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Considerationsabout the choice of layerwise and through-thickness

global functionsof 3-D physically-based zig-zag theories

Abstract

A generalization of physically-based fixed degrees of freedom 3-D zig-zag theories is developed, which
allows for any arbitrary choice of layerwise and representation functions. Thereby users can choose
arbitrarily the representation case-by-case. This paperaims to prove thatthe choice of global and
layerwise functionsis immaterialwhenever coefficients are recalculated exactly (via symbolic calculus)
by the enforcement of interfacialstress continuity, boundary conditions and equilibrium in point form,as
prescribed by the elasticity theory. Vice versa, accuracy of theories partially fulfilling constraints will
prove to largely depend on the assumptionsmade and to be inadequate when strong layerwise effects
rise, under distributed/localized step loading and boundary conditionsotherthan simply supported edges
(tests carried outin closed-form). The present and previous authors’ theories are tested with the aim to
understand in which casesanadequate level of accuracy is still achieved by lower-order theories thatare

derived as particularizations.

Keywords
Physically-based zig-zag theories generalized formulation, Arbitrary through-thickness representation of
global and layerwise functionswith fixed d.o.f., Transverse shearand normalstresses, Laminated and

soft-core sandwich plates and beams, Layersstiffness ratio, Analytical solutions

1. Introduction

As well known, laminated fibre-reinforced and sandwich composites offer excellent specific strength and
stiffness, fatigue and energy absorption properties, better resistance to corrosion than metalsand greater
design flexibility. To ward off any possible catastrophic failure or intolerable loss of performance of these
materials, an accurate prediction of through-thickness displacement, strain and stress fields is crucial [1].
Displacements have to be C° continuousatinterfacesand with the suited slope (zig-zag effect)so that
out-of-plane stresses are continuous and satisfy local equilibrium equations.

So far many laminated plate and shell theories with varying degrees of accuracy, computational costsand
memory storage occupation have been developed, asexplained in detail in the book by Reddy [2] and in
the papersby Reddy and co-workers [1], [3], Vasilive and Lur’e [4], Lur’e, and Shumova [5], Noor et al.
[6], Altenbach [7], Carrera [8-12], Qatu[13], Qatuet al. [14], Wanjiand Zhen [15], Khandanetal.[16]
and Kapuria and Nath [17].



Equivalentsingle-layer [18]-[21], discrete-layer [22], [23], zig-zag [11], [24], hierarchical [25], [26] and
axiomatic/asymptotic [27], [28] theories can be categorized, which further subdivide into displacement-
based and mixed formulations (displacements, strains and stress fields chosen separately).
Equivalentssingle layer theories are of limited validity, noteven being able to predict overall behaviour
quantities, but even this limited goal could be disregarded, as shown amongmany othersby Icardiand
Sola [29], Icardiand Urraci [30,31], Kapuria et al. [32], Zhen and Wanji [33], Burlayenko etal. [34] and
Jun et al. [35] for caseswith a strong transverse anisotropy. A forcibly schematic description like that of
this article leads to summarize discrete-layer theories as potentially accurate irrespective of lay-up,
property variation acrossthe thickness, loading and boundary conditions, butalso problematic because
they could overwhelm the computational capacity when structures of industrial interest are analyzed,
owing to their too much numberof variables. Recentaccurate, versatile and efficient theories like
Carrera’s unified formulation [8] and refined zig-zag theories [29-31,36] are instead suitable for analysis
of industrial structures. Theory [8] allows displacementsto take arbitrary formsthatcan be chosen by the
user asan input of the analysisand it is able to get existing theories as particularizations. This paper
intends to pursue the same purpose with a new generalized zig-zag theory.

Zig-zag theories subdivide into: (i) Di Sciuva’s like physically-based theories (see [37-39] as examples),
or (ii) Murakami’s like kinematic-based mixed theories, (see, e.g. [11],[40], [41]), given the different
type of zig.zag functions used. Both strike the right balance between accuracy and costsaving, allowing
designers’ demand of theories in a simple already accurate form to be met.

Theories (i) generally have a fixed numberof unknowns irrespective of the numberof constituent layers.
Their layerwise contributionsare the product of linear [37] (or nonlinear [42]) zig-zag functionsand
unknown zig-zag amplitudes, inferred by enforcing the fulfilment of stress continuity conditions at layer
interfaces.

Theories (ii) assume zig-zag functionsfeaturinga periodic change of sign of the slope of displacementsat
interfaces, asoccurring for periodic laminations, therefore without takinginto account orientation angle,
material properties and thickness of constituent layers. Their number of variables (kinematic and stress
quantities) depends upon the number of constituent/computational layers. They can be inaccurate [30, 31,
43, 44], but they enable a more easily obtainment of C° formulations of plate theories for the
development of efficient finite elements. Mixed multilayered theories accurately predict stresses, with the
merit of keeping simpler kinematicsasis evident from the papersby Tessler et al. [36], Kim and Cho
[45], Barutet al. [46], lurlaro et al. [47] and Zhen and Wanji[48]. When strong layerwise effectsrise, (ii)
require many more degrees of freedom and/ora higher expansion order than (i), asit can be seen, for
example,comparingthe results of [30] and [49].

Efficient and accurate theorieswhere zig-zag functionsare not explicitly incorporated based on a global-
local superposition of displacement fields were proposed by Li and Liu [50] and refined by Zhen and
Wanji, e.g. [51], which in the version of Shariyat [52] consider a non-uniform transverse displacement
across the thickness.

Theories with a hierarchical set of locally defined polynomialswhere neither zig-zag contributions are

incorporated in the kinematics, nor post-processing steps are required (see, [25], [26], Catapanoetal. [53]



andde Miguel et al. [54]) have been developed, for favouringnumerical efficiency. Anyway, they require
a quite large numberof variablesto mitigate the effects of the omitted enforcement of interfacial stress
contact conditions, so to avoid small interfacial stress jumps.

Physically-based 3D zig-zag theories like [29-31] also allow a variable representation arbitrarily chosen
by the user, without increasing their only 5 d.o.f., while Strain Energy Updating Technique [55] canbe
used to obtaina C° formulation. Because their coefficients are redefined across the thickness, they can be
counted amongthose with variable-kinematics (see, e.g. Vescovini and Dozio [56]).

So far, power series expansion, hierarchic polynomials, Taylor’s series, trigonometric and exponential
functions,a combination of both and radial basis functions (see [57] to [66]) have been used to represent
variablesacross the thickness and a high sensitivity to the differentassumptions made was shown.

Going into more detailregarding physically-based 3D zig-zag theories, in Icardiand Sola [29] a
displacement-based laminated plate theory with piecewise cubic in-plane displacements, a fourth-order
transverse displacementand only 5 d.o.f. (mid-plane displacementsand rotations), referred as ZZA, was
developed, whose coefficientsare redefined across the thickness by imposing the fulfilment of elasticity
theory constraints (interfacial stress compatibility conditions, stress boundary conditionsand local
equilibrium equationsatarbitrary selected pointsacross the thickness).

Variants of ZZA were developed in [30], assuming different layerwise functions,in order to evaluate how
the different choices affectaccuracy. For the same purpose, different forms of representation of global
functionsand various layerwise functions (as well aswithout them) were assumed in [67]-[71]. Inan
attemptof lowering the computational cost,a mixed variant of the already very efficient ZZA theory was
developed in [31] within the framework of Hu-Washizu variationaltheorem, so to retain separately only
the essential contributions of displacement, strain and stress fields. Theories [29,30,67-71], all developed
by using symbolic calculus to exactly fulfil the elasticity theory constraints, were provento be efficient
and suitable to analyse challenging elastostatic and dynamic cases, including pumping modes which are
usually solved through FEM. In effects, their accuracy was proven to be similar tothat of discrete layer
and layerwise models with a very high through-thickness expansion order of variablesand so a larger
computationalburden.

A notnegligible advantage of these theories is thatthere is no need to approximate loadingwith a series
expansion, because its mathematical expression is used to exactly compute the work of externalforces via
symbolic calculus. Another advantage is thatalso in-plane displacementand stress continuity can be
enforced, with the aim to analyse also structures with step variable properties along in-plane directions
and notonly across the thickness. Moreover, stresses of theories [29,30,67-71] are obtained from
constitutive relations and there is no need to post-processing.

Summing up the features of theories [29,30,67-71], similarly to [50] - [52], it is notnecessary to include
specific zigzag functionsto respect the interfacial out-of-plane stress compatibility, because a number of
coefficients can be redefined for each layer for this purpose. However, unlike [50] - [52] and all
conventionalplate theories, in [29,30,67-71] all coefficientscan be redefined acrossthe thickness so that
stress-boundary conditions are met at the outer layers and equilibrium can be satisfied in a strong point

form within inner layers. Similarly to hierarchical and asymptotic theories, the representation can be



enriched in order to achieve a better accuracy, but the expansion orderand the numberof variables do
not grow once the piecewise cubic-quartic representation adopted is fragmented into computational layers
and/orchanging the type of representation from layer to layer and differently for each displacement.
Unlike thetheories thattoday are very popularfor their accuracy and versatility (e.g. [8] and subsequent
developments), [29,30,67-71] are formulated by respecting physical constraints exactly (from which the
appellation of physically-based theories follows) so asto limit the computationalburden, rather
respecting them in a limit sense increasing the expansion order and/or the numberof variables.

A generalization of previous 3-D zig-zag theories is developed in this paper,whose formulation allows
user to arbitrarily choose layerwise and representation functions, also differently for each displacement
and foreach layer. Nevertheless any numberof d.o.f. could be assumed (not necessarily just mid-plane
displacementsand rotations), it is here limited to five to carry out comparisonswith ZZA and other
previous theories under the same conditions. From the present generalized theory an approximate non-
plate theory (numberof d.o.f. not fixed that depends from the expansion order imposed) AT-3D is
derived, which canbeused as reference solution when exactoneis unavailable. Given its generality, also
hierarchical theories could be obtained by the present theory, which however won’t be considered in this
research.

Six theories different from those of [29]-[31] and [67]-[71] are particularized in (3.1 ) assuming
sinusoidal, exponential, power series or a combination of them (which can be different for each
displacementand from layer to layer) to describe the variation of displacementsacross the thickness.
Fourteen additional lower order theories are developed in (3.2)-(3.8) to test along with the formersix if a
plate theory with fixed d.o.f. can enable a kinematic-variable representation across the thickness requiring
a lower computationalburden than existing theories with same features,andto understand in which cases
it is still allowed to reach an adequate level of accuracy. The results will show thata piecewise cubic and
a fourth-order polynomialfor in-plane and transverse displacements respectively achieve this goal. Inone
theory, equilibrium equationsare enforced in weak form, instead than in a point form asfor all others
theories mentioned, in order to verify the degree of accuracy achievable. Results will confirmon a
broaderbasis what preliminarily demonstrated in [29]-[31] and [67]-[71], that the choice of zig-zag and
representation functionsis immaterialif coefficientsare redefined acrossthe thickness and calculated by
imposing full set of physical constraints.

Table 1 provides a quick reference pattern of all casesconsidered in the numericalapplications and lists
details on length-to-thickness ratio, lay-up, loading and boundary conditions. Mechanicalproperties of
materialsare in Table2, Table 3 reports trial functions, expansion order and equilibrium points position
across the thickness for each case, Table 4 contains normalizations, Table 5 records a brief description of

theories, while the processing time is listed in Table 6.



2. Theoretical Framework

Notationsand basic assumptions, thatare common to all the theories, are discussed in the following
section. Features of the new theories introduced in this paperare examined in details. Readersare referred

to the literature quoted for previously developed theories.

2.1 Basic assumptions and main notations
This study is restricted to multilayered elastic plates subject to small deformations, asrepresentative of
laminated and sandwiches. Loadingis assumed conservative, strainsare assumed to be infinitesimal,

while constituent layers are assumed to be linearly elastic, to have orthotropic properties, a uniform
arbitrary thickness h* andtobe perfectly bonded to each other (bonding resin interlayer is disregarded).
A rectangular, right-handed Cartesian coordinate reference system ) on the middle reference plane is

assumed asthe reference frame. As easily allowed by symbolic calculus used to develop theories, €2

could be assumed differently to any other position, so to prevent an eventualzeroing of coefficients for

h h
certain lay-upsand theories. The thickness coordinateis ¢ (g € [_E , E} h being the overall

thickness) and a comma is used to indicate spatialderivatives, e.g. (.) , = 8() /0, .LoandLp

symbolize the plate side-length in the a- and B-directions. Strains and stresses are indicated respectively

as &, 0y (1,]=123, 1=a,2= ,3=). The upperand lower positions of layer interfacesare

ij»

h ®

indicated wit g* and (k)g’, respectively, the superscript (or in other casesthe subscript) k being

used to indicate thata quantity belongs to the layer k. To indicate thata quantity is evaluated on upperand
lower facesof the laminate,the markers u and I are used, respectively.

Except fora couple of theories for which the appropriate specificationswill be given below, all remaining

theories have the following five d.o.f. uj, uj, w’, I';, T, consisting of midle plane displacement

componentsand shearrotations of the normal

2.2 Solutions search

Solution is searched in a closed form within the framework of Rayleigh-Ritz method, in conjunction with
Lagrange multipliers method. Accordingly, d.o.f. are expressed asa truncated series expansion of
unknown amplitudes and trial functionsthat individually satisfy the prescribed boundary conditions. The
trial functionsare explicitly definedin Table 3 for each specific case along with the expansion order and
normalizationsused. The same trial functionsand expansion order are shared by all theories, in order to
compare them underthe same conditions. The methodology to satisfy the mechanicalboundary
conditions (transverse shearstress resultant force equals the constraint force and resultant couple of in-
plane stresses, where they are not identically satisfied) based on Lagrange multipliers method is the same

of [31], where readers can find all details here omitted. The derivation of governing equationswill be



omitted to contain the paperlength because they are obtainable in a straightforward way with standard

techniques.

2.3 ZZA displacement-based theory
Hereafterthe main features of zig-zag adaptive theory (ZZA [29]) are summarized, it being the basis
from which all theories developed and assessed in this paperevolved. The following through-thickness

displacement field is postulated:
u, (@ B.¢)=[ u'(@p+s(a. f)-wW (. p),) |,+[ FilaB.s) |+
[ S0k (@ A s)H, @)+ X Clla AH,) .

W@ . =] Wi p) L+ F@pe) |+ E¥ @ he-aH @)+

> 0@ A -6 H () + 2L @ A, 6) ] "

Symbols n, and n, are used to distinguish the numberof physical interfaces from that of mathematical
layer interfaces, respectively.
Itcould be noticed that linear-[..] ,, higher-[..], and layerwise-[...] , contributions are incorporated,
whose purpose is defined asfollows. The first term [..] , introduces the functionaldegrees of freedom,
while the second one [...] ; contains higher-order contributions, while the third contribution is
characteristic of physically-based zig-zag theories.
Although [ Fl(a,b,4) ]i : [ Fé(a, 3,$) ]i could be chosen entirely arbitrarily, the following
power series expansion is chosen:
[ Fi(@.8.0) | =[ Cula. /)¢ +D (. )5 +(05*.) [ =[ ;O J+[ (05%.) | =

=[Ax(a, NS+ A(@ A1+ A (e IS+t A (0, IS

2)

[ Fi(@B.8) | =[ b'(@.p)S+c'(a, B +d'(a, B)S° +€' (@, /) +(0S°.) | =

=[O J+[ (©¢°.) | =[Aila A +A, (@ A+ Ayl fIS +

+ A (o, P)S T+ A (@, B) +.+ A (a, BT

so to include theory [42] as a particularization of ZZA. Contributions [ (0z*..) ][ (0z°..) ] are

characteristic of ZZA, while [ 3(,5a I [ 4(,55 |, are the sameasin [42]. Note thatfunctions[ F, ]i,

° represent the functional

[ Fe ]i aren’t just depending on ¢ because apexes and subscripts au ,
dependence onthe d.o.f. thatare function of in-plane coordinates. Expressions of coefficients C; , Dfl . b

to €' are obtained by enforcing the fulfilment of stress boundary conditions:



c,=0..=0 O'gg:po(i)

@)

p°(+) being thedistributed loading acting on atthe upper (+) and lower (-) boundingfaces, and of local

equilibrium equations:

ap.p as.¢ a ; ag,a 6.6 (4 (4)
atpoints across the thickness, positioned where residual are the largest. The through-thickness
redefinition of coefficients by (3) and (4) determines the adaptive appellation attributed to ZZA theory.
Applied distributed loadings are managed via symbolic calculus like general (continuousor

discontinuous) functions y(a, f) actingatupper and/orlower faces,so it can be avoided to express them
asa series expression that could limit accuracy.

Layerwise contributions [...] . allow a priori fulfilment of stress compatibility conditions at physicaland

mathematical layer interfaces, so @Z, Wk, QF aredetermined by imposing
0.(Y1)=0,(Y7), 0, (Y7)=0(Y7); o (Y7)=0 (Y7) )

Here - and + indicate the position just before and justafterthe interface, respectively). Contributions

aCujHj and ngHj in (1) restore the continuity of displacements:
®5+y _yy (W5 W54y _qy (005~

u (Mz)=u (M) u.(Mz)=u(“z

07 =u, (M) u (M) =u (M) ©)

since (2) which is contained within [...]; can be assumed differently from point to point across the

thickness. At the end of this brief discussion it is reminded that symbolic calculus enables that
expressions of coefficients and zig-zag amplitudes to be obtained in exact form and once and for all. Itis
also reminded thatjust a third/fourth order representation is required to obtain accurate results [30].
Inorder to assess whether and when the choice of zig-zag functionscan be immaterial, in the numerical
applicationsa new variant of ZZA called ZZA_MHR is considered, wherein Murakami’s zig-zag function

multiplied for amplitudesthatare recalculated acrossthe thickness are assumed as the layerwise

functions, instead of [...] . by ZZA.

2.4 Previously developed theories that are considered for sake of comparisons

They comprise theories HWZZ [31], HWZZM [30], MHR [31], ZZA* [30] and ZZ [42], whose features
are briefly summarized asfollows. HWZZ is a mixed HW theory 34 neglecting quadratic zig-zag and
higher-order adaptive contribution of (1) from displacement field, out-of-plane strains are the same of (1),
while out-of-plane stresses by integrating local equilibrium equation. HWZZM hasthe same features of
HWZZ, except zig-zag functions which are modified versions of Murakami’s layrwise functions with
amplitudesthatare redefined by enforcing (5).

MHR assumesa piecewise cubic in-plane displacementincluding original Murakami’s layerwise
functions, namely amplitudesare not redefined across the thickness, and a fourth-order polynomial

transverse displacement. ZZA* has the same featuresof ZZA, except zig-zag functionsare replaced by



appropriate additional contributions whose amplitudesare redefined across the thickness. ZZ is based on
a piecewise cubic in-plane representation a piecewise fourth-order for transverse displacement, the same

as(1), exceptthat|.] . arenot redefined across the thickness.

3. New theories of this paper

New theories, which constitutes the main theoretical contribution of this paper,are proposed as a
generalization of ZZA andall previously developed theories by the authors[29-31, 42, 55, 68-71], in
order to prove the objective set in the introductory section. Initially, the displacement field is thoughtin

the following form:

n,=3

u' =y ['C(a.p) FiS)]

I
o

)

Il
N

n.

=Y [ici(a.p) 6]

i=0

thatdoesnot contain zig-zag functionsbecause coefficients are redefined across the thickness, being
calculated by imposing the full set of physical constraints (3)-(6) in orderto get accurate results using a

low order of expansion. Subsequently, particularizationsare developed from (7) in the next section (3.1).

Symbol | represents the mathematical layers, so, jC;, IC!', F!(¢) and G'(g) canbe represented

differently acrossthe thickness. Coefficients 1C2, lCi and 1C£ areassumedasd.o.f. To obtain (1) as

a particularization of (7) it is necessary that ng =u’ lCi = FZ —W]Oa and 1C§ =w’ (

a

Fo(g) = Go(g) =1, Fl(g) = ¢ ), while the remaining terms are calculated by enforcing physical

constraints (3)-(6). Of course, the expansionorder N, and N_, which reflects in the numberof unknowns

from one interface (physical or computational) to another, must be chosen in accordance with the physical

constraintsto be imposed. Once the interface has passed, the coefficientsare redefined and then it is
possible that the representation changes. Functions F i (¢) and G' (¢) canbe freely chosen by the user
(symbolic calculationsbeing performed automatically regardless of the choices made).

In numerical applications, theory AT-3D with F'(¢) =¢' and G'(¢) =" is considered, wherein N,

and N, canbe arbitrarily assumed, butanyway so that jCL and jC; are in numbergreater than physical

constraints (3)-(6). Inthe form described in this section, (7) constitutes a 3-D theory which owing to its
generality canbeused as a surrogate of the exact solution when it is notavailable [71].
3.1 Particularizations with ug, FZ —W’Oa, W’ asd.of.

Particularizations of (7) having same d.o.f. of ZZA are developed in this section assuming F! (¢) and

G' (¢) asamixture of trigonometric and exponential functionsrandom ly selected for each theory, to



demonstrate thattheirchoice is immaterialwhenever (3)-(6) are enforced and exact relationsare found

from such enforcement via symbolic calculus.

Theory name Function thickness range
1 fori=0
NOZZG Fl(c)=G'(¢)=1¢ fori=1 (<h/2<¢<h/2) (8a)
gltam fori>1
ZZA PP34 Fi()=G'(¢)=(¢) (-h/2<¢<h/2) (8b)
1 fori=0
irN_ iy S fori=1 8c
ZZA _PT34 F.(s)=G'(s)= cos(ie 1 2h) fori_aa  (M/25c=ni2) (8c)
sin((i +1)7z¢ / 2h) fori=3
1 fori=0
g fori=1 (8d)
ZZA_PM34 F,(s)=G'(s)=1exp(s/h) fori=2 (-h/2<¢c<h/2)
sin(zg / 2h) fori=3
cos(zc / 2h) fori=4
1 fori<0 (-h/2<¢c<hi2)
S fori=1
F.(s)=1exp(s/h) fori=2
sin(zzg / 2h) fori=3
cos(zzg 1 2h) fori=4
ZZA PMTP34 1 for i<
i ¢ fori=1 (-h/2<g<h/2) (8e)
Fp (6)= . .
cos(izg / 2h) fori=2,4
sin((i +2) s / 2h) fori=3
)= (-h/2<c<h/2)
F.(c)=G'(¢)=(¢)' (-h/2<¢ <-045h)
1 fori=0
_ e fori =1 (-04sh<c<oan)  (8F)
ZZA PPM34 F.(5)=G'(s)=1exp(s/h) fori=2
sin(zg / 2h) fori=3
cos(zg / 2h) fori=4

Fi(6)=G'(¢)=(5)

(0.4h<g<h/2)

Theories that only partially satisfy physical constraintsare set hereafter, which are considered for the

purpose of comparisons.

3.2 ZZAM_P3P4 theory

Ithas the following representation form:



u, (@ B.6)=[ u, (. ) +¢(Ty(a. f)-W(a. B),) |, +[ ZCifa(a,ﬁ)F"k(g)JrCl le

4 - -
u (@ f.6)=[ W'(ap) |,+[ XDl B)G()+Cl |,
k=1
CiL=0; CI'=0; C'=0; F"(5)=G,(c)=(¢)" ©)
Itdoes not contain zig-zag contributions, butstill uses a power function representation and coefficients

are still redefined acrossthe thickness through the enforcement of (3)-(6). The substantialdifference with

respect to all previous theories is that equilibrium conditions are imposed in integral form:

s s’
(Ua ' +O-a vf)\PUldg - (Ua o +Ua B )lycdg
J.gl p.p S8 Li ¢ el T . (10)

s0, is no longer punctual, thatis computationally more advantageous.

3.3 Theory PP23

This theory assume a lower-order of expansion, because less equilibrium points are considered (in-plane
displacementsare parabolic, while the transverse oneis cubic).For the rest, coefficientsare redefined
across the thickness by enforcing (3)-(6).

u, (@ B.¢)=[ u(a,B)+s(T(a, B)-W(a.B),) ],+| ZCL_a(a,ﬂ)F“k(gHCL Le
u (. .6)=[ W(@p) |,+[ 2D@.AB()+C. |, (11)

C™ =0, C*=0; C*=0; F*()=G,(s)=()"

3427S1,7S1 1,7ZS1 2,ZS1 3andZS1 4
For these theories with a partial fulfilment of (3)-(6), various contributions are cut off,in order to
highlight whether they are still accurate.
- ZS1.
u,(a,B.6)=[ u,’(a p)+s(T (e, f)-W (e, B),) ]ﬁi@(mﬂ)(g—gk)w(g)

! :nl (12)
u (e p.¢)=[ w'(e,p) ]0+é‘Pk(a,ﬂ)(g—gk)Hk(g)+éQk(mﬂ)(g—gk)2Hk(g)

Zig-zag amplitudes CDZ, Y and QF arecalculated by imposing the fulfilment of stresses compatibility

(5) atinterfaces Therefore the only redefined coefficients are zig-zag amplitudes.
- ZS1_1. Layerwise functions of (12) are substituted with C_ (a, B)s . ' (at, f)¢ and Q' (o, B)¢?,

-ZS1 2.1tis developed asa mixed variantof ZS1 wherein the same displacementsare assumed but out -
of-plane stresses are assumed apart by integrating local equilibrium equations, within the framework of

HR variationaltheorem.
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- ZS1_3.lsamixed HR theory derived from ZS1 assuming the same displacement field, while out-of-

plane stresses are assumed apartbeingthose coming from ZZAM_P3P4,

- ZS1_4. Considers the same displacement field of ZS1_1 but different FZ d.o.f.are used, thatare

referred to the top face instead of middle reference plane:

u, (@ fB.¢)=[ uS(a.p)+(c-hI2T (e, f)~¢ W (e, f), ],+Ci(a.f)s+D,
i i i i= 13

U@ B.5)=[ W@ p) |+ ¥ (@ fs+Q(@ps’+Cl  (C=0) 13)

3.5 Theory ZS2

Displacement field is:

u, (@ f.¢)=[ u,(@p) L) +u, " (a.f) L) ],

U (e 5,6) =] W'(@ ) L) +w e, f) L(e) 1+ (@ B)’ w4

L1 and L2 being linear Lagrange polynomials

L1(g)=1—%; Lz(g):—gi_gl?

St7Sh St % (15)
The suffix b and tare used to indicate upper and lower coordinates of each generic lamina i and
n

displacementsat upper and lower bounding faces(u_'® =u_" , u botom _ 1 1 WP — | ypotom _

N, numberof computational layers) are assumed asthe functionald.o.f. So, other coefficients umi and

W 'are obtained as functionsof u ", u "™" , w'®

" , W™ by imposing (5).
3.6 Theory ZS3
The displacement field is structured as follows:
u (@ B,¢)=[ u'(a,f)+s(o(e, )~ (a p),) |,+C.l@Bs+D.,(a p)s*+C, ,
16
u(ap.)=[ w@p) ], (16)

Terms C; Dfx are obtained by imposing (3)-(6), aswell as the boundary condition on transverse shear

T= J:h;/zzaagdg, asconsidered in certain theories in literature while, C;_u by imposing (6).

3.7 Theories ZS3_1 and ZS3_2

Theory ZS3_1 assumesa piecewise parabolic representation forall displacements, free of zig-zag
contributions, whose coefficients are calculated even imposing (5)-(6):

u, (@ B.6)=[ u (@ ) +¢(To(a. f)-w' (@, B),) |,+Cila s +D,(a p)s*+C, ,

U, (e, f0)=[ W@ ) |+ (@ f)s+ Q. f)g” +C a7
Theory ZS3_2 is developed assuming the same displacements field of ZS3_1 but out-of-plane stresses are

assumed apart by integrating local equilibrium equations.
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3.8 Theories ZZAS1 to ZZAS4

The in-plane displacement is assumed linear while the transverse displacementis uniform for layers
(i=i;). Fori#i; theyare assumedasthesame of (1).

u, (e B.¢)=[ u(e. P +s(To(a. f)-w(a. f),) ]+

[ Fi@pi) 1+ Y0k Mle-s)H(e)+ Y Cll@AH,() Lif i=i)

+C, (@, B)s + Bl (a, B) if =i,

+

w(@p)=[ W@p) L+
[ F@pe) | +] X¥(@he-c)H,(6)+

+ +"ZQk(axﬂ)(§_§k)2Hk(g)+"ZC;(a,ﬂ)Hk(g) Jif i#i;
B i i=i, (18)

ZZAS2 assumesa parabolic transverse displacement forlayers i = iJ. , While the samein-plane
displacement of ZZAS1 is maintained:
u (@ p.6)=[ u’(ap)+s(o (e, f)-w (@, B),) ], +

[ Fi(@pB.9) ] Zd)k(a B)s—gIH, (§)+ZaCu(a PH(e) L if =i

' +C. (2, f)s +B, (a, ) if i=i,
19)
u @ f.)=[ W) |+
[ F@pe) o[ L¥ e e-aIn 0
N +ZQ (@ B)c—c P H.( +Zc (@ AH () |if i#i
C;(a,ﬂ)g+Dg(a,ﬂ)g +B/(a,f) if =i,

ZZAS3 assumesa parabolic-cubic displacementsfield for ij layers and the same in-plane field of ZZAS1
and ZZAS2:
u (@ B.6)=[ u(ap)+co(a. f)-w (. p),) |+

R @ra) 14 S0l @+ X ClwAHE Lif iz

C,(a. B)s + D, (. f)s* + B, (a. ) if i=i,
(20)

U (e, B.6)=[ W(a.p) |+
[ Fi(a.B.g) | +] i‘:\Pk(og,/;)(g_gk)Hk(g)Jr
. +"Z_'Qk(a,ﬂ)(g—gk)sz(g)+"Zc;(a,ﬂ)Hk(g) | if i=i;

Ci(a.f)s +D(a, f)s" +El(a, f)s* +Bl(, f) if =i
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Because of limitative assumptions, theories from 3.3 to the previous one may turn out to be inaccurate.

ZZAS4 is developed considering the same representation of displacementsasin section 2.3 for layers

i = ij , while for j = ij zig-zag functionsare omitted, their sole being played by C; to B;:
U@ B,¢)=[ u'(a,B)+s(o(a, f)~w(a, B),) ]+
[ Fi(a.B.) ] +[ Z",@Z(a,ﬁ)(g—gk)Hk(gHZaCuk(a,ﬂ)Hk(g) Jif i=i
+ k=1 k=1

C.(a, B)s +D, (o, B)s* +E, (o, B)s* + Bl («, B) if =i
(21)

ug(alﬂlg)z[ WO(aVﬂ) ]0+
[ F@pe) ][ ¥ @he-aIH )+

+ +igk(a,ﬂ)(g—gk)zHk(g)+icl‘(a,ﬁ)Hk(g) JLif i#i,

Ci(a.f)s+Dl(a, f)c" +El(a, f)s* + (e, B)s* +BlL(a, B) i i=i

Unlike the previous theories, the full set of physicalconstraints (3)-(6)is imposed in (21), so, there is no

loss of accuracy.

In conclusion, a generalization of physically-based theories hasbeen proposed, that enablesusers to
arbitrarily choose representation and layerwise functions, without affectingthe accuracy of the results. On
the contrary, numericalresults will show that this choice strongly influence the accuracy of theories that

partially satisfy physical constraints, according to [57] to [66].

4. Numerical assessments and discussion

Accuracy of previous theories is assessed considering different benchmarks, loading and boundary
conditions, some of which exhibit strong layerwise effects. The aim is to evaluate whetheraccuracy of
results is independent on the choice of global and layerwise functions. Conversely, it will be shown that
accuracy of theories only partially satisfy physical constraints, is highly dependentonthe choices made.
Low length-to-thickness ratios with strong layerwise effectsin most cases, but also slender ones are
analysed, so to assess if findings hold in general. FEA-3D results [72] are used asreference solutions in

addition to exact oneswhere available.

4.1 Casesaandb

They concern [90/0] [53] and [0/90/0][73] simply-supported beamsundersinusoidal loading,
respectively, so, to assess the correct implementation of theories and to preliminarily prove their accuracy
under mild layerwise effects. The results of Tables 7 and 8 demonstrate that the choice of the zig-zag
functionsis immaterialand can even be omitted, since adaptive theories ZZA, ZZAS4, NOZZG,

ZZA PP34,ZZA PT34, ZZA PM34,ZZA PMTP34, ZZA PPM34, ZZA *, HWZZ, HWZZM,
ZZA_MHR, AT-3D whose coefficientsare redefined by full satisfying (3)-(6) are indistinguishable from

one another. Considering for example uqs at c=-h/2, the results of the theories are in sequence
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4.5486,4.5486,4.4951,4.5486,4.5220,4.5479, 4.5522,4.5522, 4.5486,4.5261,4.5261, 4.5486,4.5159.
Consequently, they are no longer reported individually in subsequent cases.

It could be noticed thatan increase in the numberof degrees of freedomasin AT-3D, does not constitute
any advantage in terms of accuracy in the case of adaptive theories, hence the maximum accuracy degree
hasalready been obtained through the redefinition of the coefficients. Even theories with a uniform
transverse displacement appearratheraccurate forthese cases. Because of results of 6. are very
accurately predicted by all theories, they are not reported in Tables 7 and 8. In these and following tables,

the through thickness representation of a quantity, forwhich the greatest discrepancies amongthe theories

occur, is reported as an example. Results reported as percentage errors are calculated as |<qref -q, ) /0,y

7 Oret = Oexact/rea - Accuracy of theories ZZAS1, ZZAS2 and ZZAS3 is strongly dependent by the choice

of the representation form and of zig-zag functionsaswell asof their position acrossthe thickness.

Indeed, ZZAS1 (ij=2) is not reported forcase b, because it is too inaccurate.

4.2 Casesctoh

Casec andd, retaken respectively from [74] and [44] concern simply-supported laminated beamsunder
sinusoidal loading. Casec is a double core sandwich beam with two thick weak cores and laminated
faces, which is simulated as a [(0/90/0) / 0/ (0/90/0)/ 0 / (0/90/0)] laminate. This case is selected because
in [74] it is shown that it cannot be simulated by equivalentsingle layer theories andso, it is suited for
checking if only theories of sections 2.3 to 3.1 or even lower order ones of sections 3.2 to 3.9 could be
adequate. Casedis a [0/90/05/90] laminate whose displacements do not satisfy Murakami’srule, so
kinematic-based models are not adequate forthis case [31].

Casese and f, retaken from [49] and [31] concern simply supported rectangularsandwich plates under
bisinusoidal loading. To enhance layerwise effects, case f has a damaged lower face (components of
tensor of elastic moduli E1111, E1122, E2222, E1212 reduced by a factor 2-10-1) and a rather stiffercore. Case
g is a propped cantileversandwich beam undera uniform load retaken from [31], whose peculiarity is to
require anaccurate piecewise description of the transverse displacement atthe supported edge, otherwise
stresses are misestimate. Even though a length-to-thickness ratio of 20 is considered, still strong layerwise
effectsasshown in [31], so, equivalentsingle layers and otherlower-order theories cannot be adequate.
Caseh [31] is a simply-supported square sandwich plate, that because of a uniform local loading on the
upper face, suffersfrom strong layerwise effectsand strongly asymmetric transverse shear stresses across
the thickness. Because of lay-up, loading and boundary conditions are symmetric along in-plane
directions, the following equalities us=up, 6ua=0pp, Gac=0p; apPPly.

Regarding casec, adaptive theories are still accurate, while lower-order theories make mistakes from 7 to
55%, except PP23, ZZAS?2 (ij=6), ZZAS3 (ij=6), ZZAS1 to ZZAS3 (ij>6), whose errors range from 0.5 to
5.6%. For brevity, these results are not reported.

The results of Tables 9 to 13, that refer to casesd to h, confirm the previous findings, aboutadaptive and
lower order theories. Because of too high percentage errors, ZZAS1 with ij=2 is not reported in Table 10,
ZS3_2in Tables 10and 11, ZS1 and PP23 in Table 12. Regarding casee, it should be noticed that most
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of lower-order theories, quite accurately predict displacementsand stresses in the top face, while
quantitiesin the bottom face are imprecise, because of their simple representation. It could be noticed that
ZS1 and ZS1_1 obtain good predictions of o4 (even if less accurate than adaptive theories) for casesd
ande, but not for casesf to h and beyond up to m. Although ZS1 containszig-zag functionsand ZS1_1 is
devoid of them, their results are indistinguishable, so, it is demonstrated thatthe choice of zig-zag
functionsis immaterial. ZS1_3 obtainsbetterresults than ZS1, ZS2 accurately calculate stresses for cases
d, e and g, while ZS3,ZS3_1 and ZS3_2 areaccurateonly for caseg. Theory PP23 is not adequate for
casesf to h, while ZZAS1, ZZAS2 and ZZAS3 are unreliable forcasese, g andh.

4.3 Case i

A simply-supported eleven-layers sandwich beam undersinusoidal loading, is considered, whose
laminated faces are made of layers with different thickness and material properties [29], [42]. It represents
a very severe test fortheories because of the low elastic modulus of the lower face (Ess33 reduced by a
factorof 10-2). The results of Figure 1, show that only higher-order adaptive theories can obtain accurate
results. Whether the exact solution is not available, 3-D FEA is used as reference solution, here aswell as
in subsequent cases.

Assumption of uniform transverse displacement is now totally inadequate because anyway stress fields
are wrong, even for mixed theories. Redefinition of coefficientsis reconfirmed to improve precision, as
well as zig-zag layerwise contributions can be explicitly omitted and accuracy of theories PP23, ZS1,
ZS1 1,7S1_2,7S1_3,7ZS1_4,7S2,7S3,7S3_1,7S3_2,ZZAS1, ZZAS2, ZZAS3 with a partial
fulfilment of physical constraintsis lost. For the sake of that, they will no longer be reported next, where
stronger layerwise effectsrise, being too inaccurate. The comparison between MHR and ZZA_ _MHR,
shows the advantages of redefining amplitudes even when using Murakami’s zig-zag function. For casei
andsubsequentjto m, theories MHR [31] and ZZ [42] are considered, to further supportthatthe

redefinition of coefficients dramatically improves accuracy.

4.4 Casesjtom

A three-layer simply-supported sandwich plate under bi-sinusoidal loading is considered as case j, where
the lower face (E1111, E1122, E2222, E1212 reduced by a factor 1-10-2) and the core are damaged (the core is
partially damaged up to 0.15h from below, E1122, E2222, E1212, E1313, E2323 reduced by a factor 2-101); asa
consequence, strong 3-D effectsrise. Case k differs from casei as concerns loading, a step compressive
loading on the upperand lower facesof the two halvesof the undamaged beam [31] being applied.
Nevertheless lay-up is symmetric, displacementsand stresses are strongly asymmetric across the
thickness, because of loading. Case | is a modified version of beam [75],with simply-supported edges
under a two-step loading and a length-to-thickness ratio of 25 is assumed. Additionally, it considers a
damaged core (E1122, E2222, E1212, E1313, E2323 reduced by a factor 1-10-1) and upperface (E1111, E1122, E2222,
E1212 reduced by a factor4-10-2). Case m regards a propped-cantilever sandwich beam with a uniform
transverse loading on the upper face and a length-to-thickness ratio of 5.714.. An accurate description of

transverse deformability is mandatory forthis case, otherwise inaccurate results are obtained [31].
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The findings of Figures 2 to 5 confirm that the choice functions of representation and the zig-zag
layerwise contributions is immaterial foradaptive theories.

In particular, the results of Figure 2 which refer to the case j, show that only in-plane stresses are quite
accurately predicted by all theories and the same apply for case k (Figure 3). Results of Figure 4 for casel
show that relevant discrepancies amongtheories still exist also for this ratherthin sandwich and thatonly
adaptive theoriescan be really accurate [31]. Results of case m by Figure 5 highlight the strong layerwise
effectsof this case, to which follow that displacement and stress fields are strongly asymmetric acrossthe
thickness and consequently only higher-order adaptive theoriescan obtain accurate results.

Note thatZZAM_P3P4, that impose the same numberof equilibrium points of ZZA, butin integral form
(computationally more effective), obtainsindistinguishable results for cases a to j, while for cases k tom
is inaccurate due to numerical problems and for this reason it is not reported.

Computationalburden of all theories of this paper (Table 6) is still comparable with thatof FSDT, which
being inaccurate,aswell as the lower-order theories of this paper, do not result in any convenience. This
table shows the slightly lower computationalcostsof lower-order theories, but considering thatthey are

notalways accurate, thisadvantage cannot be exploited.

4.5 Convergence assesstments

A convergence study of theories with respect to the expansion order of trial function and of 3-D FEA
with respect to meshing is performed in this section. For the formercase, results are reported in Table 14
and Figures 6 to 7. Because a quite large number of theories is considered, to limit the amountof data
reported justthe numberof componentsthat ensuresconvergence for theory ZZA PMTP34 are reported
since it has the slowest convergence rate amongadaptive theoriesZZAS4, NOZZG, ZZA PP34,

ZZA PT34,ZZA PM34, ZZA PPM34, AT-3D. It mustbe considered that however there is no wide
variation of the order of varioustheories because convergence orders differ only a few units, so the results
forZZA PMTP34 are representative of all adaptive theories. They are representative also for all lower-
order theories, which however converge to differentand less accurate results.

A quite large numberof componentsis required for cases h and m, which refer toa simply-supported
plate under localized loading and to a propped cantilever beam, respectively (see Figures 6 to 7), while
forcasesi to | one componentis sufficient (see Table 14). The largest error, which is obtained
considering just the first component, is reported in an inset inside Figures 6 to 7, so the convergence
curves can be normalized to it, i.e. all curves start from one for reasons of uniformity. To provide more
details about the convergence behaviour, stresses and displacementsacross the thickness are reported for

M=4 and 20 (convergence value)in Figure 6, for M=5 and 10 (convergence value) in Figure 7.

InFigure 8 U, of caseb is considered as an example of through the thickness convergence behavior. For

this purpose, the converging solution U, is firstly expanded ina Fourier series across the thickness, then

the numberof components necessary to represent the converging solution is determined. Subsequently,
the number of componentsis progressively reduced, then the percentage error committed is calculated.

All adaptive theories behave the same way, because of they require the same expansion order forthe
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convergent solution, and provide the same results for all lower expansion orders considered. Results from
N =1to N =100 arereported in Figure 8, but anacceptableerroris obtained forN = 14. Results allow us
to guess that if a Fourier series expansion with 14 or more components is used as the representation
within theories, whose amplitudesare assumed asd.o.f., similarly to asymptoticand hierarchicaltheories,
the same results of the presentadaptive theories with just five d.o.f., would be obtained (it seems to agree
with the expansion order declared in [49]).

The error made by the 3-D FEA when the mesh density increases is shown in Figures 9 (asanexample
casem is considered). The three numbersindicated in the figure represent the discretization respectively
along a, B, ¢. Percentage error of stresses and displacements, reported in the figures are evaluated at

specific points where less accurate results are obtained, whose position is specified in the figures.

5. Concluding Remarks

This study illustrated numerically that the degree of accuracy of higher-order physically-based zig-zag
theories (in displacement-based and mixed form)is independent on the choice of global and layerwise
functions, once all stress continuity, boundary and equilibrium conditions are enforced at the same time.
On the contrary, if coefficientsare notredefined or physicalconstraintsare partially satisfied, results are
strongly dependentby choices made,asdemonstrated by assessments of the lower-order theories, which
are sometimesadequate, but notalways.

Six new higher-order physically-based adaptive theories have been developed as particularizations of a
novel generalized theory which keeps the same advantages of theories previously developed by the
authorsandenablesusers to choose arbitrarily the representation and layerwise contributions. In these
theories, zig-zag contributions can be omitted (their role can be played by the redefinition of coefficients
atlayer interfaces) and displacements can be assumed differently each otherand for each region across
the thickness. Accordingly, these theories become similar to hierarchical and axiomatic/asymptotic
theories, but are more efficient, because they require a lower expansion order and only five d.o.f. to get
accurate results. Indeed, a piecewise cubic/fourth-order representation forin-plane and transverse
displacements, respectively, is sufficientto get the maximalaccuracy.

Also anapproximate 3-D solution is obtained as particularization of general formulation, whose results
are alwaysprecise, demonstratingthat it can be used asreference solution when exactoneis unavailable.
Closed form solutions have been presented using Rayleigh-Ritz method and the same trial functions for
all theories. Elastostatic benchmarks with distributed/ localized step loading, different boundary
conditions and material properties of layers that generate strong layerwise effectswere considered. A
convergence study hasbeen carried out, in order to determine the minimum expansion order along in -

plane directions, beyond which errors don’t appreciably decrease.

Data Availability
All data generated or analyse during the study are included in the manuscript.
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