break-up.

Figure 6.19: Axial change of the Sauter mean diameter averaged over pipe cross-section
for experimental condition 072. Black hollow circles: experimental data; green continuous
line with circle markers: predictions by setting Cγ = 0.88; yellow continuous line with
triangular markers: predictions by setting Cγ = 0.28.
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Figure 6.20: Radial profiles of the Sauter mean diameter obtained by CFD-PBM sim-
ulations for experimental condition 072. Hollow markers: experiments; green curve:
Cγ = 0.88; yellow curve: Cγ = 0.28.

6.3.3 Concluding Remarks
The results of the first part reveals that the 1st-order upwind scheme is too

diffusive to produce a meaningful solution for the moment transport equations in
the system under study. In addition, it is shown that, as expected in advance,
the standard 2nd-order TVD scheme leads to non-realizable moments in a large
number of computational cells containing considerable amount of the disperse gas
phase. This highlights the importance of employing discretization schemes that
are capable of addressing the realizability issue. Additionally, the importance of
boundedness-preserving property is illustrated by the predictions obtained with the
quasi-2nd-order scheme, as some unexpected overshoots (and also patterns) are ob-
served in the profiles of the moment of order three for the operating conditions 028
and 072. These patterns are associated with the fact that this scheme does not
generally preserve the boundedness of the solution, as highlighted in the previous
chapter. In contrast, in the less-intense operating condition (028) – in other words,
when there is more similarity between the profiles of the moments – the solutions
for the moment of order three predicted by employing the equal-limiter scheme
(using the minimum limiter) show good consistency with the TFM predictions for
the air volume fraction (being considered as the "reference" solution). Moreover, it
is observed that this scheme helps in preventing the non-realizability problem to a
great extent. Under the intense operating condition, instead, the solution obtained
by the minimum equal limiter is unsatisfactorily diffused, due to the fact that the
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scheme accuracy reduces to 1st-order if the profiles of the moments differ consider-
ably. To tackle this issue, it is suggested to use the average-limiter instead of the
minimum one. As a result, the predictions for the moment of order three presents a
remarkable improvement in the reduction of the numerical diffusion since they are
in good agreement with the TFM predictions for the air volume fraction. Further-
more, although the average-limiter does not necessarily respect the TVD criteria
for all the moments simultaneously, no strange pattern is detected in the predicted
profiles. The only noticed shortcoming is that the non-realizability problem arises
in a small number of cells when the average-limiter is employed in the simulation
of experimental condition 072. However, the effect of the non-realizability problem
in these cells is considered negligible since they are small in number and they have
very low air volume fractions. Thus, the average-limiter scheme presents an accept-
able compromise between the accuracy and the realizability-preserving aspects. In
addition, no issue is observed in the solutions concerning the boundedness problem.

The second part of the results compares the predictions of the CFD-PBM simu-
lation of the TOPFLOW facility (obtained by employing the equal-limiter scheme
with the choice of the average limiter) with the experimental data. It is observed
that the coupling of the CFD with the PBM has negligible effect on the predic-
tions of the hydrodynamic fields in the studied system. However, the importance
of the PBM should not be underestimated as it provides knowledge about the av-
erage bubble size, which is not generally known a priori. Moreover, the PBM can
make differences in the hydrodynamic predictions if a multifluid approach is used,
which allows bubbles of different properties (here different size) move with different
velocities. Last, the predictions for the radial profiles of the Sauter mean diame-
ter are compared with the experiments, where discrepancies are observed. These
discrepancies are associated with the existing uncertainties, particularly the turbu-
lence modelling and the employed kernels for the description of the coalescence and
break-up.
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Chapter 7

Conclusions

7.1 Summary
This dissertation attempted to highlight the viability of simulating bubbly gas-

liquid flows by using the PBM incorporated into the CFD. In this regard, two
research subjects were covered, i.e. studying the interfacial forces relevant to bub-
bly flows with particular focus on the lift and wall lubrication forces, and developing
numerical methods to improve the stability of the two-way coupled CFD-PBM sim-
ulations. For this purpose, a considerable number of simulations were done by using
the CFD and CFD-PBM, which aimed at reproducing the available experimental
data measured in a developing turbulent air/water pipe flow called TOPFLOW
facility.

In the first part of this thesis, the interfacial forces were studied by perform-
ing the CFD simulation of the TOPFLOW facility. First, it was shown that the
turbulent dispersion force plays a key role in spreading the gas phase in the radial
direction in this bubbly pipe flow. In addition, it was shown that the inclusion of the
wall lubrication force improves the predictions by reproducing the near-wall-peak
in the radial profile of the air volume fraction. Next, two set of models (differing
in the employed correlations for the lift coefficient and wall lubrication force) were
selected to perform the CFD simulations. The relations for estimating the lift coef-
ficient include Tomiyama’s correlation [22] and Sugrue’s Correlation [21], while the
wall lubrication force was modelled by Hosokawa’s expression [26] and Lubchenko’s
approach [19]. Moreover, the lift coefficient was varied (instead of using the men-
tioned correlations) with each wall lubrication model to achieve better agreements
between the predictions and the experimental data in the first 2-meter portion of
the pipe.

Concerning the lift coefficient, for bubble sizes less than 5 mm, the Tomiyama
correlation overestimates the lift coefficient whereas the Sugrue correlation under-
estimates it. For bubble sizes larger than 5 mm, the predictions with positive lift
coefficients are not satisfactory at higher sections. In this regard, the Tomiyama
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correlation predicts correctly negative lift coefficients for this range of bubble sizes,
although the inversion of the lift coefficient occurs at the bubble size around 6
mm instead of 5 mm. However, the Sugrue correlation may predict positive lift
coefficients for this range of bubble size, giving rise to relatively larger deviations
from the experimental data. This shows the limitation of the Sugrue correlation
in predicting the inversion of the lift force required for the satisfactory description
of the radial profiles of the air volume fraction. It is notable that the optimized
lift coefficients in the first 2-meter portion of the column for either wall lubrica-
tion models may be positive for the experimental cases even with the bubble sizes
larger than 5 mm. Consequently, the predictions at the higher sections deviate from
the experimental data for the simulations of 5-meter column. In other words, the
change in the sign of the lift coefficient reveals its effect as the flow develops in the
axial direction. This fact demonstrates the fundamental importance of conducting
experiments on developing flows, such as TOPFLOW, in order to advance the for-
mulation of the closure relations for the gas-liquid interfacial forces. Regarding the
wall lubrication models, Lubchenko’s approach was preferred to Hosokawa’s cor-
relation since it produces more physical results by allowing the gas phase to exist
near the wall.

The second part of this thesis dealt with the PBM, with the primary focus on
developing suitable numerical methods for the solution of the QBMM, applicable
to bubbly flows. At first, a new technique called the equal-limiter scheme was
proposed to overcome the non-realizability problem, which is a main source of in-
stabilities of PBM simulations. It was shown that using an identical flux-limiter
for all the moments at each face guarantees the realizability of the interpolated
moments and consequently helps to preserve the realizability of the transported
moments. In addition, the implementation of the scheme is simple and can be inte-
grated into the CFD simulations easily. Although no formal proof has been given
to ensure that the equal-limiter scheme preserves the realizability of the moments
under general conditions, it has been shown that this feature can be achieved in the
limit of small time steps (as long as the moment sets are far from the boundary of
the moment space). The minimum limiter was suggested as the first choice for the
identical flux-limiter, since it guarantees the boundedness of the solution (no over–
or under–shoots in the solution). Moreover, the proposed scheme was evaluated
and compared with the 1st-order upwind and quasi-high-order [62] schemes in sev-
eral one- and two-dimensional numerical examples. The examples indicated that
the solutions obtained by the proposed scheme have higher accuracy compared to
the one obtained by the 1st-order upwind scheme and at the same time no under-
or over-shoots were observed in the predictions. As our final aim, the equal-limiter
scheme was employed to conduct the two-way coupled CFD-PBM simulations of
the TOPFLOW facility. It was shown that the scheme helps in preventing the
non-realizability problem to a great extent. Moreover, the results obtained by the
equal-limiter scheme were compared with those obtained by the 1st-order upwind
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and quasi-high-order [62] schemes, considering three aspects: the accuracy, moment
boundedness and moment realizability. The comparison indicated the advantages
of the equal-limiter scheme over the two other employed schemes. However, it
was shown that the order of accuracy of the equal-limiter scheme can reduce to
essentially 1st-order with the choice of the minimum limiter. Therefore, it was sug-
gested to use the average of limiters instead of the minimum limiter to improve
the order of accuracy of the scheme. Although non-realizability issue was observed
after applying this modification, however, its effect was negligibly minimal since
the non-realizability was seen only in a few computational cells. Finally, the mod-
ified equal-limiter scheme was used to conduct the CFD-PBM simulations of the
TOPFLOW facility. The simulation results indicated that acceptable predictions
(despite the discrepancies with the experimental data) can be achieved for the
Sauter mean diameter. The observed discrepancies were associated with the exist-
ing uncertainties such as those regarding the available approaches for the modelling
of the turbulence, coalescence and break-up, which emphasize the need for more
comprehensive experimental data and improved constitutive models.

Last, it is worth clarifying that the discussions and conclusions of this thesis are
made by taking the available experimental data as the benchmark. However, as
mentioned in Chapter 4, the measuring technique used to obtain this experimental
data, i.e. wire-mesh sensor, has its own limitations that can introduce uncertainties
in the measurements and can be identified as a source of discrepancies.

7.2 Future Work
• Further investigation of the effect of the turbulence on the lateral interfacial

forces, particularly the lift force.

• Simulation of bubbly flows using a multifluid approach coupled with the PBM,
in which the bubbles of different sizes located at the same position can move
with different velocities. In particular, the effect of the lift force inversion on
the predicted hydrodynamics can be evaluated in this way.

• Developing efficient numerical methods to overcome the realizability issue in
Quadrature-Based Moment Methods considering several aspects such as the
order of accuracy, oscillation-free solution, implementation in CFD codes and
application to arbitrary mesh grids.
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Appendix A

Supplementary Results of
Mono-disperse Simulations

This appendix presents those results of the mono-disperse simulations that are
not reported in Chapter 4, including the predicted radial profiles of the liquid
velocity and the turbulent kinetic energy and turbulent dissipation rate of the
liquid phase. The results belong to the simulations of the 5-meter configuration
and they are arranged according to experimental condition.

Despite the unavailability of experimental data for the liquid velocity and tur-
bulence parameters, some general observations can be made about their predicted
radial profiles. The predicted liquid velocity profiles have a very similar pattern as
the corresponding air velocity profiles in all the operating conditions. Only in the
regions very close to the wall, the liquid velocity profile drops more rapidly than the
air velocity profile. This observation can be associated with the no-slip boundary
condition at the wall for the liquid velocity, in contrast to the slip condition for the
air velocity.

Concerning the turbulence parameters, differences can be observed between
the radial profiles of the turbulent kinetic energy predicted by the tested models
in all the operating conditions. However, the differences mainly exist when the
corresponding radial profile of the predicted air volume fraction is also different.
These differences are actually expected, since the transport equations of the k−ε
model adapted for two-phase flows are scaled by the liquid volume fraction (αl =
1 − αg), which seems to have noticeable effect on the predicted turbulent kinetic
energy. However, the difference between the profiles of the turbulent dissipation
rate predicted by the tested models seems less significant in all the experimental
conditions except in experimental condition 072.
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Experimental Condition 008

Figure A.1: Radial profiles of the water velocity predicted by the tested models for
experimental condition 008. Red curve: Model I; yellow curve: Model II (CL = 0.15);
blue curve: Model III; and green curve: Model IV (CL = 0.19).
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Figure A.2: Radial profiles of the water turbulent kinetic energy and water turbulent
dissipation rate predicted by the tested models for experimental condition 008. Red
curve: Model I; yellow curve: Model II (CL = 0.15); blue curve: Model III; and green
curve: Model IV (CL = 0.19).
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Experimental Condition 042

Figure A.3: Radial profiles of the water velocity predicted by the tested models for
experimental condition 042. Red curve: Model I; yellow curve: Model II (CL = 0.14);
blue curve: Model III; and green curve: Model IV (CL = 0.19).
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Figure A.4: Radial profiles of the water turbulent kinetic energy and water turbulent
dissipation rate predicted by the tested models for experimental condition 042. Red
curve: Model I; yellow curve: Model II (CL = 0.14); blue curve: Model III; and green
curve: Model IV (CL = 0.19).
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Experimental Condition 040

Figure A.5: Radial profiles of the water velocity predicted by the tested models for
experimental condition 040. Red curve: Model I; yellow curve: Model II (CL = 0.15);
blue curve: Model III; and green curve: Model IV (CL = −0.015).

146



A – Supplementary Results of Mono-disperse Simulations

Figure A.6: Radial profiles of the water turbulent kinetic energy and water turbulent
dissipation rate predicted by the tested models for experimental condition 040. Red
curve: Model I; yellow curve: Model II (CL = 0.15); blue curve: Model III; and green
curve: Model IV (CL = −0.015).
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Experimental Condition 028

Figure A.7: Radial profiles of the water velocity predicted by the tested models for
experimental condition 028. Red curve: Model I; yellow curve: Model II (CL = −0.25);
blue curve: Model III; and green curve: Model IV (CL = 0.025).
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Figure A.8: Radial profiles of the water turbulent kinetic energy and water turbulent
dissipation rate predicted by the tested models for experimental condition 028. Red
curve: Model I; yellow curve: Model II (CL = −0.25); blue curve: Model III; and green
curve: Model IV (CL = 0.025).
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Experimental Condition 063

Figure A.9: Radial profiles of the water velocity predicted by the tested models for
experimental condition 063. Red curve: Model I; yellow curve: Model II (CL = 0.07);
blue curve: Model III; and green curve: Model IV (CL = −0.05).
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Figure A.10: Radial profiles of the water turbulent kinetic energy and water turbulent
dissipation rate predicted by the tested models for experimental condition 063. Red
curve: Model I; yellow curve: Model II (CL = 0.07); blue curve: Model III; and green
curve: Model IV (CL = −0.05).
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Experimental Condition 072

Figure A.11: Radial profiles of the water velocity predicted by the tested models for
experimental condition 072. Red curve: Model I; yellow curve: Model II (CL = −0.05);
blue curve: Model III; and green curve: Model IV (CL = 0.1).
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Figure A.12: Radial profiles of the water turbulent kinetic energy and water turbulent
dissipation rate predicted by the tested models for experimental condition 072. Red
curve: Model I; yellow curve: Model II (CL = −0.05); blue curve: Model III; and green
curve: Model IV (CL = 0.1).
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Appendix B

Comparison of the Wall
Lubrication Models

Figure B.1 compares the wall lubrication force estimated by Hosokawa’s corre-
lation and Lubchenko’s approach based on some typical values for the flow fields
obtained from the simulation of two experimental conditions 008 and 063. The
values used in the models are summarized in Table B.1.

It is worth mentioning that the exact behavior of the models in the simulations
might be different due to the change in the local values of the flow fields near the
wall, particularly the air volume fraction. Nevertheless, the comparison gives in-
sights into the differences between the two models. It is evident that the magnitude
of the wall lubrication force by Hosokawa is much higher than the one proposed by
Lubchenko. Although both models depend on the value of the air volume fraction,
which is usually very small near the wall, the profiles of the wall force by these
models are calculated by imposing a constant small air volume fraction near the
wall, i.e 0.01 for experimental condition 008 and 0.02 for experimental condition
063. Moreover, the effect of the wall lubrication force by Hosokawa propagates to
distances farther than a bubble diameter from the wall. Although it can be argued
that the magnitude of the force falls sharply, it remains considerable at a distance
equal to the bubble diameter, particularly in experimental condition 063, which has
relatively larger bubble diameter. This fact is the reason of the region without gas
phase appearing close to the wall in the simulation of experimental conditions 028,
063 and 072, when Hosokawa’s model is employed for the wall lubrication force.
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Figure B.1: Comparison of the two employed wall lubrication forces: Hosokawa’s cor-
relation (solid line) and Lubchenko’s Approach (dashed line). (a) Forces evaluated by
using typical values for experimental condition 008; (b) Forces evaluated by using typical
values for experimental condition 063.

Table B.1: Typical values used in the comparative evaluation of the employed models
for the wall lubrication force

Operating Condition
008

Operating Condition
063

db 0.00425 0.0065
αg 0.01 0.02

νturb
l 0.00002 0.00003
ρl 995.7
ρg 2.775
µl 0.0007975
σ 0.072

|Ur| 0.23
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Appendix C

Calculation of the Experimental
Sauter Mean Diameter

This appendix explains the procedure to calculate the average bubble diame-
ters reported in Table 4.2 by using the available experimental data. In this thesis,
the Sauter mean diameter is used as the average bubble diameter. As mentioned
in Chapter 4, for a given experimental condition, the measurements were done by
increasing the distance between the air injection point and the wire-mesh sensor.
Therefore, this is equivalent to performing measurements at different axial levels
from a fixed (air) injection point for that experimental condition. The measure-
ments are related to the volume fraction (in percentage) corresponding to bubble
size classes of width 0.25 mm. The data is available for the intervals in the radial
direction at each measuring level. Table C.1 shows an example of the measurements
at the distance of 1.55 m from the air injection point and the radial position be-
tween 0.0964 and 0.0977 m for experimental condition 028. Moreover, the integral
of the radial measurements at each axial level is available.

By definition, the Sauter mean diameter is:

d32 =
∑

i ni L̄3
i ∆Li∑

i ni L̄2
i ∆Li

, (C.1)

where L̄i is the average diameter of the bubble class i and ni∆Li is the number of
bubbles of class i. Eq. (C.1) can be rearranged as follows:

d32 =
∑

i kvni L̄3
i ∆Li∑

i[kvni L̄3
i ∆Li]/L̄i

=
∑

i(∆αg)i∑
i(∆αg)i/L̄i

=
∑

i(∆αg/∆L)i∆Li∑
i(∆αg/∆L)i∆Li/L̄i

. (C.2)

The values (∆αg/∆L)i are the volume fraction of bubble class i divided by the
bubble size interval defining the class i, ∆Li. These values are available from the
experimental data, for which an example is shown in Table C.1. In addition, in
this thesis, the bubble size interval of class i is defined to be between Li and Li−1,
meaning L̄i = (Li + Li−1)/2.
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Table C.1: An example of the available experimental data measured at the distance of
1.55 m from the air injection point and radial position between 0.0964 and 0.0977 m for
experimental condition 028

class index Li (∆αg/∆L)i

i (mm) (%/mm)
0 0.00 0.0
1 0.25 0.0
2 0.50 0.0001
3 0.75 0.0004
4 1.00 0.0003
5 1.25 0.0006
... ...

35 8.75 0.0006
36 9.00 0.0036
37 9.25 0.0006
38 9.50 0.0007
39 9.75 0.0
40 10.0 0.0

Eq. (C.2) can be employed to calculate the radial profile of the Sauter mean
diameter at each measurement axial level. In addition, the sectional average of the
Sauter mean diameter at any axial level can be obtained by using the integral of
radial measurements of that level, which is also available from the experimental
data.

Finally, the average bubble diameters reported in Table 4.2 are obtained by
integrating the average Sauter mean diameter calculated at the measuring axial
levels from the air injection point up to the height of interest, i.e. from 0 up to
1.55 m for the nominal 2-meter column and from 0 up to 4.53 m for the nominal
5-meter column. The integration is done by using the trapezoidal rule. Since no
measurement is available for the average bubble size at the air injection point,
the same average value of the nearest measuring axial level is assumed at the air
injection point.
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Appendix D

Grid Independence Study

In the following, some details of the mesh independence study is reported, specif-
ically those concerning the radial direction, which is more critical in this system.
First, let us begin with the results of the developed single phase (water) simula-
tions. Here, the importance of the developed single phase profiles lies in the fact
that they are used as the boundary condition at the water inlet for the two-phase
simulations, as explained in Section 4.2.3. Moreover, in the two-phase simulations
conducted in this thesis, the turbulence is modelled by the single phase k−ε model
transport equations scaled by the volume fraction of the liquid phase.

When two-equation models, e.g. the k−ε model, are used to simulate bounded
turbulent flows, it is common to employ wall functions in regions close to walls.
However, wall functions are not generally valid in the near-wall-region, and there-
fore, their use imposes a limitation on the minimum distance between the center
of the first computational cell and the wall. The common practice is to place
the first grid point (or cell center) in the logarithmic layer, i.e. the dimensionless
wall distance (y+) should be generally larger than 30 [172]. The definition of the
dimensionless wall distance is

y+ = ρluτ y

µl
, (D.1)

where y is the distance from the wall and uτ =
√

τw/ρl is the shear velocity, τw

denotes the shear stress at the wall. At the same time, a refined mesh, particularly
near the wall, is desired to capture, as much as possible, the profile in that region.
However, violation of the above condition on y+ in a significant portion of the wall
boundaries can introduce errors in the predictions [172], and should be avoided.
For this purpose, four grids of different level of refinement in the radial direction,
particularly near the wall, are selected. Table D.1 lists some information about the
radial resolution of the selected grids.
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Table D.1: Radial grid resolution of the studied meshes

Number of cells
in an axial cross-section

(quarter circle)

Distance between the first
cell center and the wall

(mm)

Grid 1 1128 ≈ 0.207

Grid 2 816 ≈ 0.627

Grid 3 720 ≈ 0.876

Grid 4 624 ≈ 1.243

Figure D.1 shows the developed profiles of the velocity, turbulent kinetic energy
and turbulent dissipation rate predicted by the single phase (water) simulations
with the selected radial grid resolutions for the superficial velocity of 1.611 m/s.
This superficial velocity corresponds to the maximum superficial liquid velocity of
the experimental (two-phase) operating conditions investigated in this thesis, see
Table 4.2.

Figure D.1: Developed radial profiles of the velocity, turbulent kinetic energy and
turbulent dissipation rate in the single phase (water) simulations with the grid resolutions
reported in Table D.1 for the superficial velocity of 1.611 m/s. Red curve: Grid 1; green
curve: Grid 2; blue curve: Grid 3; and yellow curve: Grid 4.
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The comparison of the predictions in Figure D.1 suggests that the distance of
the first node from the pipe wall in the four tested grids is large enough to employ
standard wall functions. However, the use of wall functions is more problematic
when the Reynolds number is low, as indicated also by Eq. (D.1). Therefore, it
is necessary to examine the predictions by the simulations with the four grids for
the superficial velocity of 0.405 m/s, which is the minimum of the superficial liquid
velocities reported in Table 4.2. These predictions are depicted in Figure D.2, which
imply that Grid 1 is too refined to use standard wall functions for the superficial
velocity of 0.405 m/s. In particular, the prediction for the turbulent kinetic energy
obtained by using Grid 1 is totally different from those obtained by using the other
grids. It is worth mentioning that the same observation was made in the case of
setting the superficial velocities equal to 0.641 and 1.017 m/s.

Figure D.2: Developed radial profiles of the velocity, turbulent kinetic energy and
turbulent dissipation rate in the single phase (water) simulations with the grid resolutions
reported in Table D.1 for the superficial velocity of 0.405 m/s. Red curve: Grid 1; green
curve: Grid 2; blue curve: Grid 3; and yellow curve: Grid 4.

While Grid 2, 3 and 4 seem to be suitable for the single-phase simulations, it
is not always correct when they are used to perform two-phase simulations. As
mentioned previously, the grid should be fine enough, particularly near the wall, to
capture the profiles of the flow fields satisfactorily. This is particularly important
in the case of experimental conditions 008 and 042, where a peak is observed in
the radial profiles of the air volume fraction near the wall. Therefore, the grids
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reported in Table D.1 are used to simulate the nominal 2-meter column operating
under experimental condition 008, for which the results are shown in Figure D.3.
First, the results, particularly the radial profiles of the air volume fraction and
water turbulent kinetic energy, confirm that Grid 1 is too refined for the same
reason explained in the case of single phase simulations. Second, the predictions
for the air volume fraction show that Grid 4 is too coarse to capture the peak near
the wall and Grid 2 outperforms Grid 3 in representing the peak near the wall.
Therefore, the radial resolution of Grid 2 is selected for the design of the mesh used
for the two-phase simulations in this thesis.

Figure D.3: Radial profiles of the air volume fraction, air velocity, and turbulent kinetic
energy and turbulent dissipation rate of water obtained by using the grid resolutions
reported in Table D.1 for experimental condition 008. The employed lift coefficient is
0.15 and the wall lubrication force is modelled by Lubchenko’s approach. Red curve:
Grid 1; green curve: Grid 2; blue curve: Grid 3; and yellow curve: Grid 4.
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List of Abbreviations

BC Boundary Conditions

BIT Bubble Induced Turbulence

BSD Bubble Size Distribution

CFD Computational Fluid Dynamics

CFL Courant–Friedrichs–Lewy

CM Class or Sectional Method

CQMOM Conditional Quadrature Method of Moments

DNS Direct Numerical Simulation

DQMOM Direct Quadrature Method of Moments

EQMOM Extended Quadrature Method of Moments

GPBE Generalized Population Balance Equation

HZDR Helmholtz-Zentrum Dresden-Rossendorf

IC Initial Conditions

KDF Kernel Density Function

LES Large-Eddy Simulation

MFM Multifluid Model

MOM Method of Moments

MTE Moment Transport Equation

MULES Multidimensional Universal Limiter for Explicit Solution
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List of Abbreviations

NDF Number Density Function

PBE Population Balance Equation

PBM Population Balance Modelling

PD Product-Difference algorithm

PISO Pressure-Implicit with Splitting of Operators

PTC Particle Trajectory Crossing

QBMM Quadrature-Based Moment Method

QMOM Quadrature Method of Moments

RANS Reynolds-averaged Navier–Stokes equations

SIMPLE Semi-Implicit Method for Pressure Linked Equations

TFM Two-Fluid Model

TVD Total Variation Diminishing

VOF Volume of Fluid
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