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EFFICIENCY OF CANCER TREATMENTS: IN SILICO

EXPERIMENTS

Elena Piretto1,2, Marcello Delitala1,* and Mario Ferraro3

Abstract. Despite the advances in the formulation of different therapies to fight cancer, the design of
successful protocols is still a challenging problem. In order to provide some indications on the effective-
ness of medical treatments, results from in silico experiments are presented based on a mathematical
model comprising two cancer populations competing for resources and with different susceptibilities to
the action of therapies. The focus is on the outcome of protocols in which the total dose can be admin-
istered with different time distributions. An efficiency index is proposed to quantify the effectiveness of
different protocols. Simulations show that a standard dose chemotherapy is effective when the sensitive
clone has a marked competitive advantage, whereas its outcome is much worse when a resistant clone
emerges; obviously combinations of immune and chemotherapy work better. These results, in accord
with previous finding reported in the literature, stress the importance to take into account competitive
interactions among cancer clones to decide which therapeutic strategy should be adopted. However, it
is not just the efficiency that changes in these different configurations of clonal composition and ther-
apy timing. A general rule seems to emerge: when evolutionary pressures are strong, the best protocols
entail and early starting of the treatment, whereas, on the contrary, when interactions among clones
are weak, therapy should start later. Finally the model has been adapted to investigate the relative
efficiency of different protocols, by using data reported in literature regarding experiments with breast
cancer cells.

Mathematics Subject Classification. 92B05, 92D25.
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1. Introduction

In organisms cancer does not appear as a single species but rather as a mixture of different populations
[35], and this heterogeneity is a major factor in cancer drug resistance, see e.g. [30]. Even though a therapy
can eliminate a cancer type, one or more resistant variants of the tumor population may exist, driving to the
resurgence of treatment-refractory disease [13].

The solution to this problem lies, at least in theory, in therapies that combine different agents, with specific
actions, thus increasing the likelihood of synergistic antitumoral effects [8]. The design of combined protocols is
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a challenging problem and, specifically, the optimal dosing and timing in the combination of chemotherapy and
immunotherapy is still an open issue [33].

Indeed, a preliminary question is to identify the targets of protocols’ optimization. Different factors can be
thought of: for instance, the cancer load at the end of the therapies should be as small as possible, but of
course also the total cancer load during the therapy period must not grow unchecked. Furthermore, it is clearly
important to control cancer clones resistant to treatment.

In previous papers [26, 27], it has been shown that clonal composition plays a crucial role in determining
outcomes of cancer treatments. More specifically, a model has been proposed, based on the theory of interacting
populations, comprising two cancer populations competing for resources and with different susceptibilities to
the action of immune system cells and therapies. Results have shown that the outcomes of treatment depend
on the relative strength of the competitive interactions between clones.

In the present paper, these findings provide the background for an analysis of treatments efficiency for
protocols characterized by different schedules of drug administration. In particular, here we aim to determine
the best time course for a chemotherapy with a fixed total dose for different competitive strength of cancer
clones. The goodness of the results is assessed by a suitable index. This approach is then extended to the case
of combined treatments, i.e. chemo- and immunotherapy. Finally, results of the simulations are compared with
data of the literature.

2. The model

Cancer models based on differential equations form a vast body of literature: see, among others [9, 11, 12].
There exist models considering tumorigenesis in greater detail than is done here, for instance [4, 7, 34, 36];
as concerns the interaction of cancer with the immune system, [3, 9, 20], modelling of therapies, [14, 31] and
more specifically on drug resistance to therapies, [5, 15, 21]. Extensive bibliographic references can be found
in the review papers [2, 10]. The model used here, proposed in [26], has been developed in the framework of
population dynamics, [25], to describe the evolution of cancer and immune system. Tumor heterogeneity is
taken into account by considering two cancer clones, or populations, with x1, x2 denoting ambiguously both
the cancer type and the corresponding number of tumor cells for each clone. The number of immune cells is
represented by z. Evolution of cell populations is determined by three basic elements: proliferation, predation
and competition for resources. Equations are as follows:

dx1
dt

= r1x1 −
r1
K1

x21︸ ︷︷ ︸
proliferation

− b12
K1

x1x2︸ ︷︷ ︸
competition

− c1
K1

x1z︸ ︷︷ ︸
predation

−g1(t)x1 −
h(t)

K1
x1z︸ ︷︷ ︸

therapies

,

dx2
dt

= r2x2 −
r2
K2

x22 −
b21
K2

x1x2 −
c2
K2

x2z − g2(t)x2 −
h(t)

K2
x2z,

dz

dt
= βz

(
1− z

H

)
︸ ︷︷ ︸
proliferation

+
α1

H
x1z +

α2

H
x2z︸ ︷︷ ︸

recognition

. (2.1)

The model is described in greater detail in [26], where also stability analysis of stationary states is carried out.
Here we present a short summary:

– Tumor clone x1. Clone x1 undergoes a logistic growth with reproduction rate r1 and carrying capacity
K1, i.e. K1 is the maximum value x1 can take. Development of x1 is constrained by the competition with
clone x2 (measured by the parameter b12) and by the interaction with the immune system (parameter c1).

– Tumor clone x2. The equation for x2 is analogous to the one for x1 and the same considerations apply.
– Immune system z. It grows with a net rate β and, in absence of tumor, it is limited by H. In presence of

cancer, z undergoes a clonal expansion weighted, respectively, by parameters α1, α2 which measure the
ability of immune cells to detect and recognize cancer cells.
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– Chemotherapy. The effects of chemotherapy on the population xi are represented in the model by the
term gi(t)xi where gi takes into account the drugs kinetics in the organism, see [6]. This is equivalent to
rewrite the growth term as fixi = (ri − gi(t))xi.

– Immunotherapy. The action of the immune system can be enhanced by immunotherapy, whose effect is
expressed by the term h(t)/Kixiz, h(t) > 0 which is equivalent to define a new parameter κi = ci + h(t).
The effect of the immunotherapy as an increased ability by the immune system to recognize and kill cancer
cells has been proposed, for instance, in [36].

In the following cancer clone x1 is supposed to be susceptible to chemotherapy, whereas x2 is resistant, i.e.
g2(t) = 0 ∀t. Moreover, x = x1 + x2 denotes the total cancer load.

A detailed stability analysis of system (2.1) and the stationary points has been presented in [26] and it can be
carried out with the standard methods of analysis. The main results are reported here in view of the discussion
of Section 4. The analysis has been performed considering cancer populations before treatment, to identify
conditions for the occurrence of different trends. Thus, what is of interest are not the stationary points, per se,
but rather the correspondence between parameters and composition of the cancer population.

The stable points of biological interest correspond to the case of tumor eradication, survival of a single cancer
clone (competitive exclusion) and coexistence of both cancer clones. Furthermore, it is assumed that, before
therapy, both cancer clones escape eradication by the immune system; more specifically the focus is on two types
of configurations of cancer populations, characterized by different asymptotic behaviours, namely coexistence
of susceptible and resistant clones (heterogeneous tumors) and competitive exclusion of the resistant clone.
Summing up:

– Coexistence (COE). Before therapy, x1, the susceptible clone, is also the fittest, as it has a larger rate of
growth and also a competitive advantage even though x2 is not totally eliminated.

– Competitive exclusion (EC1). x1 is the dominant clone. In this configuration x1 increases its competitive
advantage so that, asymptotically, x2 is wiped out.

Different combinations of parameters give rise to different degrees of competition and, hence, to different
levels of coexistence or, for EC1 to different time courses for the disappearance of the weaker clone. Thus, to
the COE configuration may correspond different equilibrium values of clones population, and, also, transients
of x1, x2 in COE may be similar to those for a relatively weak competitive exclusion.

3. Measures of treatment efficiency

An usual measure of efficiency of treatment is given via the functional:

H(u) = αx(T ) +

∫ T

0

(βx(t) + γu(t))dt, (3.1)

where x is the total cancer population, T the duration of the therapy and u is the time course of the treatment,
see e.g. [6, 18, 19]. The optimal therapy u∗ is then the one which minimizes H, subjected to the constraint
(represented by the last term in the integral) that the doses of the drugs administered to the patient must not be
too high. Minimization of the functional H can be obtained using standard methods of control theory. However
the problem remains of how to choose the values of the parameters α, β and γ that determine the weights of
the factors in H. Furthermore, equation (3.1) fails to consider fact that a decrease of the total load x can be
misleading, if due just to a reduction of the sensitive clone x1, in that it may mask an increase of the resistant
species x2.

Thus, a measure of the efficiency of a treatment should take into account not just the decrease of the total
cancer load x = x1 + x2 but also the trend of resistant cells, a critical factor in assessing how well a therapy
works. An index of effectiveness depending on variation of the total load and of the number of resistant cells has
been defined in [27] as follows. Denote by xpre, xpost the total cancer loads one day before and one day after the
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administration of the therapy and by x2,pre x2,post the corresponding values of x2 (the resistant clones). Next
define parameters ε and δ as

ε =
xpre − xpost

xpre
, δ =

x2,pre − x2,post
xpre

. (3.2)

The upper bound of ε and δ is 1; they can take negative values, whereas, to combine them in a global parameter,
they need to be non-negative. A transformation is then applied to ε, δ by means of the sigmoid function and
finally an efficiency index γ is defined as

γ =
(1 + exp(−1))2

[1 + exp(−ε)] [1 + exp(−δ)]
, (3.3)

where the term (1 + exp(−1))2 ensures that sup γ = 1.
The index γ depends solely on the numerosity of x1 and x2 before and after the treatment, but it fails to take

into account the cancer load during the therapy which also is important to assess the effectiveness of a therapy.
In order to include this factor, a new index is proposed here. Let xc be the total load in absence of treatment
(the control case): the measure of therapy efficiency then becomes

I = γ

(
1−

∫ Tf

Ti
x(t)dt∫ Tf

Ti
xc(t)dt

)
. (3.4)

Obviously no index can fully capture the complexity involved in the results of medical treatments. The index
I is meant to give just some insight to the relative effectiveness of different therapies on therapeutic outcomes;
in other words what matters here it is not the absolute value of I but, rather, the relative values in the different
cases.

4. Simulations and results

In this section it is carried out a comparison of the results of various protocols, by the index I, characterized
by different temporal distribution of the dose.

Parameters used in the simulations have been evaluated from data reported in the literature [7, 16], or,
as in case of b12, b21, varied in an exploratory way. Table 1 reports their values. We focus on two types of
cancer populations, characterized by different competition interactions and different asymptotic behaviours as
highlighted in Section 2: Coexistence (COE) where b12 = 0.001 and b21 = 0.098, and Competitive exclusion
(EC1) where b12 = 0.1 and b21 = 0.5.

Initial conditions are chosen as follow: cancer evolution starts with resistant population, x2, small with respect
to the susceptible, x1, i.e. x1(0) = 9× 104, x2(0) = 4× 104, and the immune cells are z(0) = 5× 102.

Therapies are modelled changing parameters and maintaining the total dose constant:

Ch =

∫ Tf

Ti

g(t)dt =

∫ Tf

Ti

[ri − fi(t)] dt, (4.1a)

Im =

∫ Tf

Ti

h(t)dt =

∫ Tf

Ti

[κi(t)− ci] dt, (4.1b)

where [Ti, Tf ] is the time interval of administration of the treatments and Ch refers to chemotherapy while Im
to immunotherapy. Actual values of the total dose are set accordingly to [29]: Ch = 9.66 and Im = 971.
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Table 1. Table of the parameters and initial conditions used in all the simulations.

Parameter Unit Value/Range Interpretation Source

r1 days−1 0.15 Tumor growth rate of x1 [7]
r2 days−1 0.11 Tumor growth rate of x2 [7]
bij days−1 0.01–1 Intratumoral competition Estimated
ci days−1 5.5 Killing rate by the immune system [16]
Ki cells 5× 107 Tumor carrying capacity [7, 16]
H cells 3× 105 Immune system threshold [16]
αi days−1 6× 10−9 Immune recruitment rate [16]
β days−1 0.8 Immune system growth rate Estimated

Figure 1. Cancer populations time courses for configuration COE under chemotherapy. The
dotted blue line and the dashed red line denote, respectively, x1 and x2, and the continuous
violet line corresponds to x(t) = x1(t) + x2(t). Vertical blue segments indicate times of drug
administration. Top left panel : “bang” therapy at the beginning of the treatment window W
(I = 0.049). Top right panel : continuous protocol (I = 0.069). Bottom left panel : switch to
pulse with initial “bang” (I = 0.066). Bottom right panel : switch to pulse with final “bang”
(I = 0.136).

4.1. Classical protocols

We start by considering some “classical” chemotherapy protocols, [32], namely a “bang” or maximum tol-
erated dose (MTD, the dose is administered in a relatively short interval), a continuous protocol (where the
same dose is given each day of the treatment window W ), and finally, the switch to pulse in which a “bang” is
preceded, or followed, by a continuous protocol.

Results, displayed in Figure 1, confirm previous finding [26, 27] that, for heterogeneous tumors (as in the
COE case), in general chemotherapy alone is not efficient, due to clonal inversion and emergence of resistant
subpopulations. However, a switch to pulse protocol consisting of a continuous therapy followed by a final bang
yields better results, with an index value markedly larger than the others. This result is due to the fact that
the dominant clone x1 controls the resistant one x2 and most of the total cancer load is made of x1 when the
final bang is applied. These results are coherent with findings proposed in [28].

4.2. Splitting the dose

In order to further investigate the effectiveness of chemotherapy protocols, different time courses with a given
constant dose are simulated. In other words, the total dose is kept fixed in a given treatment window W , while it
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Figure 2. Protocols with n = 12 “on” days of treatment (red dots) distributed, for increasing
values of Tp on consecutive days (left panel) or at random in the window W (right panel).
Vertical axis reports values of Tp for each protocol while the horizontal axis indicates the days
of the treatment window.

Figure 3. Cancer populations time courses for configuration EC1 under chemotherapy. The
dotted blue line and the dashed red line denote, respectively, x1 and x2, and the continuous
violet line corresponds to x(t) = x1(t) + x2(t). Vertical blue segments indicate times of drug
administration. Days of treatment are chosen with an average at the middle of W (Tp = 0.5).
Left panel: 12 consecutive with I = 0.417. Central and right panel: 2 realizations of random
administration, here I = 0.452 for both panels.

is varied how this dose is subdivided in different days and how they are distributed. In the sequel the treatment
window is chosen in the time interval from Ti = 50 to Tf = 150, i.e. W is 100 days long. Here, it is assumed
that, in this interval, treatment is administered in n = 12 days: a day of treatment is called an “on” day. These
n days can be consecutive or distributed at random in W . Thus, protocols may differ in the starting day and
in the temporal distribution of “on” days. These differences are captured by introducing a translated average
drug administration time Tp ∈ [0, 1], such that Tp = 0 if “on” days are consecutive starting from Ti and Tp = 1
if “on” days are again consecutive terminating in Tf . Obviously, in general to the same value of Tp there may
correspond different distributions of “on” days. The left panel of Figure 2 displays, for a set of increasing values
of Tp, a realization of the distribution of “on” days. On the left, “on” days are consecutive, and there is just
one possible distribution, while on the right they are randomly distributed.

Figure 3 shows applications of three chemotherapy protocols corresponding to the same Tp = 0.5, but dif-
fering in the distribution of “on” days. Here the clonal configuration is EC1. In the leftmost panel all dose is
concentrated in n = 12 successive days such that its middle value is just at the center of treatment window W .
In the central and rightmost panels, the “on” days are random with Tp = 0.5, i.e. their distribution is spread
around a middle point of W . Comparison with the previous case shows that now, for each protocol, all index
I values are much larger and very close to each other. An explanation is that, in this condition of competitive
exclusion, emergence of resistance is a negligible effect and that the sensitive clone x1 is curtailed by the therapy.
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Figure 4. I is plotted as function of Tp for the COE configuration (left panel) and for the
EC1 case (central panel). The continuous line represents the outcome of a bang protocol with
consecutive “on” days and the dashed line is the average value of I for different simulations
with the same Tp. In the right panel the index J is plotted as a function of Tp. Red and blue
lines refer to the COE and EC1 configurations, respectively, under protocol with consecutive
“on” days.

The closeness of index values supports the idea that what matters is the value of the shifted average Tp, rather
than the actual distribution of “on” days.

Note that the index Tp is more general than starting time of a protocol. In the case of distributed protocols,
the starting time of the treatment could be the same for different protocols with different averaged Tp and results
shown in Figure 2 suggest that the value of the average Tp is more important than the actual distribution of
“on” days. Moreover, in the case of consecutive “on” days, as shown in left panel of Figure 3, the index Tp
corresponds, apart from a common temporal shift, to the starting time.

The comparison of different protocols has been generalized by considering increasing values of Tp and, for each
such value, generating different (17) random realizations of “on” days distributions; for each Tp the corresponding
average of I is computed. The efficiency index is plotted, as a function of Tp in Figure 4, for configurations COE
(left) and EC1 (central), respectively. The continuous curve is the index I for distributions of all consecutive
days, and the dashed one is the average of random distributions.

As shown in the left panel of Figure 4, in the COE state, I is in general small and varies little in the range of
its possible values i.e. [0, 1]; however, chemotherapy is slightly more efficient when administered toward the end
of the treatment window and that confirms and generalizes results reported above (compare Fig. 1 and related
comments in the text).

By contrast, in the EC1 case (central panel of Fig. 4), the therapy is, in general, efficient and the best results
are obtained for protocols corresponding to values of Tp in the middle of the range [0, 1]. In EC1 the sensitive
population tends, not just to control, but to suppress the resistant clone x2 and so the problem of the resistance
is less acute; rather it is important to avoid an uncontrolled growth of the sensitive population x1. Thus the
therapy should be administered earlier, to avoid x1 becoming too large but not before it has almost eliminated
x2. Obviously, the Tp values corresponding to the maximum I, depend in general also on the initial conditions
and on the ratio of sensitive versus resistant populations. As a general rule, it would appear that the larger is
the competitive advantage of the sensitive population the earlier the therapy should be applied.

As remarked earlier, the same configuration (COE or EC1) may correspond to different degrees of competi-
tion. Actual values of I depend on these competition levels and so the curve representing a case in which EC1
is relatively weak would resemble a curve relative to COE more closely than when competition is very strong.

In order to compare index I with others proposed in the literature, we consider an index similar to H, see
equation (3.1), namely

J =
1

2

[(
1− xpost

K

)
+

(
1−

∫ Tf

Ti
x(t)dt∫ Tf

Ti
xc(t)dt

)]
, (4.2)
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Figure 5. Combination therapy. A metronomic immunotherapy is administered in addition
to the classical chemotherapic protocols of Figure 1, in case of configuration COE. The pink
horizontal bar represents immunotherapy, otherwise notations are the same as Figure 1. Indices
are I = 0.543 for an initial bang, I = 0.552 for a metronomic protocol, I = 0.544 for the switch
to pulse with an initial bang and I = 0.533 for switch to pulse the one with a final bang.

where K = K1 +K2, which, differently from H, is such that a higher efficiency corresponds to larger J values
and all weights are chosen equal to 1/2, so that J is in the [0, 1] range, making the comparison with I easier.
Furthermore, here the total amount of drug is considered fixed in the treatment window and hence in (4.2) it
does not appear as a variable.

Values of J , as a function of Tp, are shown in the right panel of Figure 4 for COE and EC1 respectively.
Despite obvious differences in numerical values, the indices I and J share the same trend: in COE they are
slowly increasing with a maximum toward the end of the temporal range whereas for EC1 their time course is
characterized by a maximum at intermediate values of Tp.

4.3. Combination therapy

The advantages of using a combination therapy are so well documented in the literature see e.g. [17, 33], to
have become commonplace. We replicate here, for combination of chemo- and immunotherapy, the simulations
carried out for the “classical” protocols, investigated in Section 4.1, by adding to chemotherapy a continuous
immunotherapy. Results are shown in Figure 5: as expected the index I is larger than in case of chemotherapy
alone. Now both clones are curtailed by therapies, hence the timing is less relevant; indeed the index I is virtually
the same in all cases.

In the line of Section 4.2, we investigate the effectiveness of combination therapies, by simulating protocols
spanning the range of Tp. The graphs of Figure 6 show that the increment of I, with respect to chemotherapy
alone, is especially marked for COE, even though EC1 is the configuration for which the treatment is more
efficient (see left panel of Fig. 6) and I has small variations across trials with the same Tp (compare right panel
of Fig. 6). Interestingly, the largest I values arise when the chemotherapy is administered early and this is in
contrast with what happens for chemotherapy alone (compare left and central panels of Fig. 4). The reason is
that now the resistant cells are contrasted not just by the sensitive ones but also by the action of the immune
system, enhanced by immunotherapy, hence their growth becomes less relevant and the earlier chemotherapy is
applied, the better.

This result is coherent with the idea, put forward in the previous subsections, that the greater the selec-
tive pressures, the earlier should be the treatment. It should be noted that the case of early bang (MTD) of
chemotherapy, coupled with a continuous immunotherapy is also advocated, as best treatment strategy, on the
basis of a formal optimization procedure in [18] and references therein. Thus, the present analysis does not just
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Figure 6. Left panel: I vs. Tp, in the case of combination therapy. Notations are the same as
Figure 4 and red lines correspond to COE and blue lines to EC1 configurations, respectively.
The continuous line represents the outcome of protocol with bang of 12 consecutive “on” days
and the dashed lines are the average value of I for 17 simulations with the same Tp in the COE
and EC1 configurations. Right panel shows an example of the different simulations generated,
and then averaged, for a specific Tp = 0.5 in the COE configuration.

Figure 7. Comparison with experimental data: panels refer to control (top left), maximum
tolerated dose (bangs), continuous low dose (bottom left), switch to pulse (bottom right). The
grey line denotes the experimental results and the other notations are as in Figure 1. Index
values are, from top right to bottom right panels, I = 0.001; I = 0.009; I = 0.015.

confirms the findings of previous studies but it adds an important information on the timing of treatments in
relation to clonal composition.
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Figure 8. New protocols tested in silico with the same settings of biological data and notations
of Figure 7. Top panels refers to initial bang (left panel, I = 0.000, Tp = 0) and final one (right
panel, I = 0.073, Tp = 1). Bottom panels propose switch to pulse protocols with initial bang
(I = 0.004) and final bang (I = 0.009).

4.4. Comparison with experimental data

In order to test the validity of our analysis and conjecture on the effectiveness of different protocols, we have
considered data from an experiment reported in [32]. Breast tumor cells were transplanted in mice and treated
with different schedules of chemotherapy. Figure 7 shows the time course of the data, for different experimental
protocols, together with the predictions of our model. The control case is displayed in the top left panel and
the top right panel shows the results for two “bangs” at the beginning and at the end of the treatment window.
Bottom panels refer to the case of continuous therapy and switch to pulse with initial and final “bangs”.

Parameters and initial conditions are set as before apart from: r1 = 0.25; r2 = 0.29; b12 = 0.1; b21 = 0.5, K1 =
K2 = 1010; H = 3× 106. Initial conditions now are set as: x1(0) = 3.7× 107, x2(0) = 1× 106, z(0) = 5× 105.
Parameters are set in a EC1 configuration, however the considered numbers of cells are such that the effects of
inter-species competition are small. Chemotherapies are modelled changing parameters as follows: “bangs” of 6
“on” days with r1 − g1 = −0.3, continuous low dose with r1 − g1 = 0.17, switch to pulse with “bangs” of 2 days
where r1 − g1 = −0.1 and a continuous low dose r1 − g1 = 0.17.

Note the good agreement between the data and the time courses of cancer population predicted by our model.
Moreover our simulations allow to gain some information on the acquired resistance after the treatment window.
For instance comparing two bangs (top right panel of Fig. 7) with a metronomic treatment (bottom left panel),
it is clear that even though the final number of tumoral cells is comparable, the first therapy has generated a
population made up mostly of resistant cells, while metronomic schedule reduces the emergence of resistance,
coherently with reports in literature, see e.g. [1]. It is apparent from the data that all proposed therapies are
quite ineffectual, and, this situation is accurately predicted by the values of the index I which are in any case
very low. For comparison, we have computed the index J , equation (4.2), for the cases of maximum tolerated
dose, J = 0.55, and continuous therapies, J = 0.43, (panels top right and bottom left of Fig. 7, respectively).
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This indicates that J gives an optimistic estimate of the effect of the therapy on cancer growth, as it fails to take
explicitly into account the emergence of the resistant population. Furthermore, the values of J are very close,
whereas the corresponding values of I differ almost of an order of magnitude, showing greater effectiveness of
discrimination.

Obviously, many other protocols can be adopted, and to investigate which could give better results, we
simulate the performance of new protocols obtained by changing the timing of “bangs” and switch to pulse
treatments. Results are shown in Figure 8 from which it is clear that the best outcome is for a late bang (see top
right panel) as also proposed in [28]. For this case, index I is much larger than values yielded by experimental
protocols.

5. Conclusion

Results presented in this paper clearly confirm previous findings [26, 27] on the relevance of inter-species
competition among cancer cells in determining the outcome of medical treatment of cancer, coherently to
biological findings, e.g. [35]. Differently from [26, 27], where different amounts of the total dose were considered,
here the focus of the analysis has been on the distribution of the “on” days across a therapy window, while the
total amount of drug has been kept fixed. The present analysis provides important new information on how the
timing of the most efficient treatments is related to clonal composition.

A general rule seems to hold; when the environment is harsh and strong and the selective pressures lead to
competitive exclusion with survival of the fittest clones, an early therapy appears to be better. For instance a
harsh environment occurs when combination therapies are applied and this is indeed the case in which earliest
therapies perform better.

On the contrary, when competitive exclusion does not apply, as for instance in a mild environment, the tumor
is heterogeneous and the timing of protocols is less relevant, even though a relatively late therapy seems to be
slightly more efficient as also proposed in [28].

Several studies highlight the relevance of microenvironment in affecting the fitness of tumor cells, changing the
overall behaviour in terms of growth and response to therapy, see for instance [24]. Among others, certain factors
such as hypoxia and acidosis, can be identified as hallmarks of a harsh environment, even though, unfortunately,
it would be naive to expect a clear-cut classification of the type of microenvironment. However, the idea that
the therapy should take into account this specificity is consistent with recent therapeutical approaches that not
only target cancer cells but also aim to modulate the microenvironment, e.g. hypoxia activate prodrugs, [23]
and blood vessel normalization [22].

A new index has been proposed, which compared with traditional indices has the property to take into
account explicitly the cancer clonal composition and, in particular, the numerosity of resistant cell. Thus, in
situations in which clonal switch leads to the emergence of drug resistance, the index proposed here has shown
to be more suitable to capture this phenomenon. On the other hand, a limit of this index is that it requires, to
be computed, precise clinical data on the composition of the different clonal populations.

Predictions of the model have been compared with data from an experiment on breast cancer where different
time protocols were tested. A good agreement is found with the experimental time courses of cancer load, both
in the control case and under different therapies. Then, new protocols have been proposed and simulated and,
at least one of them performs better in silico than those used in the experiments.

Acknowledgements. This work is supported by the “Departments of Excellence 2018 - 2022” Grant awarded by the Italian
Ministry of Education, University and Research (MIUR) (L. 232/2016) CUP: E11G18000350001.

References
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