
04 December 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Distributed V2V-Based Virtual Traffic Light System / Rapelli, M.; Casetti, C.; Sgarbi, M.. - (2020), pp. 122-128.
((Intervento presentato al convegno 2020 International Conference on COMmunication Systems and NETworkS,
COMSNETS 2020 tenutosi a Bengaluru, India nel 2020 [10.1109/COMSNETS48256.2020.9027339].

Original

A Distributed V2V-Based Virtual Traffic Light System

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/COMSNETS48256.2020.9027339

Terms of use:
openAccess

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2822232 since: 2020-05-11T20:04:29Z

Institute of Electrical and Electronics Engineers Inc.

A Distributed V2V-based
Virtual Traffic Light System

Marco Rapelli
FULL Interdepartmental Center

Politecnico di Torino
Turin, Italy

Claudio Casetti
FULL Interdepartmental Center

Politecnico di Torino
Turin, Italy

Marcello Sgarbi
Politecnico di Torino

Turin, Italy

Abstract—Congestion in urban areas carries inherent costs
in terms of fuel consumption, pollution, delays. Although ITS
systems have devised solutions such as GLOSA, they require
sophisticated infrastructure and thus installation and mainte-
nance investments. In this paper, we propose V3TL, a V2V-
based distributed solution to manage unregulated intersections
that aims primarily at minimizing the time needed to clear the
intersection, while reducing the number of stop-and-go maneu-
vers that are known to increase emissions. The proposed solution
operates a cyclic scheduling of vehicles as they approach the
intersection, letting them coordinate among each other through
V2V communication. We simulated the solution in an unregulated
four-way intersection, showing that it achieves its objectives.

Index Terms—ITS, Traffic Lights, V2V communication

I. INTRODUCTION

It is universally acknowledged that cars are one of the
leading causes of air pollution in urban areas, with serious neg-
ative effects on environment and health. Among the pollutants,
particulate matter (PM10), carbon monoxide and ground-
level ozone are related to a statistical increase in respiratory
issues as well strokes and other cardiovascular diseases. Other
emissions, such as CO2, have been identified as the culprit of
the greenhouse effect resulting in global warming. Although
air pollution is not the only fallback of traffic congestion
(commuters daily invest hours of their own time to negotiate
the long queues entering or exiting a city during peak hours),
it is by far the direst one. While the manufacturing of hybrid
and electric cars is going to alleviate the problem in the long
run, congested cities are in need of additional solutions.

It is to be remarked that fossil-fuel motor vehicles do not
pollute just because they are on the road. The emission of
pollutants is dependent on how the vehicles are used, and the
driver has the chance to influence it through its behavior at the
wheel such as driving at constant speed, accelerating smoothly
and limiting the number of stop-and-go manoeuvres [1], [2].
Admittedly, the drivers are not always at fault for these
behaviors: a vehicle waiting at an intersection is stopping and
starting as those ahead of it clear the intersection and a new red
light forces the remaining vehicles to stop again. The problem
is compounded by the fact that, in many cases, the traffic
lights timing does not match the real traffic conditions, forcing
longer waiting times onto more congested travel directions. In-
telligent traffic light systems realised by coordinating multiple
networked traffic lights are in operation in many cities around

the world. These solutions, however, lack any interaction with
vehicles on and around the intersection.

In recent years, ITS (Intelligent Transportation Systems)
devoted much effort to making our roads more secure, effi-
cient and eco-friendly. Attempting to reduce the emission at
intersections, the Travolution project [4] introduced the Green
Light Optimal Speed Advisory (GLOSA) systems. The goal
of the GLOSA service is to predict the green phases of traffic
lights as well as to inform the drivers whether they can pass the
traffic light within the present green phase. GLOSA provides
information about traffic light signal phases by broadcasting
messages to vehicles approaching an intersection. [3] showed
through simulation that GLOSA can reduce fuel consumption
by up to 22% for a single vehicle and around 8% in case of
more vehicles on the road, and many works in the literature
have come to similar conclusions. The biggest drawback of
GLOSA is that it requires both traffic lights and vehicles
equipped with a GLOSA box and a suitable vehicular commu-
nication technology (such as IEEE WAVE or ETSI ITS-G5).
Also, it cannot be applied to unregulated intersections, lacking
a traffic light because its deployment is deemed unnecessary
or not cost-effective.

In this paper we introduce V3TL, V2V-based Virtual Traffic
Light, a distributed, dynamic solution that works without
infrastructure, in an unregulated intersection. Through repeated
scheduling cycles on a finite horizon, V3TL aims at mini-
mizing the crossing time at intersections while reducing the
number of stop-and-go manoeuvres by vehicles. Our work
improves the existing literature discussed in Section II by:

• allowing leaders to compute a convergent solution to the
problem of intersection clearing with minimum delay and
in a distributed fashion;

• reducing the number of stop-and-go manoeuvers;
• managing an unregulated intersection without the need of

infrastructure;
• introducing a simplified, yet effective, intersection map

and scheduling protocol that is amenable to being ex-
changed over the air using few bytes.

The rest of the paper is organized as follows: after a review
of related work in Section II, Section III provides an overview
of the system and the procedures need to implement V3TL.
A description of the simulation scenario and the performance

evaluation results can be found in Section IV, while Section V
concludes the paper and discusses future work.

II. RELATED WORK

Our work contributes to an already rich literature on Virtual
Traffic Lights, dating back to the seminal work by Dresner and
Stone [5], which introduced reservation-based system applied
to a simplified version of a real-world intersection traffic where
cars were not allowed to turn and travelled at the same speed.
Gradinescu et al. [6] introduced car-to-car communication
to implement an adaptive traffic light system that however
still requires controller nodes (and thus infrastructure was
needed along with it) deployed at intersections. Among the
first to devise a truly infrastructure-less virtual traffic light
system, Ferreira et al. [7], [8] worked on a solution that
leverages beacons exchanged by vehicles at an intersection
and implements a leader-based message exchange aimed at
informing all approaching vehicles of the current phase of
the VTL at the intersection (without optimizing the phases).
Through simulations, they also showed that VTL has the
potential to reduce emissions by up to 18%. Building on the
concept introduced in [7], Hagenauer, Sommer et al. [9], [10]
improved the algorithms and protocols needed for the leader
election. In a similar vein, Bazzi et al. [11] implemented a
leader-based VTL on a real system using open software and
low cost IEEE 802.11p devices.

III. PROCEDURAL DESCRIPTION OF THE V3TL SYSTEM

The scenario under consideration consists of vehicles ap-
proaching an unregulated intersection. In order to simplify
the description, a four-way intersection is assumed, although
the methodology can be applied to other types of intersec-
tion. No roadside unit is assumed, therefore vehicles have
to manage their interaction via information broadcasting in
a V2V communication environment. The purpose is to create
a distributed scheduling process that mimicks a virtual traffic
light system with the goal of shortening the waiting time at the
intersection. Therefore, each vehicle has to learn the presence
of all other cars in the scenario. Since the purpose of our
system is not to regulate any intersection at any time, the
VTL is activated as soon as Nc vehicles are queueing up (not
moving) in any one direction, which is taken as the sign that
congestion is building. When this happens, a selected group
of vehicles runs the scheduling process with a full awareness
of all other vehicles and can thus act with a centralized
knowledge. This group of vehicles will then distribute the
output of the scheduling process to all other vehicles. The
distributed scheduling process is arranged in cycles, during
which the information on up to Nc vehicles per street of the
intersection is collected and a suitable solution to clear the
intersection of all the vehicles in the cycle is found.

A. Vehicle information collection

The information collection is divided into four steps as in
Figure 1.

The first step of each cycle consists in allowing all ap-
proaching cars to identify other vehicles in the neighborhood
of the intersection, including their anonymized data stored in
an internal memory called Vehicle Storage and discovering
their own position with respect to the crossroad, which we
assume to be localized by its GPS coordinates.

The Vehicle Storage is filled by the information extracted
from messages broadcasted by each vehicle. The messages
exchanged to achieve this reciprocal knowledge are of BSM
(Basic Safety Message) type, according to the SAE J2735 stan-
dard [13], and are broadcast by each vehicle with a frequency
of 10Hz (i.e., the standard frequency mandated by IEEE).
The information disseminated through BSMs is comprehensive
of the basic motion characteristic of the vehicle, extended
with some fields necessary for our purpose. In summary, the
considered fields are the following:

• Vehicle anonymous random identification number
• Transmission timestamp
• Vehicle position (absolute and relative to the next inter-

section)
• Vehicle motion information, such as: speed, acceleration,

heading, yaw angle, signaling lights (turns and breaks)
• Vehicle size
• Leader String (explained below)
• Intersection String (explained below)
• Solution Dataset (explained below)
• Intersection Flag (to notify if the intersection has been

crossed)
• Scheduled Flag (to notify if a vehicle has already been

considered in the scheduling process)
• Leader Election Flag

Upon a BSM reception, vehicles extract the corresponding
fields from the message and store the information regarding
the anonymous random identification number and the position
of the message sender. In this way, a Vehicle Storage of all
known vehicles is created by every vehicle and information is
kept updated every time a BSM with fresh data is received.
It is important that a Vehicle Storage also has the vehicle’s
own position in it (self location). For this reason, upon a
BSM reception, the vehicle’s own location is updated, while
the transmitter information is saved in the Vehicle Storage.
The first step of the cycle is preliminary to the prosecution
of the algorithm: when a vehicle in any direction detects that
at least Nc vehicles including itself are queueing up in its
direction, it sets the Leader Election flag in its BSM, triggering
the following steps of the vehicles information collection.

The message exchange phase allows the second step of the
cycle, i.e, the identification of the so-called Direction Leader
(DL), to begin. Due to the possible presence of buildings in the
environment, vehicles likely receive messages from vehicles
in other directions only in proximity of the intersection, while
they can easily store data from those in their same direction.
While knowledge of vehicles in each direction is likely to
be complete, the same cannot be said about vehicles in other
directions. A “leader” vehicle for every direction thus takes it

Fig. 1. Steps of information collection in an cycle. Step 1: vehicles exchange BSMs; Step 2: Leader election and Leader String compilation; Step 3: Direction
Leaders exchange Leader Strings, then merge them into the Intersection String; Step 4: Each DL broadcasts the Leader String and the Solution Dataset to the
rest of the vehicles

upon itself to collect the data and exchange it with other lead-
ers in other streets. A vehicle that has not yet been scheduled
in a previous cycle is elected as DL if it is the vehicle closest
to the intersection in its respective direction when the Leader
Election procedure is triggered. During the message exchange,
each DL collects the information on vehicles approaching the
junction from its own direction. Those vehicles become part of
the Direction Dataset (DD) of the corresponding DL and their
motion information are saved in a Leader String (LS). If those
vehicles have declared a signaling light (or, in its absence, the
intention of going straight on), such information is extracted
and included in the Leader String. Thus, for every vehicle of
the list, the information regarding, e.g., identification number,
position in the queue, signaling light and direction (eastbound,
southbound, westbound or northbound) is saved. In each cycle,
the information of up to Nc cars per direction is collected,
which means that the depth of each Leader String is at least
Nc (thus including the Leader’s own position). The Leader
String is ordered by growing distance from the intersection.
The DL occasionally has to account for the situation where, on
its street, fewer than Nc cars have reached the intersection at
the time the vehicle information collection took place. In this
case, for every empty position, a “ghost” vehicle is generated
in that slot and included by the DL in its LS as a stopping
vehicle, devoid of declared motion intentions. Creating such
a structure largely simplifies the VTL scheduling, indeed it
is possible to work considering only Nc “tiers” of vehicles.
The vehicles of the first tier will be the Leaders, the four cars

directly behind them will form the second tier, and so on.
Algorithm 1 shows a pseudocode summarizing the workflow
of the DL. If a vehicle is not elected DL, it just saves the
identifier of its own DL and awaits scheduling instructions
from its own DL.

In the third step, the composition of the information from
the Nc tiers forms the Intersection Dataset (ID), which is
the complete set on which the scheduling for the cycle is
performed. In practice, the ID is created when the DLs
approach the intersection: upon entering radio-visibility of
each other, they exhange their Leader Strings in order to merge
their DDs and create the Intersection Dataset. Leaders Strings
are thus merged in a single Intersection String (IS).

In the fourth and final step, the IS is used by each DL
to compute the scheduling solution, called Solution Dataset
(SD), as explained in the following subsection. Since the DLs
use as input the same IS, they will nominally output the same
SD. Upon completion of this task, each DL broadcasts its
own LS (to univocally assign the tier position to all cars in
its DD) and the SD (to distributed the scheduling instructions
to all tier positions in its direction). Therefore, a vehicle can
abide to the scheduling process only when it has knowledge of
the complete intersection status through the received LS and
SD. This also guarantees that the same scheduling solution is
executed by each vehicle. Finally, it allows every vehicle to
update its Vehicle Storage, marking those vehicles that have
been scheduled in the current cycle (and will thus be no longer
around in the next cycle). Any vehicle that, at the time of the

Data: On BSM received
Update my info in the Vehicle Storage;
Extract info of the transmitter from BSM and add it to
the Vehicle Storage;

Compute DistanceToIntersection for every vehicle in
vehicle storage;

Select DLs based on the minimum
DistanceToIntersection per direction;

Save the identification number of my own DL and
check if I am the DL;

if I am Direction Leader then
foreach Vehicle in my Direction Set do

if That vehicle is not scheduled then
if That vehicle has a declared turn
intention then

Extract its info from Vehicle Storage;
Add info to Leader String;
Order Leader String by ascending

DistanceToIntersection;
end

end
end
if A new Leader String has been received then

Merge Leader Strings;
end
if All Leader Strings have been received then

Create the Intersection String;
Run SCHEDULER from Intersection String

and derive the Solution Dataset;
Broadcast Leader String and Solution Dataset;

end
end

Algorithm 1: Direction Leader workflow

leader election, occupied a position more than Nc vehicles
away from the intersection, will not find its identification
number in the broadcasted LS and will not be scheduled. It will
then trigger and participate in the Leader Election procedure
and information collection of the next cycles.

B. Scheduling solution computation

The vehicles obviously need a compact representation of
the intersection and of its occupants to run the scheduling al-
gorithm. Also, the Solution Dataset requires another, similarly
compact representation to be broadcasted effectively. We chose
to represent the intersection as a bitmap, thus dividing it into
small cells and each of them is modeled as a bit, as can be
seen in Figure 2. In such a representation, the zeros correspond
to a position that could be occupied by a vehicle, while the
ones are the locations forbidden or already occupied by other
vehicles. The intersection area, in particular, is represented as
a 3x3 bitmap. This is the minimum number of bits that does
not result in ambiguities in crossing vehicle positions or in
forbidden turns.

Fig. 2. Bitmap representation of the intersection: queue position in red,
intersection area in black.

Based on this scheme, a function to inspect all the legal
movements was implemented. It works on an Intersection
Dataset composed by Nc tiers and, for every tier, it selects
all the possible configurations resulting from the movement of
vehicles at the top of the queue in each direction, taking into
account all the possibilities: turn right, turn left, go straight or
do not move. It then discards any illegal configuration where
two or more vehicles overlap. Thanks to this approach, we
can limit the analysis of the possibile scheduling solutions
to legal configurations only, thereby greatly reducing the
computational complexity. Namely, for the case we studied in
this paper (Nc = 6 in a four-way intersection), we only had to
analyze 64,800 legal configurations out of (4 ·6)4 = 331, 776.
The goal of this scheduling is to minimize the number of
actions needed to empty the intersection. An “action” is
defined as a “legal” movement, i.e., when one or more vehicles
simultaneously cross the intersection without conflicting with
any other vehicle. A secondary goal is to minimize the number
of stop-and-gos performed by each vehicle in order to reduce
emissions. Figure 3 shows an example of three legal actions.

It is conceivable that, for a small value of Nc, one could use
a brute-force approach computing all possible solutions and
evaluating the best one in terms of smaller number of actions
needed to clear the intersection by all cars in the cycle. The
outputs of the brute-force approach for different Nc and for
different intersections configurations (e.g., three-, four-, five-
way intersections and so on) might also be pre-loaded in each
vehicle, or broadcasted by an RSU or through the cellular
network for all intersections of a certain area. However, we
propose a low-complexity heuristics to address a general case

Fig. 3. Example of three legal actions: action 1 (green) allows the head-
of-the line vehicles from the southbound and the eastbound street to move
simultaneously, followed by action 2 (orange) which dictates that another
eastbound vehicle crosses, together with the westbound one; eventually,
action 3 (blue) allows the northbound vehicle to move together with another
eastbound one turning right.

(recall that the scheduling must be computed in real time by
the Direction Leaders).

Given a starting configuration provided by the Intersection
String with M ≤ 4Nc vehicles at the intersection, the
scheduling algorithm first determines all the I legal actions
that involve the vehicles of the first tier, {Ai,1}. For each Ai,1,
with i = 1, .., I an integer metric c(Ai,1) ∈ [1, 4] is computed
as the number of cars that clear the intersection as a result of
the action. From this starting point, one solution tree is built
for each root Ai,1, looking at what actions can follow Ai,1. In
order to keep the complexity low, every level of the tree can
add at most B actions to each node of the previous level.

Next, for each Ai,1, all additional singular legal actions
are evaluated, and B of them are selected as Ai,j,2 with
j = 1, .., B. The selection criteria aims at maximizing the
respective c(Ai,j,2) computed as the number of vehicles
clearing the intersection as a result of Ai,1 and the action
being considered. As a tie-breaker, the number of stop-and-
gos generated by the solution, s(Ai,j,2), is taken. We count as
stop-and-go a situation where in the previous action a vehicle
moved and, in the current action, the vehicle right behind it
was not allowed to move. In case of a lingering tie, a random
choice among the best solutions is made. In such a way, the
second level of the solution tree is built and we record the
path of the tree with the highest value of c and lowest s as
the current scheduling choice.

The third level is built repeating the previous step for the
action set {Ai,j,2} and so on. After completing a level, we
prune any branch whose metric c compared to that of the
current scheduling choice solution reveals a gap higher than
the unscheduled cars in the intersection for that branch.

The output of the function is the Solution Dataset, which
contains as many rows as there are legal actions in the solution.
It is structured as a four-column matrix where each row has
the form:

{{Ce, Ae}{Cs, As}{Cw, Aw}{Cn, An}}

where C refers to the order of the tier the vehicle belongs to,
i.e., its position in the queue at the time of the scheduling,

while A refers to one of four possible coded instruction: (1)
brake and stop; (2) turn right; (3) turn left; (4) go straight.
The pedices refer to the direction to reach the intersection
(eastbound, southbound, westbound, northbound).

For example, with reference to the sequence of actions
illustrated in Figure 3, the first three rows of the scheduled
solution would be represented as follows:

{{1, 2}{1, 3}{1, 1}{1, 1}}
{{2, 4}{2, 1}{1, 4}{1, 1}}
{{3, 2}{2, 1}{2, 1}{1, 4}}

Such a solution mandates (action 1, row 1) that the vehicles
from the eastbound and the southbound streets move simulta-
neously, respectively turning right and left without hindering
each other; instead, the northbound and westbound vehicle
should stop as the action is carried out. Next, (action 2, row
2) another eastbound vehicle (in position 2 at the time of the
scheduling) goes straight, like the westbound one, while the
northbound still has a red light; it is to be remarked that a
“ghost” vehicle shows up in the solution in the second column
from now on, which is nothing more than a placeholder at
this point (indeed, no other vehicles are coming southbound).
Finally, (action 3, row 3), the northbound vehicle goes straight
and a third eastbound vehicle is allowed to turn right; another
ghost vehicle is shown in the third column (westbound), as a
consequence of having cleared that direction with the previous
action.

IV. RESULTS

The results shown in this section were obtained from
simulations, where every vehicle is modeled explicitly with its
own movements and its own OBU in charge of managing the
exchange of messages. In order to develop such a complex
scenario, a simulation framework based on Veins [12] was
developed. Veins bridges the contribution of two other open-
source simulators, SUMO (Simulator of Urban Mobility), used
to model the mobility environment and OMNeT++, which is
the network simulator. SUMO and Veins exchange information
via TCP socket, using the TraCI (Traffic Control Interface)
communication protocol. In this way vehicle movements
defined by SUMO are reflected in OMNeT++ and actions
triggered by messages can be actuated in SUMO.

In order to evaluate the performance of the implemented
model, we considered a four-way intersection, where a version
of our model with Nc = 6 tiers and with a binary tree
(B = 2) scheduling heuristics was tested against two other
scenarios without VTL. In each case, the total time needed
to empty our map was collected and the outputs of ten
simulations were averaged, obtaining a final time measure.
We have included buildings on all sides of the intersection,
hindering the communication among different streets.

First of all, in the spirit of addressing our original goal of
allowing unregulated intersections to benefit from a VTL, a
scenario with such an intersection was tested. In SUMO, when
a junction type is defined as unregulated, the “right-before-
left” priority scheme is adopted by approaching vehicles. In the

second scenario, a traffic light with fixed phases is involved.
Since the default generation of a traffic light in SUMO creates
non-realistic control phases, a traffic light designed with F.
V. Webster method [14] was used. The Webster method is
a mathematical technique currently used by civil engineers
in order to design optimal timing phases, given a realistic
incoming traffic. Its purpose is to compute the optimum cycle
length C and the corresponding green times Gi, given:
• the maximum number of vehicles that can pass the

intersection in one hour, called saturation flow S;
• the lost time L, which is the total time lost due to human

reaction times for every cycle;
• the critical flow rate yi, computed as the ratio between

the number of vehicles per direction vi and the saturation
flow S.

Once those parameters are defined, the following formulas are
needed to compute C and Gi:

C =
1.5 · L+ 5

1−
∑

i yi
(1)

Gi =
(C − L) · yi∑

i yi
(2)

In order to estimate the saturation flow of the intersection in
the model, a continuous flow of vehicles has been generated
in SUMO. We set all vehicles as wanting to go straight at the
intersection. Finally, an average of 1174 veh/h was measured
and used as the saturation flow S. A time loss of 2s, due to
reaction times, was estimated for every green phase, resulting
in a total time lost L of 4s. Regarding the number of vehicles
per direction, needed to compute the critical flow rate yi, the
flows generated in our scenario do not represent realistic traffic
data. For this reason, we used vehicle data from J. He et
al. [15], where real traffic measurements are extracted from
a four-way intersection similar to the one used in this paper.
The flows per direction and the corresponding yi used are the
following:

ve = 470→ ye =
470

1174
= 0.4 (3)

vs = 203→ ys =
203

1174
= 0.17 (4)

vw = 137→ yw =
137

1174
= 0.12 (5)

vn = 364→ yn =
364

1174
= 0.31 (6)

Since the northbound and southbound directions will share the
same green phase, as well as eastbound and westbound ones,
only the maximum critical flow rate per direction has been
considered, resulting in:

yn∧s = 0.31 (7)

ye∧w = 0.4 (8)

From the parameters obtained, the resulting optimal cycle
length is:

C =
1.5 · 4 + 5

1− (0.31 + 0.4)
= 37.9s (9)

Fig. 4. Traffic light phases computed with Webster method.

TABLE I
INTERSECTION CLEARING TIME COMPARISON

Simulation Unregolated Webster V3TL
Number Intersection [s] Traffic Light [s] [s]

1 197.2 167 165.2
2 173.6 177.6 167.6
3 187.2 179 174.6
4 187.7 193 177.1
5 192.2 163.6 171.7
6 183.9 174.7 179.1
7 200.3 174 168.2
8 178.6 195.7 180.5
9 179.4 194.3 179.2
10 183 193.1 178

Average ⇒ 186.3 181.2 174.1

and the corresponding green phases are:

Gn∧s =
(37.9− 4) · 0.31

0.31 + 0.4
= 14.8s (10)

Ge∧w =
(37.9− 4) · 0.4

0.31 + 0.4
= 19.1s (11)

To complete the cycle, an amber phase of 1s after every green
phase and a clearance interval with both phases set as red for
2s have been added, as shown in Figure 4, and such a traffic
light and its phases have been generated in SUMO in order to
create the Webster scenario.

In order to compare the results of different scenarios, ten
simulations were performed, each featuring 66 vehicles. In
each simulation, the intentions of each vehicle as it approached
the intersection were randomly selected, thus determining
different solutions in each test. The time to solve the total
configuration of vehicles, for every scenario, is reported in
Table I.

As shown in the table, not only does V3TL perform better
on average, but it also outperforms both right-before-left
scenario and traffic light with the Webster method in almost
every single test. It is indeed to be remarked that in tests
5 and 6 the Webster method fares better than V3TL. This
occurs because it allowed situations in SUMO that V3TL
does not contemplate. Namely, vehicles can stop in the middle
of the intersection and let other vehicles pass if continuing
with the crossing leads to a collision. These types of vehicle
configuration lead to speeding up the process of clearing the
intersection and result in shorter time to solve the queueing.
However, they can create hazardous situations and were thus
not considered by the scheduling.

V. CONCLUSIONS AND FUTURE WORK

The paper proposes V3TL, a V2V-based distributed solu-
tion realizing a Virtual Traffic Light system for unregulated
intersections. By going through scheduling cycles, we define
a heuristics that aims at lowering the time needed to clear the
intersection, while limiting the number of pollution-increasing
starts and stops. Simulation shows that our solution outper-
forms both a right-before-left scenario and a fixed traffic light
whose cycle is optimized with the Webster method in almost
every single test. As future work, we plan to adapt our solution
to different intersection topologies and roundabouts, and to
extend the methodology to multiple neighboring intersections,
with the potential to carry over the signaling between each of
them and introducing a “green wave” effect.

ACKNOWLEDGMENT

The authors would like to thank FEV Italy s.r.l. for con-
tributing to preliminary discussions on this paper.

REFERENCES

[1] J. Cloke, G. Harris, S. Latham, A. Quimby and E. Smith, “Reducing
the environmental impact of driving: a review of training and in-vehicle
technologies,” Report 384, Transport Research Lab, UK, 1999.

[2] M. Andre and U. Hammarstrom, “Driving speeds in Europe for pollutant
emissions estimation,” Transportation Research, Part D, vol. 5, pp. 321-
335, 2000.

[3] T.Tielert, M.Killat, H.Hartenstein, R.Luz, S.Hausberger and T.Benz,
“The impact of traffic-light-to-vehicle communication on fuel consump-
tion and emissions,” in Internet of Things, Tokyo, Japan, Dec 2010.

[4] R. Braun, F. Busch, C. Kemper, R. Hildebrandt, F. Weichenmeier, C.
Menig, I. Paulus and R. Presslein-Lehle, “Travolution – Netzweite Opti-
mierung der Lichtsignalsteuerung und LSA-Fahrzeug-Kommunikation,”
Strassenverkehrstechnik, vol. 53, pp. 365–374, June 2009.

[5] K. Dresner and P. Stone, “Multiagent Traffic Management: A
Reservation-Based Intersection Control. Mechanism,” in 3rd Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems.
(AAMAS 2004). New York, NY: IEEE, Jul. 2004, pp. 530–537.

[6] V. Gradinescu, C. Gorgorin, R. Diaconescu, V. Cristea, and L. Iftode,
“Adaptive Traffic Lights. Using Car-to-Car Communication,” in 65th
IEEE Vehicular Technology Conference (VTC2007-Spring), Apr. 2007,
pp. 21–25.

[7] M. Ferreira, R. Fernandes, H. Conceicao, W. Viriyasitavat, and O.
K. Tonguz, “Self-organized traffic control,”. in 7th ACM International
Workshop on Vehicular Internetworking (VANET 2010). Chicago, IL:
ACM, Sep. 2010, pp. 85–90.

[8] M. Ferreira and P. d’Orey, “On the Impact of Virtual Traffic Lights
on Carbon Emissions Mitigation,”. IEEE Transactions on Intelligent
Transportation Systems, vol. 99, no. 10-2011, pp. 1–12, Oct. 2011.

[9] F. Hagenauer, P. Baldemaier, F. Dressler, and C. Sommer, “Advanced
Leader Election for Virtual. Traffic Lights,” ZTE Communications,
Special Issue on VANET. 12. 11-16, 2014.

[10] C. Sommer, F. Hagenauer, and F. Dressler, “A Networking Perspective
on Self-Organizing Intersection. Management,” in IEEE World Forum
on Internet of Things (WF-IoT 2014). Seoul, Mar. 2014.

[11] A. Bazzi, A. Zanella, B. Masini, “A Distributed Virtual Traffic Light
Algorithm Exploiting Short Range. V2V Communications,” Ad Hoc
Networks, Vol. 49, pp. 42-57, October 2016.

[12] veins.car2x.org [online].
[13] Society of Automotive Engineers, SAE-J2735, Dedicated Short Range

Communications (DSRC) Message Set Dictionary, 2015.
[14] F. V. Webster, “Traffic signal settings,” Gt. Britain Road Res. Lab., vol.

Road Resea, 1958.
[15] J. He and Z. Hou, “Ant colony algorithm for traffic signal timing

optimization,” Adv. Eng. Softw., vol. 43, no. 1, pp. 14–18, 2012.

