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Considerations about the choice of layerwise and through-thickness 

global functions of 3-D physically-based zig-zag theories 

 

          

Abstract 

A generalization of  physically-based fixed degrees of freedom 3-D zig-zag theories is developed, which 

allows for any arbitrary choice of  layerwise and representation functions. Thereby users can choose 

arbitrarily the representation case-by-case. This paper aims to prove that the choice of global and 

layerwise functions is immaterial whenever coefficients are recalculated exactly (via symbolic calculus) 

by the enforcement of interfacial stress continuity, boundary conditions  and equilibrium in point form, as 

prescribed by the elasticity theory. Vice versa, accuracy of  theories partially fulfilling constraints will 

prove to  largely depend on the assumptions made and  to be inadequate when strong layerwise effects 

rise, under distributed/localized step loading and  boundary conditions other than simply supported edges 

(tests carried out in  closed-form). The present and previous authors’ theories are tested with the aim to 

understand in which cases an adequate level of accuracy is still achieved by lower-order theories that are 

derived as particularizations. 

 

Keywords 

Physically-based zig-zag theories generalized formulation, Arbitrary through-thickness representation of 

global and layerwise functions with fixed d.o.f., Transverse shear and normal stresses, Laminated and 

soft-core sandwich plates and beams,  Layers stiffness ratio, Analytical solutions 

 

1. Introduction    

As well known, laminated fibre-reinforced and sandwich composites offer excellent specific strength and 

stiffness, fatigue and energy absorption properties, better  resistance to corrosion than metals and greater 

design flexibility. To ward off any possible catastrophic failure or intolerable loss of performance of these 

materials, an accurate prediction of through-thickness displacement, strain and stress fields is crucial [1]. 

Displacements have to be C° continuous at interfaces and with the suited slope (zig-zag effect) so that 

out-of-plane stresses are continuous and satisfy local equilibrium equations. 

So far many laminated plate and shell theories with varying degrees of accuracy, computational costs and 

memory storage occupation have been developed, as explained in detail in the book by Reddy [2] and in 

the papers by Reddy and co-workers [1], [3], Vasilive and Lur’e [4], Lur’e, and Shumova [5], Noor et al. 

[6], Altenbach [7], Carrera [8-12], Qatu [13], Qatu et al. [14], Wanji and Zhen [15], Khandan et al. [16] 

and Kapuria and Nath [17]. 
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Equivalent single-layer [18]-[21], discrete-layer  [22], [23], zig-zag [11], [24], hierarchical [25], [26] and 

axiomatic/asymptotic [27], [28] theories can be categorized, which further subdivide into displacement-

based and mixed formulations (displacements, strains and stress fields chosen separately).  

Equivalents single layer theories are of limited validity, not even being able to predict overall behaviour 

quantities, but even this limited goal could be disregarded, as shown among many others by Icardi and 

Sola [29], Icardi and Urraci [30,31], Kapuria et al. [32], Zhen and Wanji [33], Burlayenko et al. [34] and 

Jun et al. [35] for cases with a strong transverse anisotropy. A forcibly schematic description like that of 

this article leads to summarize discrete-layer theories as potentially accurate irrespective of lay-up, 

property variation across the thickness, loading and boundary condition s, but also problematic because 

they could overwhelm the computational capacity when structures of industrial interest are analyzed, 

owing to their too much number of variables. Recent accurate, versatile and efficient theories like 

Carrera’s unified formulation [8] and refined zig-zag theories [29-31,36] are instead suitable for analysis 

of industrial structures. Theory [8] allows displacements to take arbitrary forms that can be chosen by the 

user as an input of the analysis and it is able to get existing theories as particularizations. This paper 

intends to pursue the same purpose with a new generalized zig-zag theory. 

Zig-zag theories subdivide into: (i) Di Sciuva’s like physically-based theories (see [37-39] as examples), 

or  (ii) Murakami’s like kinematic-based mixed theories, (see, e.g. [11],[40], [41]), given the different 

type of zig.zag functions used. Both strike the right balance between accuracy and cost saving, allowing 

designers’ demand of theories in a simple already accurate form to be met.   

Theories (i) generally have a fixed number of unknowns irrespective of the number of constituent layers. 

Their layerwise contributions are the product of linear [37] (or nonlinear [42]) zig-zag functions and 

unknown zig-zag amplitudes, inferred by enforcing the fulfilment of stress continuity conditions at layer 

interfaces.  

Theories (ii) assume zig-zag functions featuring a periodic change of sign of the slope of displacements at 

interfaces, as occurring for periodic laminations, therefore without taking into account orientation angle, 

material properties and thickness of constituent layers. Their number of variables (kinematic and stress 

quantities) depends upon the number of constituent/computational layers. They can be inaccurate [30, 31, 

43, 44], but they enable a more easily obtainment of C° formulations of plate theories for the 

development of efficient finite elements. Mixed multilayered theories accurately predict stresses, with the 

merit of keeping simpler kinematics as is evident from the papers by Tessler et al. [36], Kim and Cho 

[45], Barut et al. [46], Iurlaro et al. [47] and Zhen and Wanji [48]. When strong layerwise effects rise, (ii) 

require many more degrees of freedom and/or a higher expansion order than (i), as it can be seen, for 

example, comparing the results of [30] and [49]. 

Efficient and accurate theories where zig-zag functions are not explicitly incorporated based on a global-

local superposition of displacement fields were proposed by Li and Liu [50] and refined by Zhen and 

Wanji, e.g. [51], which in the version of Shariyat [52] consider a non-uniform transverse displacement 

across the thickness. 

Theories with a hierarchical set of locally defined polynomials where neither zig-zag contributions are 

incorporated in the kinematics, nor post-processing steps are required (see, [25], [26], Catapano et al. [53] 
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and de Miguel et al. [54]) have been developed, for favouring numerical efficiency. Anyway, they require 

a quite large number of variables to mitigate the effects of the omitted enforcement of interfacial stress 

contact conditions, so to avoid small interfacial stress jumps.   

Physically-based 3D zig-zag theories like [29-31] also allow a variable representation arbitrarily chosen 

by the user, without increasing their only 5 d.o.f. , while Strain Energy Updating Technique [55] can be 

used to obtain a C° formulation. Because their coefficients are redefined across the thickness, they can be 

counted among those with variable-kinematics (see, e.g. Vescovini and Dozio [56]). 

So far, power series expansion, hierarchic polynomials, Taylor’s series, trigonometric and exponential 

functions, a  combination of both and radial basis functions (see [57] to [66]) have been used to represent 

variables across the thickness and a high sensitivity to the different assumptions made was shown. 

Going into more detail regarding physically-based 3D zig-zag theories, in Icardi and Sola [29] a 

displacement-based laminated plate theory with piecewise cubic in-plane displacements, a  fourth-order 

transverse displacement and only 5 d.o.f. (mid-plane displacements and rotations),  referred as ZZA, was 

developed, whose coefficients are  redefined across the thickness by imposing the fulfilment of elasticity 

theory constraints (interfacial stress compatibility conditions, stress boundary conditions and local 

equilibrium equations at arbitrary selected points across the thickness).  

Variants of ZZA were developed in [30], assuming different layerwise functions, in order to evaluate how 

the different choices affect accuracy. For the same purpose, different forms of representation of global 

functions and various layerwise functions (as well as without them) were assumed in [67]-[71]. In an 

attempt of lowering the computational cost, a  mixed variant of  the already very efficient ZZA theory was 

developed in [31] within the framework of Hu-Washizu variational theorem, so to retain separately only 

the essential contributions of displacement, strain and stress fields. Theories [29,30,67-71], all developed 

by using symbolic calculus to exactly fulfil the elasticity theory constraints, were proven to be efficient 

and suitable to analyse challenging elastostatic and dynamic cases, including pumping modes which are 

usually solved through FEM. In effects, their accuracy was proven to be similar to that of  discrete layer 

and layerwise models with a very high through-thickness expansion order of variables and so a larger 

computational burden.  

A not negligible advantage of these theories is that there is no need to approximate loading with a series 

expansion, because its mathematical expression is used to exactly compute the work of external forces via 

symbolic calculus.  Another advantage is that a lso in-plane displacement and stress continuity can be 

enforced, with the aim to analyse also structures with step variable properties along in -plane directions 

and not only across the thickness. Moreover, stresses of theories [29,30,67-71] are obtained from 

constitutive relations and there is no need to post-processing.  

Summing up the features of theories [29,30,67-71], similarly to [50] - [52], it is not necessary to include 

specific zigzag functions to respect the interfacial out-of-plane stress compatibility, because a number of 

coefficients can be redefined for each layer for this purpose. However, unlike [50] - [52] and all 

conventional plate theories,  in [29,30,67-71] all coefficients can be redefined across the thickness so that 

stress-boundary conditions are met at the outer layers and equilibrium can be satisfied in a strong point 

form within inner layers. Similarly to hierarchical and asymptotic theories, the representation can be 



4 

 

enriched in order to achieve a better accuracy, but  the expansion order and the number of variables  do 

not grow once the piecewise cubic-quartic representation adopted is fragmented into computational layers 

and/or changing the type of representation from layer to layer and differently for each displacement. 

Unlike the theories that today are very popular for their accuracy and versatility (e.g. [8] and subsequent 

developments), [29,30,67-71] are formulated by respecting physical constraints exactly (from which the 

appellation of physically-based theories follows) so as to limit the computational burden, rather 

respecting them in a limit sense increasing the expansion order and / or the number of variables.  

A generalization of previous 3-D zig-zag theories is developed in this paper, whose formulation allows 

user to arbitrarily choose layerwise and representation functions, also differently for each displacement 

and for each layer. Nevertheless any number of  d.o.f. could be assumed (not necessarily just mid-plane 

displacements and rotations), it is here limited to five to carry out comparisons with ZZA and other 

previous theories under the same conditions. From the present generalized theory an approximate non-

plate theory (number of d.o.f. not fixed that depends from the expansion order imposed ) AT-3D is 

derived, which can be used as reference solution when exact one is unavailable. Given its generality, also 

hierarchical theories could be obtained by the present theory, which however won’t be considered in this 

research.  

Six theories different from those of [29]-[31] and [67]-[71] are particularized in (3.1 ) assuming 

sinusoidal, exponential, power series or a combination of them (which can be different for each 

displacement and from layer to layer) to describe the variation of displacements across the thickness. 

Fourteen additional lower order theories are developed in (3.2)-(3.8) to test along with the former six if a  

plate theory with fixed d.o.f. can enable a kinematic-variable representation across the thickness requiring 

a lower computational burden than existing theories with same features, and to  understand in which cases 

it is still allowed to reach an adequate level of accuracy. The results will show that a piecewise cubic and 

a fourth-order polynomial for in-plane and transverse displacements respectively achieve this goal. In one 

theory, equilibrium equations are enforced in weak form, instead than in a point form as for all others 

theories mentioned, in order to verify the degree of accuracy achievable. Results will confirm on a 

broader basis what preliminarily demonstrated in [29]-[31] and [67]-[71], that the choice of zig-zag and 

representation functions is immaterial if coefficients are redefined across the thickness and calculated by 

imposing full set of physical constraints.  

Table 1 provides a quick reference pattern of all cases considered in the numerical applications and lists 

details on length-to-thickness ratio, lay-up, loading and boundary conditions. Mechanical properties of 

materials are in Table 2,  Table 3 reports trial functions, expansion order and equilibrium points position 

across the thickness for each case, Table 4 contains normalizations, Table 5 records a brief description of 

theories, while the processing time is listed in Table 6. 
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2. Theoretical Framework   

Notations and basic assumptions, that are common to all the theories, are discussed  in the following 

section. Features of the new theories introduced in this paper are examined in details. Readers are referred 

to the literature quoted for previously developed theories.  

 

2.1 Basic assumptions and main notations 

This study is restricted to multilayered elastic plates subject to small deformations, as representative of  

laminated and sandwiches. Loading is assumed conservative, strains are assumed to be infinitesimal, 

while constituent layers are assumed to be linearly elastic, to have orthotropic properties,  a  uniform 

arbitrary thickness 
kh  and to be  perfectly bonded to each other (bonding resin interlayer is disregarded). 

A rectangular, right-handed Cartesian coordinate reference system   on the middle reference plane is 

assumed as the reference frame. As easily allowed by symbolic calculus used to develop theories,   

could be assumed differently to any other position, so to prevent an eventual zeroing of coefficients for 

certain lay-ups and theories. The thickness coordinate is   ( ,
2 2

h h


 
 − 
 

, h being the overall 

thickness) and a comma is used to indicate spatial derivatives, e.g. ( ),(.) . / =   . Lα and Lβ 

symbolize the plate side-length in the α- and β-directions. Strains and stresses are indicated respectively 

as ij , ij  ( , 1,2,3; 1 ,2 ,3 )i j   =    . The upper and lower positions of layer interfaces are 

indicated with 
( )k  +

 and 
( )k  −

, respectively, the superscript (or in other cases the subscript) k being 

used to indicate that a quantity belongs to the layer k. To indicate that a quantity is evaluated on upper and 

lower faces of the laminate, the markers u and l are used, respectively.  

Except for a couple of theories for which the appropriate specifications will be given below, all remaining 

theories have the following five d.o.f. 
0u
, 0u

, 
0w , 

0

 , 0

 , consisting of midle plane displacement 

components and shear rotations of the normal  

 

2.2 Solutions search 

Solution is searched in a closed form within the framework of Rayleigh-Ritz method, in conjunction with 

Lagrange multipliers method. Accordingly, d.o.f. are expressed as a truncated series expansion of 

unknown amplitudes and trial functions that individually satisfy the prescribed boundary con ditions.  The 

trial functions are explicitly defined in Table 3 for each specific case along with the expansion order and 

normalizations used. The same trial functions and expansion order are shared by all theories, in order to 

compare them under the same conditions. The methodology to satisfy the mechanical boundary 

conditions (transverse shear stress resultant force equals the constraint force and resultant couple of in -

plane stresses, where they are not identically satisfied) based on Lagrange multipliers method is the same 

of [31], where readers can find all details here omitted. The derivation of governing equations will be 
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omitted to contain the paper length because they are obtainable in a straightforward way with standard 

techniques. 

 

2.3 ZZA displacement-based theory   

Hereafter the main features of zig-zag adaptive theory (ZZA [29]) are summarized,  it being the basis 

from which all theories developed and assessed in this paper evolved. The following through-thickness 

displacement field is postulated:  

   

 

0 0 0

, 0

1 1

( , , ) ( , ) ( ( , ) ( , ) ) ( , , )

( , )( ) ( ) ( , ) ( )
i

u

i

n n
k j

k k u j c
k j

u u w F

H z C H

    

 

            

      


= =

= +  − + +

 − + 
 

    



0

0
1

2

1 1

( , , ) ( , ) ( , , ) ( , )( ) ( )

( , )( ) ( ) ( , ) ( )

i

i

n
k

k ki
k

n n
k j

k k j c
k j

u w F H

H C H







            

       


=

= =

= + +  − +

 − +



       (1) 

 

Symbols 
in  and n

 are used to distinguish the number of physical interfaces from that of mathematical 

layer interfaces, respectively.  

It could be noticed that linear-
0[...] , higher-[...] i

 and layerwise-[...] c
 contributions are incorporated, 

whose purpose is defined as follows. The first term 
0[...]  introduces the functional degrees of freedom, 

while the second one [...] i
 contains higher-order contributions, while the third contribution is 

characteristic of physically-based zig-zag theories.  

Although  ( , , )u

i
F    ,  ( , , )

i
F      could be chosen entirely arbitrarily, the following 

power series expansion is chosen: 

       2 3 4 4

3

2 3 4

2 3 4

( , , ) ( , ) ( , ) ( ...) (.) ( ...)

[ ( , ) ( , ) ] ( , ) ... ( , )

u i i

i i i i

n

n

F C D O O

A A A A

   

   

          

           

= + + = + =

= + + + +

 (2)

   

   

2 3 4 5

5 2 3

1 2 34

4 5

4 5

( , , ) ( , ) ( , ) ( , ) ( , ) ( ...)

(.) ( ...) [ ( , ) ( , ) ( , )

( , ) ] ( , ) ... ( , )

i i i i

i i

i i

n

n

F b c d e O

O A A A

A A A



   

  

               

         

        

= + + + + =

= + = + + +

+ + + +    

so to include theory [42] as a particularization of ZZA. Contributions  4( ...)
i

Oz ,  5( ...)
i

Oz  are 

characteristic of ZZA, while  
3
(.)

i
,  

4
(.)

i
 are the same as in [42]. Note that functions  u

i
F , 

 
i

F
 aren’t just depending on ς because apexes and subscripts 

u

 ,


 represent the functional 

dependence on the d.o.f. that are function of in-plane coordinates. Expressions of coefficients 
iC , 

iD , ib  

to 
ie  are obtained by enforcing the fulfilment of stress boundary conditions:  
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0

, 0; ( )p     = = = 
 (3) 

 0 ( )p   being the distributed loading acting on at the upper (+) and lower (-) bounding faces, and of local 

equilibrium equations:  

, , , ,;b b            + = + =
                                                                                                  (4) 

at points across the thickness, positioned where residual are the largest. The through-thickness 

redefinition of coefficients by (3) and (4)  determines the adaptive appellation attributed to ZZA theory. 

Applied distributed loadings are managed via symbolic calculus  like general (continuous or 

discontinuous) functions ( , )    acting at upper and/or lower faces, so it can be avoided to express them 

as a series expression that could limit accuracy. 

Layerwise contributions [...] c
 allow a priori fulfilment of stress compatibility conditions at physical and 

mathematical layer interfaces, so k

 , k , k  are determined by imposing 

( ) ( ) ( ) ( ) ( ) ( )

, ,( ) ( ); ( ) ( ); ( ) ( )k k k k k kz z z z z z            + − + − + −= = =
                                        (5)

 

Here - and + indicate the position just before and just after the interface, respectively). Contributions 

j

u jC H
 and j

jC H
 in (1) restore the continuity of displacements: 

( ) ( ) ( ) ( )( ) ( ); ( ) ( )k k k ku z u z u z u z   

+ − + −= =
                                                                                        (6)

 

since (2) which is contained within [...] i
 can be assumed differently from point to point across the 

thickness.  At the end of this brief discussion it is reminded  that  symbolic calculus enables that 

expressions of coefficients and zig-zag amplitudes to be obtained in exact form and once and for all. It is 

also reminded that just a  third/fourth order representation is required to obtain accurate results [30].  

In order to assess whether and when the choice of zig-zag functions can be immaterial, in the numerical 

applications a new variant of ZZA called ZZA_MHR is considered, wherein Murakami’s zig-zag function 

multiplied for amplitudes that are recalculated across the thickness are assumed as the layerwise 

functions, instead of [...] c
 by ZZA.  

 

2.4 Previously developed theories that are considered for sake of comparisons 

They comprise theories HWZZ [31], HWZZM [30], MHR [31], ZZA* [30] and ZZ [42], whose features 

are briefly summarized as follows.  HWZZ is a mixed HW theory 3 , 4, neglecting quadratic zig-zag and 

higher-order adaptive contribution of (1) from displacement field, out-of-plane strains are the same of (1), 

while out-of-plane stresses by integrating local equilibrium equation. HWZZM has the same features of 

HWZZ, except zig-zag functions which are modified versions of Murakami’s layrwise functions with 

amplitudes that are redefined by enforcing (5).  

MHR assumes a piecewise cubic in-plane displacement including original Murakami’s layerwise 

functions, namely amplitudes are not redefined across the thickness, and a fourth-order polynomial 

transverse displacement. ZZA* has the same features of ZZA, except zig-zag functions are replaced by 
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appropriate additional contributions whose amplitudes are redefined across the thickness. ZZ is based on 

a piecewise cubic in-plane representation a piecewise fourth-order for transverse displacement, the same 

as (1), except that [...] i
 are not redefined across the thickness. 

 

3. New theories of this paper  

New theories, which constitutes the main theoretical contribution of this paper, are proposed  as a  

generalization of ZZA and all  previously developed theories by the authors [29-31, 42, 55, 68-71], in 

order to prove the objective set in the introductory section. Initially, the displacement field is thought in 

the following form: 

( )

( )

3

0

4

0

,   ( )

,   ( )

n
j j i i

i

n

j j i i

i

u C F

u C G





  

 

  

  

=

=

=

=

 =  

 =  





        (7) 

that does not contain zig-zag functions because coefficients are redefined across the thickness, being 

calculated by imposing the full set of physical constraints (3)-(6) in order to  get accurate results  using a 

low order of expansion. Subsequently, particularizations are developed from (7) in the next section (3.1). 

Symbol j  represents the mathematical layers, so, 
j iC , 

j iC , ( )iF   and ( )iG   can be represented 

differently across the thickness. Coefficients 
1 0C , 

1 1C  and 
1 0C  are assumed as d.o.f. To obtain (1) as 

a particularization of (7) it is necessary that 
1 0 0C u = , 

1 1 0 0

,C w  =  −  and 
1 0 0C w =  (

0 0 1( ) ( ) 1 , ( )F G F   = = = ), while the remaining terms are calculated by enforcing physical 

constraints (3)-(6). Of course, the expansion order n  and n , which reflects in the number of unknowns 

from one interface (physical or computational) to another, must be chosen in accordance with the physical 

constraints to be imposed. Once the interface has passed, the coefficients are redefined and then it is 

possible that the representation changes. Functions ( )iF   and ( )iG   can be freely chosen by the user 

(symbolic calculations being performed automatically regardless of the choices made). 

In numerical applications,  theory AT-3D with ( )i iF  =  and ( )i iG  =  is considered, wherein n  

and n  can be arbitrarily assumed, but anyway so that 
j iC  and 

j iC  are in number greater than physical 

constraints (3)-(6).  In the form described in this section, (7) constitutes a 3-D theory which owing to its 

generality can be used as a surrogate of the exact solution when it is not available  [71]. 

 

3.1 Particularizations with 
0u , 

0 0

,w  − , 
0w  as d.o.f. 

Particularizations of (7) having same d.o.f. of ZZA are developed in this section assuming ( )iF   and 

( )iG   as a mixture of trigonometric and exponential functions random ly selected for each theory, to 
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demonstrate  that their choice is immaterial whenever (3)-(6) are enforced and exact relations are found 

from such enforcement via symbolic calculus. 

 

Theory name Function thickness range 
 

NOZZG 
(  / )

1                    for 0

( ) ( )                    for 1

          for 1j j

i i

i h

i

F G i

e i





  

 =


= = =


  

( / 2 / 2)h h−    

 

(8a) 

ZZA_PP34 ( ) ( ) ( )i i iF G   = =
 

( / 2 / 2)h h−    

 

(8b) 

ZZA_PT34 

1                                   for 0

                                   for 1
( ) ( )

cos( / 2 )                 for 2,4

sin(( 1) / 2 )          for 3

i i

i

i
F G

i h i

i h i




 





=


=
= = 

=
 + =  

( / 2 / 2)h h−    

 

(8c) 

ZZA_PM34 

1                                    for 0

                                   for 1

( ) ( ) exp( / )                      for 2

sin( / 2 )                   for 3

cos( / 2 )                 

i i

i

i

F G h i

h i

h





  





=

=

= = =

=

 for 4i








=  

( / 2 / 2)h h−    

 

(8d) 

ZZA_PMTP34 

1                                    for 0

                                   for 1

( ) exp( / )                      for 2

sin( / 2 )                   for 3

cos( / 2 )                  for 

i

i

i

F h i

h i

h i





 





=

=

= =

=

4








=  

1                                   for 0

                                   for 1
( )

cos( / 2 )                 for 2,4

sin(( 1) / 2 )          for 3

i

i

i
F

i h i

i h i










=


=
= 

=
 + =  

( ) ( )i iG  =
 

( / 2 / 2)h h−    

 

 

 

 

( / 2 / 2)h h−    

 

 

( / 2 / 2)h h−    

 

 

 

 

 

(8e) 

 

ZZA_PPM34 

 

( ) ( ) ( )i i iF G   = =
 

1                                    for 0

                                   for 1

( ) ( ) exp( / )                      for 2

sin( / 2 )                   for 3

cos( / 2 )                 

i i

i

i

F G h i

h i

h





  





=

=

= = =

=

 for 4i








=  

( ) ( ) ( )i i iF G   = =
 

( / 2 0.45 )h h−   −  

 

( 0.45 0.4 )h h−    

 

 

(0.4 / 2)h h   

 

 

(8f) 

Theories that only partially satisfy physical constraints are set hereafter, which are considered for the 

purpose of comparisons. 

 

3.2 ZZAM_P3P4 theory 

It has the following representation form: 
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   

   

( )

3
0 0 0

, _0
1

4
0

0
1

1 1 1

_

( , , ) ( , ) ( ( , ) ( , ) ) ( , ) ( )

( , , ) ( , ) ( , ) ( )

0; 0; 0; ( ) ( )

i i

k k i c
k

i i

k k i c
k

ki i i

k k k

u u w C F C

u w D G C

C C C F G



     

 



  

            

       

  

+
=

+
=

= = =

= +  − + +

= + +

= = = = =





   (9)  

It does not contain zig-zag contributions, but still uses a power function representation and coefficients 

are still redefined across the thickness through the enforcement of (3)-(6). The substantial difference with 

respect to all previous theories is that equilibrium conditions are imposed in integral form: 

, ,( )
i

i

d


    


  
+

−
+  , ,( )

i

i

d


    


  
+

−
+ 

    (10) 

so, is no longer punctual, that is computationally more advantageous. 

 

3.3 Theory PP23 

This theory assume a lower-order of expansion, because less equilibrium points are considered (in-plane 

displacements are parabolic, while the transverse one is cubic).For the rest, coefficients are redefined 

across the thickness by enforcing (3)-(6). 

   

   

( )

2
0 0 0

, _0
1

3
0

0
1

1 1 1

_

( , , ) ( , ) ( ( , ) ( , ) ) ( , ) ( )

( , , ) ( , ) ( , ) ( )

0; 0; 0; ( ) ( )

i i

k k i c
k

i i

k k i c
k

ki i i

k k k

u u w C F C

u w D G C

C C C F G



     

 



  

            

       

  

+
=

+
=

= = =

= +  − + +

= + +

= = = = =



  (11)

 

 

3.4 ZS1, ZS1_1, ZS1_2 , ZS1_3 and ZS1_4   

For these theories with a partial fulfilment of (3)-(6), various contributions are cut off, in order to 

highlight whether they are still accurate.  

- ZS1.   

 

 

0 0 0

, 0
1

0 2

0
1 1

( , , ) ( , ) ( ( , ) ( , ) ) ( , )( ) ( )

( , , ) ( , ) ( , )( ) ( ) ( , )( ) ( )

i

i i

n
k

k k

k

n n
k k

k k k k

k k

u u w H

u w H H

    



              

              

=

= =

= +  − +  −

= +  − +  −



 
      (12)

 

Zig-zag amplitudes 
k

 , 
k  and 

k  are calculated by imposing the fulfilment of stresses compatibility 

(5) at interfaces Therefore the only redefined coefficients are zig-zag amplitudes.  

 

- ZS1_1. Layerwise functions of (12) are substituted with ( , )iC    , ( , )i     and 
2( , )i    ,  

 

- ZS1_2. It is developed as a mixed variant of ZS1 wherein the same displacements are assumed but out -

of-plane stresses are assumed apart by integrating local equilibrium equations, within the framework of 

HR variational theorem. 
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- ZS1_3. Is a mixed HR theory derived from ZS1 assuming the same displacement field, while out -of-

plane stresses are assumed apart being those coming from ZZAM_P3P4.  

 

- ZS1_4. Considers the same displacement field of ZS1_1 but different 
0

  d.o.f. are used, that are 

referred to the top face instead of middle reference plane:  

 

 

0 0 0

, 0

0 2 1

0

( , , ) ( , ) ( / 2) ( , )  ( , ) ( , )

( , , ) ( , ) ( , ) ( , ) ( 0)

i i

i i i i

u u h w C D

u w C C

     

  

             

           =

= + −  − + +

= + + + =
    (13)

 

 

3.5 Theory ZS2   

Displacement field is: 

 

 

1

1 2 0

1 2

1 2 0

( , , ) ( , ) ( ) ( , ) ( )

( , , ) ( , ) ( ) ( , ) ( ) ( , )

i i

i i k

u u L u L

u w L w L

  



        

           

+

+

= +

= + +
       (14) 

L1 and L2 being linear Lagrange polynomials 

1 2( ) 1 ; ( )
i i

b b

i i i i

t b t b

L L
   

 
   

− −
= − =

− −
      (15) 

The suffix b and t are used to indicate upper and lower coordinates of each generic lamina i and 

displacements at upper and lower bounding faces ( lntopu u = , 
1bottomu u = , lntopw w= , 1bottomw w= , 

ln  number of computational layers) are assumed as the functional d.o.f. So, other coefficients 
iu  and 

iw are obtained as functions of 
topu

, 
bottomu

 , 
topw  , bottomw  by imposing (5).  

 

3.6 Theory ZS3 

The displacement field is structured as follows: 

 

 

0 0 0 2

, _0

0

0

( , , ) ( , ) ( ( , ) ( , ) ) ( , ) ( , )

( , , ) ( , )

i i i

uu u w C D C

u w

      



               

    

= +  − + + +

=
     (16) 

Terms 
i iC D 

 are obtained by imposing (3)-(6), as well as the boundary condition on transverse shear 

/2

/2

h

h
T d 

−
=  , as considered in certain theories in literature while, _

i

uC  by imposing (6).  

 

3.7 Theories ZS3_1 and ZS3_2  

Theory ZS3_1 assumes a piecewise parabolic representation for all displacements, free of zig-zag 

contributions, whose coefficients are calculated even imposing (5)-(6): 

 

 

0 0 0 2

, _0

0 2

0

( , , ) ( , ) ( ( , ) ( , ) ) ( , ) ( , )

( , , ) ( , ) ( , ) ( , )

i i i

u

i i i

u u w C D C

u w C

      

 

               

          

= +  − + + +

= + + +
     (17)

 

Theory ZS3_2 is developed assuming the same displacements field of ZS3_1 but out -of-plane stresses are 

assumed apart by integrating local equilibrium equations.  
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3.8 Theories ZZAS1 to ZZAS4 

The in-plane displacement is assumed linear while the transverse displacement is uniform for layers  

(
ji i= ). For 

ji i  they are assumed as the same of (1).  

 

   

0 0 0

, 0

1 1

( , , ) ( , ) ( ( , ) ( , ) )

( , , ) ( , )( ) ( ) ( , ) ( ) if  

( , ) ( , )  if  

i in n
u k k

k k u k ji c
k k

i i

j

u u w

F H C H i i

C B i i

   

  

 

         

          

    

= =

= +  − +


+  − + 

+ 
+ + =


 

     

 

  



0

0

1

2

1 1

( , , ) ( , )

( , , ) ( , )( ) ( )

( , )( ) ( ) ( , ) ( ) if  

( , ) if  

i

i i

n
k

k ki
k

n n
k k

k k k jc
k k

i

j

u w

F H

H C H i i

B i i









    

       

       

 

=

= =

= +


+  − +




+ +  − + 

 =





 
 (18)

 

ZZAS2 assumes a parabolic transverse displacement for layers 
ji i= , while the same in-plane 

displacement of ZZAS1 is maintained: 

 

   

0 0 0

, 0

1 1

( , , ) ( , ) ( ( , ) ( , ) )

( , , ) ( , )( ) ( ) ( , ) ( ) if  

( , ) ( , )  if  

i in n
u k k

k k u k ji c
k k

i i

j

u u w

F H C H i i

C B i i

   

  

 

         

          

    

= =

= +  − +


+  − + 

+ 
+ + =


 

     (19) 

 

  



0

0

1

2

1 1

2

( , , ) ( , )

( , , ) ( , )( ) ( )

( , )( ) ( ) ( , ) ( ) if  

( , ) ( , ) ( , ) if  

i

i i

n
k

k ki
k

n n
k k

k k k jc
k k

i i i

j

u w

F H

H C H i i

C D B i i







  

    

       

       

       

=

= =

= +


+  − +




+ +  − + 

 + + =





 

 

ZZAS3 assumes a parabolic-cubic displacements field for ji  layers and the same in-plane field of ZZAS1 

and ZZAS2: 

 

   

0 0 0

, 0

1 1

2

( , , ) ( , ) ( ( , ) ( , ) )

( , , ) ( , )( ) ( ) ( , ) ( ) if  

( , ) ( , ) ( , )  if  

i in n
u k k

k k u k ji c
k k

i i i

j

u u w

F H C H i i

C D B i i

   

  

  

         

          

       

= =

= +  − +


+  − + 

+ 
 + + =


 

      (20) 

 

  



0

0

1

2

1 1

2 3

( , , ) ( , )

( , , ) ( , )( ) ( )

( , )( ) ( ) ( , ) ( ) if  

( , ) ( , ) ( , ) ( , ) if  

i

i i

n
k

k ki
k

n n
k k

k k k jc
k k

i i i i

j

u w

F H

H C H i i

C D E B i i







   

    

       

       

          

=

= =

= +


+  − +




+ +  − + 

 + + + =





 
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Because of limitative assumptions, theories from 3.3 to the previous one may turn out to be inaccurate.  

ZZAS4 is developed considering the same representation of displacements as in section 2.3 for layers 

ji i , while for 
ji i=  zig-zag functions a re omitted, their sole being played by iC

 to iB
: 

 

   

0 0 0

, 0

1 1

2 3

( , , ) ( , ) ( ( , ) ( , ) )

( , , ) ( , )( ) ( ) ( , ) ( ) if  

( , ) ( , ) ( , ) ( , )  if  

i in n
u k k

k k u k ji c
k k

i i i i

j

u u w

F H C H i i

C D E B i i

   

  

   

         

          

          

= =

= +  − +


+  − + 

+ 
 + + + =


 

         (21) 

 

  



0

0

1

2

1 1

2 3 4

( , , ) ( , )

( , , ) ( , )( ) ( )

( , )( ) ( ) ( , ) ( ) if  

( , ) ( , ) ( , ) ( , ) ( , ) if  

i

i i

n
k

k ki
k

n n
k k

k k k jc
k k

i i i i i

j

u w

F H

H C H i i

C D E F B i i







    

    

       

       

             

=

= =

= +


+  − +




+ +  − + 

 + + + + =





 

  

Unlike the previous theories, the full set of physical constraints (3)-(6)is imposed in (21), so, there is no 

loss of accuracy. 

 

In conclusion, a generalization of physically-based theories has been proposed, that enables users to 

arbitrarily choose representation and layerwise functions, without affecting the accuracy of the results. On 

the contrary, numerical results will show that this choice strongly influence the accuracy of theories that 

partially satisfy physical constraints, according to [57] to [66]. 

4. Numerical assessments and discussion 

Accuracy of previous theories is assessed considering different benchmarks, load ing and boundary 

conditions, some of which exhibit strong layerwise effects.  The aim is to evaluate whether accuracy of 

results is independent on the choice of global and layerwise functions. Conversely, it will be shown that 

accuracy of theories only partially satisfy physical constraints, is highly dependent on the choices made.  

Low length-to-thickness ratios with strong layerwise effects in most cases, but also slender ones are 

analysed, so to assess if findings hold in general. FEA-3D results [72] are used as reference solutions in 

addition to exact ones where available. 

 

 4.1 Cases a and b    

They concern [90/0] [53] and [0/90/0] [73] simply-supported beams under sinusoidal loading, 

respectively, so, to assess the correct implementation of theories and to preliminarily prove their accuracy 

under mild layerwise effects. The results of Tables 7 and 8 demonstrate that the choice of the zig-zag 

functions is immaterial and can even be omitted, since adaptive theories ZZA, ZZAS4, NOZZG, 

ZZA_PP34, ZZA_PT34, ZZA_PM34, ZZA_PMTP34, ZZA_PPM34, ZZA *, HWZZ, HWZZM, 

ZZA_MHR, AT-3D whose coefficients are redefined by full satisfying (3)-(6) are indistinguishable from 

one another. Considering for example uα at ς=-h/2, the results of the theories are in sequence 
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4.5486,4.5486, 4.4951, 4.5486, 4.5220, 4.5479, 4.5522, 4.5522, 4.5486, 4.5261, 4.5261, 4.5486, 4.5159. 

Consequently, they are no longer reported individually in subsequent cases.  

It could be noticed that an increase in the number of degrees of freedom as in AT-3D, does not constitute 

any advantage in terms of accuracy in the case of adaptive theories, hence the maximum accuracy degree 

has already been obtained through the redefinition of the coefficients. Even theories with a uniform 

transverse displacement appear rather accurate for these cases. Because of results of σςς are very 

accurately predicted by all theories, they are not reported in  Tables 7 and 8. In these and following tables, 

the through thickness representation of a quantity, for which the greatest discrepancies among the theories 

occur, is reported as an example. Results reported as percentage errors are calculated as ( ) /ref th refq q q−  

; 
/ref exact FEAq q= . Accuracy of theories ZZAS1, ZZAS2 and ZZAS3 is strongly dependent by the choice 

of the representation form and of zig-zag functions as well as of their position across the thickness. 

Indeed, ZZAS1 (ij=2) is not reported for case b, because it is too inaccurate. 

 

4.2 Cases c to h         

Case c and d, retaken respectively from [74] and [44] concern simply-supported laminated beams under 

sinusoidal loading. Case c is a double core sandwich beam with two thick weak cores and laminated 

faces, which is simulated as a [(0/90/0) / 0 / (0/90/0) / 0 / (0/90/0)] laminate. This case is selected because 

in [74] it is shown that it cannot be simulated by equivalent single layer theories and so, it is suited for 

checking if only theories of sections 2.3 to 3.1 or even lower order ones of sections 3.2 to 3.9 could be 

adequate. Case d is a [0/90/05/90] laminate whose displacements do not satisfy Murakami’s rule, so 

kinematic-based models are not adequate for this case [31].  

Cases e and f, retaken from [49] and [31] concern simply supported rectangular sandwich plates under  

bisinusoidal loading. To enhance layerwise effects, case f has a damaged lower face (components of 

tensor of elastic moduli E1111, E1122, E2222,  E1212 reduced by a factor 2·10-1) and a rather stiffer core. Case 

g is a propped cantilever sandwich beam under a uniform load retaken from [31], whose peculiarity is to 

require an accurate piecewise description of the transverse displacement at the supported edge, otherwise 

stresses are misestimate. Even though a length-to-thickness ratio of 20 is considered, still strong layerwise 

effects as shown in [31], so, equivalent single layers and other lower-order theories cannot be adequate. 

Case h [31] is a simply-supported square sandwich plate, that because of a uniform local loading on the 

upper face, suffers from strong layerwise effects and strongly asymmetric transverse shear stresses across 

the thickness. Because of lay-up, loading and boundary conditions are symmetric along in-plane 

directions, the following equalities uα=uβ, σαα=σββ, σας=σβς apply. 

Regarding case c, adaptive theories are still accurate, while lower-order theories make mistakes from 7 to 

55%, except PP23, ZZAS2 (ij=6), ZZAS3 (ij=6), ZZAS1 to ZZAS3 (ij>6), whose errors range from 0.5 to 

5.6%. For brevity, these results are not reported.   

The results of Tables 9 to 13, that refer to cases d to h, confirm the previous findings, about adaptive and 

lower order theories. Because of too high percentage errors, ZZAS1 with ij=2 is not reported in Table 10, 

ZS3_2 in Tables 10 and 11, ZS1 and PP23 in Table 12. Regarding case e, it should be noticed that most 
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of lower-order theories, quite accurately predict displacements and stresses in the top face, while 

quantities in the bottom face are imprecise, because of their simple representation. It could be noticed that 

ZS1 and ZS1_1 obtain good predictions of σας (even if  less accurate than adaptive theories) for cases d 

and e, but not for cases f to h and beyond up to m. Although ZS1 contains zig-zag functions and ZS1_1 is 

devoid of them, their results are indistinguishable, so, it is demonstrated that the choice of zig-zag 

functions is immaterial. ZS1_3 obtains better results than ZS1, ZS2 accurately calculate stresses for cases 

d, e and g, while ZS3, ZS3_1 and ZS3_2 are accurate only for case g. Theory PP23 is not adequate for 

cases f to h, while ZZAS1, ZZAS2 and ZZAS3 are unreliable for cases e, g and h.  

 

4.3 Case i 

A simply-supported eleven-layers sandwich beam under sinusoidal loading, is considered, whose 

laminated faces are made of layers with different thickness and material properties [29], [42]. It represents 

a very severe test for theories because of  the low elastic modulus of the lower face (E3333  reduced by a 

factor of 10-2). The results of Figure 1, show that only higher-order adaptive theories can obtain accurate 

results. Whether the exact solution is not available, 3-D FEA is used as reference solution, here as well as 

in subsequent cases. 

Assumption of uniform transverse displacement is now totally inadequate because anyway stress fields 

are wrong, even for mixed theories. Redefinition of coefficients is reconfirmed to improve precision, as 

well as zig-zag layerwise contributions can be explicitly omitted and accuracy of theories PP23, ZS1, 

ZS1_1, ZS1_2, ZS1_3, ZS1_4, ZS2, ZS3, ZS3_1, ZS3_2, ZZAS1, ZZAS2, ZZAS3  with a partial 

fulfilment of physical constraints is lost. For the sake of that, they will no longer be reported next, where 

stronger layerwise effects rise, being too inaccurate. The comparison between MHR and ZZA_MHR, 

shows the advantages of redefining amplitudes even when using Murakami’s zig-zag function.  For case i 

and subsequent j to m, theories MHR [31] and ZZ [42] are considered, to further support that the 

redefinition of coefficients dramatically improves accuracy.  

 

4.4 Cases j to m    

A three-layer simply-supported sandwich plate under bi-sinusoidal loading is considered as case j, where 

the lower face (E1111, E1122, E2222,  E1212 reduced by a factor 1·10-2) and the core are damaged (the core is 

partially damaged up to 0.15h from below, E1122, E2222, E1212, E1313, E2323 reduced by a factor 2·10-1); as a 

consequence, strong 3-D effects rise. Case k differs from case i as concerns loading, a step compressive 

loading on the upper and lower faces of the two halves of the undamaged beam [31] being applied. 

Nevertheless lay-up is symmetric, displacements and stresses are strongly asymmetric across the 

thickness, because of loading.  Case l is a  modified version of beam [75],with simply-supported edges 

under a two-step loading and a length-to-thickness ratio of 25 is assumed. Additionally, it considers a 

damaged core (E1122, E2222, E1212, E1313, E2323 reduced by a factor 1·10-1) and upper face (E1111, E1122, E2222,  

E1212 reduced by a factor 4·10-2). Case m regards a propped-cantilever sandwich beam with a uniform 

transverse loading on the upper face and a length-to-thickness ratio of 5.714.. An accurate description of 

transverse deformability is mandatory for this case, otherwise inaccurate results are obtained [31].  
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The findings of Figures 2 to 5 confirm that the choice functions of representation and the zig-zag 

layerwise contributions is immaterial for adaptive theories.  

In particular, the results of Figure 2  which refer to the case j, show that only in-plane stresses are quite 

accurately predicted by all theories and the same apply for case k (Figure 3). Results of Figure 4 for case l 

show that relevant discrepancies among theories still exist also for this rather thin sandwich and that only 

adaptive theories can be really accurate [31]. Results of case m by Figure 5 highlight the strong layerwise 

effects of this case, to which follow that displacement and stress fields are strongly asymmetric across the 

thickness and consequently only higher-order adaptive theories can obtain accurate results. 

Note that ZZAM_P3P4, that impose the same number of equilibrium points of ZZA, but in integral form 

(computationally more effective), obtains indistinguishable results for cases a to j, while for cases k to m 

is inaccurate due to numerical problems and for this reason it is not reported.  

Computational burden of all theories of this paper (Table 6) is still comparable with that of FSDT, which 

being inaccurate, as well as the lower-order theories of this paper, do not result in any convenience. This 

table shows the slightly lower computational costs of  lower-order theories, but considering that they are 

not always accurate, this advantage cannot be exploited. 

 

4.5 Convergence assesstments    

A convergence study of  theories with respect to the expansion order of trial function and of 3-D FEA 

with respect to meshing is performed in this section. For the former case, results are reported in Table 14 

and Figures 6 to 7. Because a quite large number of theories is considered, to limit the amount of data 

reported just the number of components that ensures convergence for theory ZZA_PMTP34 are reported 

since it has the slowest convergence rate among adaptive theories ZZAS4, NOZZG, ZZA_PP34, 

ZZA_PT34, ZZA_PM34, ZZA_PPM34, AT-3D. It must be considered that however there is no wide 

variation of the order of various theories because convergence orders differ only a few units, so the results 

for ZZA_PMTP34 are representative of all adaptive theories. They are representative also for all lower-

order theories, which however converge to different and less accurate results. 

A quite large number of components is required for cases h and m, which refer to a simply-supported 

plate under localized loading and to a propped cantilever beam, respectively (see Figures 6 to 7), while 

for cases i to l one component is sufficient (see Table 14). The largest error, which is obtained 

considering just the first component, is reported in an inset inside Figures 6 to 7, so the convergence 

curves can be normalized to it, i.e. all curves start from one for reasons of uniformity. To provide more 

details about the convergence behaviour, stresses and displacements across the thickness are reported for 

M=4 and 20 (convergence value) in Figure 6, for M=5 and 10 (convergence value) in Figure 7. 

In Figure 8 u   of case b is considered as an example of through the thickness convergence behavior. For 

this purpose, the converging solution u  is firstly expanded in a Fourier series across the thickness, then 

the number of components necessary to represent the converging solution is determined. Subsequently, 

the number of components is progressively reduced, then the percentage error committed is calculated. 

All adaptive theories behave the same way, because of they require the same expansion order for the 
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convergent solution, and provide the same results for all lower expansion orders considered. Results from 

N = 1 to N = 100 are reported in Figure 8, but an acceptable error is obtained for N = 14. Results allow us 

to guess that if a  Fourier series expansion with 14 or more components is used as the representation 

within theories, whose amplitudes are assumed as d.o.f., similarly to asymptotic and hierarchical theories, 

the same results of the present adaptive theories with just five d.o.f., would be obtained (it seems to agree 

with the expansion order declared in [49]). 

The error made by the 3-D FEA when the mesh density increases is shown in Figures 9 (as an example 

case m is considered). The three numbers indicated in the figure represent the discretization respectively 

along α, β, ς. Percentage error of stresses and displacements, reported in the figures are evaluated at 

specific points where less accurate results are obtained, whose position is specified in the figures. 

 

5. Concluding Remarks    

This study illustrated numerically that the degree of accuracy of higher-order physically-based zig-zag 

theories (in displacement-based and mixed form) is independent on the choice of global and layerwise 

functions, once all stress continuity, boundary and equilibrium conditions are enforced at the same time.  

On the contrary, if coefficients are not redefined or physical constraints are partially satisfied, results are 

strongly dependent by choices made, as demonstrated by assessments of the lower-order theories, which 

are sometimes adequate, but not always. 

Six new higher-order physically-based adaptive theories have been developed as particularizations of a 

novel generalized theory which keeps the same advantages of theories previously developed by the 

authors and enables users to choose arbitrarily the representation and layerwise contributions. In these 

theories, zig-zag contributions can be omitted (their role can be played by the redefinition of coefficients 

at layer interfaces) and displacements can be assumed differently each other and for each region across 

the thickness. Accordingly, these theories become similar to hierarchical and axiomatic/asymptotic 

theories, but are more efficient, because they require a  lower expansion order and only five d.o.f. to get 

accurate results. Indeed, a  piecewise cubic/fourth-order representation for in-plane and transverse 

displacements, respectively, is sufficient to get the maximal accuracy.  

Also an approximate 3-D solution is obtained as particularization of general formulation, whose results 

are always precise, demonstrating that it can be used as reference solution when exact one is unavailable.  

Closed form solutions have been presented using Rayleigh-Ritz method and the same trial functions for 

all theories. Elastostatic benchmarks with distributed/ localized step loading, different boundary 

conditions and material properties of layers that generate strong layerwise effects were considered . A 

convergence study has been carried out, in order to determine the minimum expansion order along in -

plane directions, beyond which errors don’t appreciably  decrease.  

 

Data Availability 

All data generated or analyse during the study are included in the manuscript. 
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