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Abstract: Since the industries are called to produce environmentally friendly products, the research 

is moving toward new improved materials. In this panorama, aluminium alloys find applications 

for a large range of products. In the automotive, as well as in the aerospace, sector, aluminium alloys 

are largely adopted, thanks to their high specific properties and their light weight. Moreover, 

common casting techniques permit us to realize complex high-quality components. These 

components may be realized by using casting techniques adopting casting-additives, such as 

modifiers or refiners. In this work, the effect of refining and modification was studied in terms of 

microstructural evolution of the intermetallic phases in two aluminium-silicon alloys (EN AC 45300 

and EN AC 43500). Microstructures were analyzed through micro-hardness measures, and we 

found a reduction in the standard deviation of the hardness with the addition of additives. 

Furthermore, secondary dendrites arms spacings (SDAS) were measured, evidencing a decrease in 

SDAS by adding casting additives. A strong correlation was found between the adding of additives 

and the possibility of containing the size of the silicon and of all the intermetallic phases opening 

up to the possibility of tailoring the microstructures. 

Keywords: Al-Si casting alloys; EN AC 45300; EN AC 43500; refining; modification; microstructure; 

image analysis 

 

1. Introduction 

In recent years, research in the fields of automotive and aerospace has made enormous progress. 

These advances are mainly associated with needing to reduce the environmental impact of vehicles 

by reducing CO2 emissions [1]. In this context, researchers have suggested many possible solutions, 

such as the adoption of electrical machines [2,3] or fuel cells [4]. Despite that, for the traditional 

engines, the reduction of fuel consumption and consequently the reduction of the weight of cars are 

still crucial [5]. In this perspective, thanks to their properties, especially the lightness, aluminium 

alloys have proved to be one of the best solutions to meet environmental needs. Aluminium alloys 

have high specifical mechanical properties and high corrosion resistance: These properties allow us 

to use the aluminium alloys in many parts of vehicles, from chassis to engine components [6,7]. 

Particularly, aluminium-silicon alloys are widely used in the automotive sector to realize pistons 

[8,9]. 

Unfortunately, in some applications, a component can require multiple properties that cannot 

be fulfilled by a single alloy. From this perspective, the usage of different alloys properly joined to 

each other could be useful to guarantee, for example, a change in specific properties within the piece. 

Since the various possible welding processes to join aluminium alloys may give rise to weak spots in 
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the joint [10], different kinds of multi-material junctions were proposed [11–15]. On the other hand, 

multi-material solutions are difficult to implement. In this perspective, Al-Si alloys’ properties can be 

tailored utilizing some casting-additives as the refining agents and the modifying agents [16]. This 

tailoring can help to customize the intermetallic phases’ shape, improving the fatigue resistance, 

decreasing the concentration of efforts. In fact, in Reference [17], it was demonstrated that coarse 

intermetallic phases or acicular phases are the most prime locations for crack propagation. Refining 

agents act on the α-Aluminium structures, reducing the grain size by changing the dendritic 

structures into equi-axial grains; moreover, the measured SDAS (Secondary Dendrite Arm Spacings) 

can be affected too [18], while modification agents operate on the eutectic silicon, changing its shape 

from acicular to fibrous or spherical shape [19]. In this work, two aluminium-silicon alloys (EN AC 

45300 and EN AC 43500) were cast through gravity casting, taking care of the factor that affects the 

casting phase, as shown in Figure 1; alloys were studied in the as-cast state, with and without the 

addition of refining and modification agents, to focus the attention on the deriving microstructural 

changes. In particular, these alloys are of interest to the automotive sector: Alloy EN AC 45300 is 

adopted for realizing cylinders, engine stands, pump bodies, and compressor pistons [20], while alloy 

EN AC 43500 is a very versatile composition, which is characterized by a low iron tenor, suitable for 

applications requiring high castability in all the common casting techniques [21] (Gravity Casting 

GC, Sand Casting SC, High-Pressure Die Casting HPDC, and Low-Pressure Die Casting LPDC). 

Additives act on these particular compositions by reducing the grain size and changing the 

silicon shape as for all the Al-Si alloys [22]. In particular, following the alloy manufacturer indications, 

it seems that 100 ppm of Al-Sr10 can be enough to properly modify the silicon shape in alloy EN AC 

43500. Because the refining and modification in aluminium-silicon alloys lead to shape modification 

for certain kinds of intermetallic phases, such as Fe-phases and Eutectic silicon [17,18], it is reasonable 

to think that they affect other intermetallic phases. For these reasons, the main intermetallic phases 

present in Al-Si alloys were investigated in terms of micro-hardness and the occupied area, to assess 

the effect of the additives on the microstructural phases. Furthermore, SDAS measurements can 

confirm the additive effects in terms of grain refinement. 

 

Figure 1. Ishikawa diagram: parameters affecting casting of aluminium alloys. 

2. Materials and Methods  

In this work, two aluminium alloys belonging to the Silumin group were studied; in Table 1, 

their compositions and their main properties are shown. Alloys were molten in graphite crucibles 

and cast by gravity-casting method into a preheated mould opportunely painted with a BN-stop-off 

paint [23,24]. The stop-off paint acts by reducing thermal stresses and contact with molten aluminium 

alloy and the steel mould [25,26]. In Figure 2, the casting sequence is shown: Alloys were melted into 

a graphite crucible and then poured into the mould. Castings were extracted after 60 seconds from 

the casting. Regarding the casting parameters, the alloys were melted at 710 °C in a graphite crucible 

and then casted into a steel mould preheated into a furnace at 400 °C. Additives were added five 

minutes before casting, to ensure their total melting. Rectangular-shaped samples of 125 mm × 25 
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mm × 15 mm were obtained. Three bar-castings of each alloy were analyzed overall. The first casting 

was obtained without any casting-agent, while 250 ppm of refiner-alloy Al-Ti-B, in the form of a rod, 

was added to the second casting, and finally, the third cast was performed by adding both 250 ppm 

of the refiner-alloy Al-Ti-B and 250 ppm of modifier-alloy Al-Sr10 in the form of a rod. 

Table 1. Chemical compositions and mechanical properties of the alloys according to standard UNI 

EN 1706 and 3600. 

EN AC 45300–AlSi5Cu1Mg 

Elements Si Fe Cu Mn Mg Ni Zn Pb Sn Ti Al 

Min (%) 4.5 – 1 – 0.40 - - - - - 
Bal. 

Max (%) 5.5 0.55 1.5 0.55 0.65 0.25 0.15 0.15 0.05 0.20 

Mechanical properties in the as-cast state (gravity casting) 

Rm 205–245 (MPa) 

A 4%–5% 

Rp0,2 125–155 (MPa) 

HB 70–95 

EN AC 43500–AlSi10MnMg 

Elements Si Fe Cu Mn Mg Zn Ti Al 

Min (%) 9.0 - - 0.40 0.15 - - 
Bal. 

Max (%] 11.5 0.20 0.03 0.80 0.60 0.07 0.15 

Mechanical properties in the as-cast state1 

Rm 250–290 (MPa) 

A 5%–10% 

Rp0,2 120–150 (MPa) 

HB 75–100 
1 Since this alloy is commonly adopted for high-pressure die casting (HPDC), properties in technical 

sheets refer to castings obtained via high-pressure die casting. 

 

Figure 2. Casting sequence. Manual gravity casting procedure (a); mould adopted (b); Casting 

obtained (c) (only one rectangular-shaped sample was used); Scheme of the distribution of the micro-

hardness matrix and sections analyzed, not in scale (d). 

Each casting obtained two bars (dimensions 25 mm × 125 mm × 15 mm), but only one bar was 

analyzed. Each rectangular-shaped casting was cut into three samples (25 mm × 25 mm × 10 mm) for 

microstructural observations; these samples were grinded by SiC abrasive papers from 180 up to 2400 

grit and then polished by cloths with diamond suspensions and colloidal silica. After polishing, 

samples were etched by Keller reagent and their microstructures were analyzed by using an optical 

microscope (LEICA MEF4M, Leica Microsystems, Heerbrugg, Switzerland). Note that samples have 
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been taken from different parts of the casting, to highlight any possible variations in terms of 

microstructure, along with the mould. Silicon dimensions, as well as secondary dendrite arms 

spacings (SDAS), were measured on images 20x of magnification by the microscope-image-analysis 

software (LEICA QWin, version 3.5, Leica Microsystems, Heerbrugg, Switzerland) and compared 

between the different castings. Alloys’ hardness was measured by utilizing micro-hardness Vickers 

(15 s, 500 gf–HV 0.5), to correlate the effects of the additive additions on the silicon size and SDAS 

size, by LEICA VMHT, Leica Microsystems, Heerbrugg, Switzerland apparatus. Micro-hardness is 

an average of values measured by an indentation matrix 3 × 3. Measures were performed in all the 

specimens. Silicon size was measured by image analysis, performed in three different parts of the 

samples, utilizing optical images (magnification 50x). SDAS measures were conducted in three 

different parts of the samples, measuring ten dendrites for each optical image (magnification 10x). 

Measurements were obtained by measuring the distance between the middle of two secondary 

dendrites arms, in the direction of the primary direction, as further shown in Figure 3. 

In regard to microstructures, alloy EN AC 45300 belongs to the hypoeutectic system Al-Si and is 

suitable for both mould and sand castings; its composition contains relatively high amounts of Cu 

and Mg, enabling the nucleation of intermetallic phases as θ-Al2Cu, Al2CuMg, β-Mg2Si, and Q–

Al5Cu2Mg8Si6 [27]. Furthermore, Fe lead to the nucleation of intermetallics, such as α–Al8Fe2Si, β–

Al5FeSi, π–Al8Mg3FeSi6, and Al9FeMg3Si5, while Mn allows the nucleation of Chinese–script-like α–

Al15(Mn, Fe)3Si2 intermetallic [28].  

On the contrary, alloy EN AC 43500 can only form intermetallics Fe, Mn, and Mg-based [12,29]. 

This alloy is largely used for high-pressure die casting but is suitable for all types of casting. Details 

about intermetallic phases detected are shown in Figure 3. 

 

Figure 3. Optical microscope images of alloy EN AC 45300 (100x magnification, marker 20µm). 

Microstructures and intermetallic phases. Blue = Eutectic silicon; purple = Mg-based phase; white = 

Q-phase; brown = α-Fe; yellow = β-Fe; orange = Al-Al2Cu-Si. 

Experimental quantitative data from image analysis were finally treated by ANOVA, to give 

robust evidence of which microstructural features were mostly affected by the use of casting 
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additives. The software Minitab (v.2017-Minitab, LLC, Pennsylvania, USA) was adopted for data 

analysis. The condition of the alloy was isolated as a factor, capable of assuming three states (without 

additives, with refiner, refined, and modified), while SDAS, micro-hardness, and intermetallic size 

were treated as separate responses. Normality and equal variance assumption were adopted, and the 

p-value was calculated with 90% confidence interval (c.i.) for each sample. A p-value below 0.1 

indicates that a significative difference in the measured property is detectable between the alloy 

without additives and the alloy with additives.  

3. Results and Discussion 

3.1. Micro-Hardness and SDAS 

The results reported in Table 2 were obtained from micro-hardness measurements performed in 

the middle of the specimens. The casting agents do not seem to influence the micro-hardness values 

in the same alloy; nevertheless, there is a significant difference between the two alloys in terms of 

micro-hardness. EN AC 45300 is highly alloyed if compared to the poorly alloyed EN AC 43500; 

consequently, its hardness is higher. On average, adding a casting additive to the alloys results in a 

decrease of the variability of the measured hardness: Refined + modified alloys, in particular, show 

the lowest standard deviation (Table 2). This behavior was probably due to an inhomogeneous 

microstructure when additives are not used, as observed, for instance, with the same specimen, in 

Figure 4. For the alloy EN AC 43500, the high standard deviation is due to the microstructural 

inhomogeneities, while for EN AC 45300, the non-uniformity resulting in a high standard deviation 

is due to the random indentation of both the harder intermetallic phases and the softer α-aluminium. 

Table 2. Micro-hardness HV0.5 measures. 

HV0.5 EN AC 45300 EN AC 43500 

No-Additives 92.21 ± 7.28 76.99 ± 5.69 

Refining 91.42 ± 4.26 78.52 ± 4.09 

Refining + Modification 89.11 ± 4.05 80 ± 1.81 

Secondary dendritic arm spacing (SDAS) measurements were performed to detect the possible 

effects of the refining agent on the size of the dendrites. On the one hand, the EN AC 45300 alloy 

showed a decrease in SDAS size, from an average value of 28.62 to 23.33 µm, after adding a refiner, 

as shown in Figure 5. Moreover, a supplementary decrease of SDAS seems to occur with the addition 

of the modification agent.  

On the other hand, 250 ppm of refiner did not influence the SDAS in the EN AC 43500 alloy, 

confirming that 250 ppm of refiner is not enough to refine the microstructure. For this alloy, the 

addition of the modification agent, too, did not seem to influence the SDAS. 

 

Figure 4. Optical images (10x magnification) of inhomogeneities in the microstructure of alloy EN AC 

43500 without casting additives: (a) near the mould walls; (b) middle of the casting; (c) other regions 

of the casting. 
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Figure 5. SDAS measured into the alloys’ bulk. Red lines in (a,b) indicate the measuring method. 

Optical image 10x of alloy EN AC 45300 alloy (a); optical image 20x of alloy EN AC 43500 (b); SDAS 

measurements (c). 

3.2. Eutectic Silicon and Intermetallic Phases 

Refining and modification treatments led to variations in microstructure aspects. The reduction 

in SDAS after the adoption of refining agents is well-known and was demonstrated in Figure 4, as 

the further addition of modification agent may influence other microstructure features, such as, for 

instance, silicon shape. Microstructures showed in Figure 6 refer to the EN AC 43500 alloy in a refined 

state and to the EN AC 45300 alloy in the refined and modified state. In the central part of the samples, 

silicon resulted in uneven shape (Figure 6a,b), but also some casting defects were observed, such as 

coarse-Fe intermetallics (a), interdendritic shrinkage (b), and bifilm (c). Particularly, bifilm was 

detected in EN AC 45300 alloy only. In this regard, defects and coarse intermetallics may influence 

the micro-hardness values, as noticed by the high standard deviation in Table 2. Eutectic silicon shape 

affects the mechanical properties of the alloys, especially in terms of stress concentration [12]; in the 

case of mechanical solicitations, acicular silicon can behave as a stress concentrator, guiding the 

growth of cracks along a preferential low-energy path. For this purpose, in order to change silicon 

morphology, additives were used. From the image analysis performed in the bulk of the samples, 

some considerations can be given. 

Intermetallic particles and silicon particles were measured via image analysis, and the results 

are reported in Figure 7. It was not possible to classify these particles on a composition-based scale 

by image analysis, so the average particle size for all phases was considered. The average particle’s 

area is higher for EN AC 45300 alloy than for EN AC 43500 alloy. In regard to EN AC 43500, it seems 

that only the addition of both refiner and modifier permits a reduction of average particles area 

(about 40%), while with the sole use of the refiner, a slight increase in particles size was detected. In 

alloy EN AC 45300, only a decrease of particles size was noticed.  
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Figure 6. Optical microscope images (a–c). Defects in alloy EN AC 43500 refined (a,b) and alloy EN 

AC 45300 refined and modified (c). 

The average particles area decrease can be attributed to both silicon’s size decreasing and 

intermetallics’ size decreasing. In this sense, it could be useful to measure the average areas for 

different intermetallic phases. For instance, Fe-intermetallic phases are represented by α-Al(Fe, 

Mn)Si, typical light-gray polygonal-shaped intermetallic phases. This intermetallic was observed in 

both alloys.  

Only the alloy EN AC 43500 showed a reduction in the average intermetallic area by the mere 

addition of a refiner (Figure 8), meaning that additives may influence some Fe-intermetallic phases 

in terms of occupied area. This reduction was about 52% with refiner only and about 24% with both 

the refiner and the modifier.  

The opposite behavior was detected in the EN AC 45300 alloy, where intermetallic areas 

increased by 29% and 9%, respectively. The very high standard deviations are evident from the 

normal distributions for both alloys, indicating a large dispersion of the intermetallic dimensions 

detected. 

As the intermetallic phase β-Al9FeSi, area measurement undergoes a gradual variation, as shown 

in Figure 9. Totally, in alloy EN AC 43500, the addition of 250 ppm of Al-Ti-B seems to be effective in 

influencing the β-Fe intermetallic areas, with an average reduction of 21% of the intermetallic areas, 

while the additions of 250 ppm of Al-Ti-B and 250 ppm Al-Sr10 lead to a decrease of 47%. On the 

other hand, in the EN AC 45300, alloy contradictory pieces of information were observed: the 

adoption of 250 ppm of Al-Ti-B seems to lead to a decrease of the β-Fe intermetallic areas of 24%, 

while the additions of 250 ppm of Al-Ti-B and 250 ppm of Al-Sr10 lead to an increase of 64%. The 

large standard deviation, especially in EN AC 45300, leads to high kurtosis of the distribution. 

Mg2Si phase is present in both alloys, and the results are shown in Figure 10. For EN AC 45300 

without additives, the standard deviations of the average intermetallic area is very large, as 

demonstrated by the high kurtosis in the distribution of the measured areas. In EN AC 43500, the 
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standard deviations are smaller, and phases are characterized by a minor average area. For this alloy, 

it seems that the addition of Sr leads to a strong decrease in the average area.  

 

Figure 7. Average particles area measured by image analysis in both alloys. Microstructure in alloy 

EN AC 45300 without additives (a); microstructure in alloy EN AC 43500 without additives (b); bar 

chart shows the average values and standard deviations (c). Points in bar chart highlight the increase 

or decrease of the particles’ area in percentage terms, concerning the pure alloy. 

Cu-based intermetallics are only present in alloy EN AC 45300. However, given that Al2Cu phase 

is usually very small, histograms in Figure 11 show the average measurements obtained by 

measuring the Al-Al2Cu-Si phase. In this case, average values are very close: A decrease of 13% in the 

fraction of measured particles was observed after the Al-Ti-B addition, while an increase of 4% was 

observed when both Al-Ti-B and Al-Sr10 were added. The normal distribution curves are similar to 

each other because the standard deviation measurements are similar. It seems there is no substantial 

modification of the average area of this intermetallic phase. 

Considering all the intermetallic particles measured (α-Fe, β-Fe, Mg2Si, and Al-Al2Cu-Si), it is 

possible to compare the total average for each sample, with respect to the average values for all 

particles (Figure 7). The results obtained from this comparison are reported in Figure 12.  

Samples cast without additives, called no-additive, showed an average particles area very 

similar to the average obtained by averaging all intermetallic measurements: 36.5 µm2 and 34 µm2 

respectively for alloy EN AC 45300, and 10.2 µm2, in both cases, for EN AC 43500. This means that 

the usage of additives influences all particles presents, as already noticed by the analysis conducted 

on principal phases, and this behavior is most striking for alloy EN AC 45300. 



Metals 2020, 10, 618 9 of 14 

 

 

Figure 8. The average α-Fe area measured by image analysis in both alloys. In the bar chart, the 

average values and standard deviations are reported (a). Single points highlight the increase or 

decrease of the particles area in percentage terms, in respect to the no-additive status. Microstructure 

evidenced the phase shape (b). The graphs in the lower part show the particle size distribution of the 

phase measured (c,d). 

 

Figure 9. The average β-Fe area measured by image analysis in both alloys. The bar chart shows the 

average values and standard deviations (a). Points highlight the increase or decrease of the particles’ 

area in percentage terms, in respect to the no-additive status. Microstructure evidenced the phase 

shape (b). The graphs in the lower part show the particle size distribution concerning the phase 

measured (c,d). 
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Figure 10. The average Mg2Si area measured by image analysis in both alloys. Bar chart showed the 

average values and standard deviations (a). Points highlight the increase or decrease of the particles’ 

area in percentage terms, in respect to the no-additive status. Microstructure evidenced the phase 

shape (b). The graphs in the lower part show the particle size distribution concerning the phase 

measured (c,d). 

 

Figure 11. The average Al-Al2Cu-Si area measured by image analysis. Bar chart shows the average 

values and standard deviations (a). Points highlight the increase or decrease of the particles area in 

percentage terms, in respect to the no-additive status. Microstructure evidenced the phase shape (b). 

The graph in the lower part shows the normal particle size distribution concerning the phase 

measured (c). 
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Figure 12. Correlation between general intermetallic phase areas of Figure 6 (blue bars) and average 

measured for other intermetallic phases of Figures 7–10 (orange bars). 

3.3. Data Treatment with ANOVA 

After having shown and discussed data in detail in the previous paragraphs, a resuming table 

with synoptic intent is proposed; for this reason, data were treated with ANOVA [30,31]. In Table 3, 

the results of the p-value confirm that some significative microstructural differences arise due to the 

adoption of casting additives. The p-values reported in the table suggest that casting additives have 

a significant effect on SDAS for both alloys (p < 0.1), while hardness is slightly affected for the EN AC 

43500, due to microstructural casting defects, rather than due to real microstructural modifications 

due to the additives action. With regards to intermetallics size, different behaviors were detected: 

Mg2Si and Al-Al2Cu-Si do not seem to be affected at all by the use of casting additives (p > 0.1), while 

the effect is different in the two alloys for α-Fe and β-Fe. 

Table 3. The p-values with 90% c.i. for the different responses calculated from ANOVA. 

Measured Parameters EN AC 45300 EN AC 43500 

HV_0.5 0.461 0.048 

SDAS 0.001 0.001 

α-Fe 0.821 0.103 

β-Fe 0.046 0.228 

Mg2Si 0.673 0.603 

Al-Al2Cu-Si 0.928 - 

 

To understand the effect of casting additives on single intermetallics, tailored studies have to be 

undertaken, by varying the quantity of additives. Further efforts will be made in future works to 

establish more extensive correlations and derive general predictive equations correlating the effect of 

the quantity of the single casting additive in modifying the microstructure of aluminum alloys. 

4. Conclusions 

In this work, the effects of the refining agent Al-Ti-B, alone or in combination, with the 

modifying agent Al-Sr10, were studied. The casting additives were used into two Al-Si alloys, to 

evaluate their effect, depending on the alloys’ silicon content and on the alloying elements, and the 

following results were found. 

It seems that the addition of both refining and refining + modify agents does not influence the 

micro-hardness of the alloys. In fact, both the alloys show almost the same micro-hardness values of 

about 90 HV0.5 for EN AC 45300 and 80 HV0.5 for EN AC 43500, regardless of the casting additives. 

The high standard deviations were due to inhomogeneous microstructures, especially for alloy EN 

AC 45300, which contains hard intermetallic phases (Table 2). 
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Alloy EN AC 45300 shows a decrease in SDAS size, from an average value of 28.62 to 23.33 µm, 

with the addition of a refiner. Moreover, a supplementary decrease of SDAS seems to take place with 

the addition of the modification agent. On the other hand, this effect was not detected in alloy EN 

AC 43500. This result highlights that the refiner agent resulted in a non-appropriate amount to 

properly refine the alloy’s microstructure. 

As demonstrated in [32], Sr influences both the needle-like iron-rich intermetallics (β-Fe), 

causing their fragmentation and reduction in length and the decreasing in size and number of α-Fe 

intermetallics. This behavior has been confirmed in alloy EN AC 43500; furthermore, it seems that 

Al-Ti-B has similar effects. On the other hand, this attitude was not confirmed in alloy EN AC 45300. 

The Mg2Si phase is present in both alloys. In regard to EN AC 43500, it seems that the addition 

of Sr leads to a strong decrease in the average area. On the other hand, in alloy EN AC 45300, both 

the additives seems to act on this intermetallic phase, reducing its dimensions. 

In the case of the intermetallic phase Al2Cu, which is only present in EN AC 45300 alloy, the 

normal distribution curves are similar to each other, highlighting no substantial modification of the 

average area of this intermetallic phase. 

The comparison made between average particles’ area measured and the average value, 

considering all intermetallic areas, was performed and shown in Figure 12. Additions of additives 

cause a variation between these values, especially for alloy EN AC 45300, evidencing the effect of 

refiner and modifier on the silicon shape. 

This work focused on the evolution of the intermetallic phases. Despite that, it is important to 

note that this evolution can impact other mechanical properties. In particular, the spheroidisation of 

the eutectic silicon, along with the SDAS reduction and the fragmentation of β-Fe intermetallic 

phases, has a beneficial effect on the mechanical resistance, as demonstrated in Reference [12], 

referring to the impact properties, and in Reference [33], on tensile properties, especially if a heat 

treatment takes place. For these reasons, further investigations on mechanical properties of these 

alloys, as well as fracture analysis, will be conducted, with the aim to link the fracture mechanism 

and the mechanical properties observed with the analysis here performed. 

In conclusion, Al-Ti-B acts on aluminium-silicon alloys, affecting the SDAS measures, especially 

in alloys with a lower silicon content. The lack of homogeneity affected, in particular, the 

measurements in alloy EN AC 45300. From these results, it can be concluded that the size of some 

intermetallic phase can be reduced by employing additives, and, in this regard, positive results were 

observed just by adding 250 ppm of additives. 

Author Contributions: Conceptualization, E.F. and M.R.; methodology, E.E.; formal analysis, E.F. and F.S.G.; 

investigation, E.F. and F.S.G.; data curation, E.F. and F.S.G.; writing—original draft preparation, E.F. and F.S.G.; 

writing—review and editing, M.R.; supervision, M.R. All authors have read and agreed to the published version 

of the manuscript. 

Funding: This research received no external funding. 

Acknowledgements: The authors would like to thank Nicolò Arcieri for help in samples’ preparation. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Hertwich, E.G.; Ali, S.; Ciacci, L.; Fishman, T.; Hereen, N.; Masanet, E.; Asghari, F.N.; Olivetti, E.; Pauliuk, 

S.; Tu, Q.; et al. Material efficiency strategies to reducing greenhouse gas emissions associated with 

buildings, vehicles and electronics—A review. Environ. Res. Lett. 2019, 14, 043004. doi:10.1088/1748-

9326/ab0fe3. 

2. Darmani, M.A.; Poskovic, E.; Bramerdorfer, G.; Vaschetto, S.; Cavagnino, A.; Tenconi, A. Surface-mounted 

and flux-switching PM structures trade-off for automotive smart actuators. In Proceedings of the Eleventh 

Annual IEEE Energy Conversion Congress and Exposition (ECCE 2019), Baltimore, MD, USA, 29 

September–3 October 2019; pp. 6555–6561. doi:10.1109/ECCE.2019.8912915. 



Metals 2020, 10, 618 13 of 14 

 

3. Poskovic, E.; Ferraris, L.; Franchini, F.; Cavagnino, A.; Actis Grande, M. SMC materials in electrical machine 

prototypes. In Proceedings of the 2019 IEEE International Electric Machines & Drives Conference (IEMDC), 

San Diego, CA, USA, 12–15 May 2019; pp. 2042–2047. doi:10.1109/IEMDC.2019.8785066. 

4. Ajanovic, A.; Haas, R. Economic and Environmental Prospects for Battery Electric- and Fuel Cell Vehicles: 

A Review. Fuel Cells 2019, 19, 515–529. doi:10.1002/fuce.201800171. 

5. Apelian, D. Looking beyond the last 50 years: The future of materials science and engineering. J. Miner. 

Met. Mater. Soc. 2007, 59, 65–73. doi:10.1007/s11837-007-0024-5. 

6. Tanwir, A.; Ansari, A. Review on Aluminium and Its Alloys for automotive applications. J. Adv. Technol. 

2017, 5, 278–294. 

7. Peter, I.; Fracchia, E.; Canale, I.; Maiorano, R. Incremental sheet forming for prototyping automotive 

modules. Procedia Manuf. 2019, 32, 50–58. doi:10.1016/j.promfg.2019.02.182. 

8. Pacana, A.; Czerwinska, K.; Bednarova, L. Discrepancies analysis of casts of diesel engine piston. Metal 

2018, 57, 324–326. 

9. Javidani, M.; Larouche, D. Application of cast Al–Si alloys in internal combustion engine components. Int. 

Mater. Rev. 2014, 59, 132–158. doi:10.1179/1743280413Y.0000000027. 

10. Fracchia, E.; Gobber, F.; Rosso, M. About weldability and welding of Al alloys: Case study and problem 

solving. J. Achiev. Mater. Manuf. Eng. 2017, 2, 67–74. doi:10.5604/01.3001.0010.8036. 

11. Fracchia, E.; Lombardo, S.; Rosso, M. Case Study of a Functionally Graded Aluminum Part. Appl. Sci. 2018, 

8, 1113. doi:10.3390/app8071113. 

12. Fracchia, E.; Gobber, F.S.; Rosso, M.; Actis Grande, M.; Bidulská, J.; Bidulský, R. Junction characterization 

in a functionally graded aluminum part. Materials 2019, 12, 3475. doi:10.3390/ma12213475. 

13. Rosso, M.; Lombardo, S.; Gobber, F. Sequential Gravity Casting in Functionally Graded Aluminum Alloys 

Development. Miner. Met. Mater. Soc. 2017. doi:10.1007/978-3-319-51541-0_106. 

14. Lombardo, S.; Peter, I.; Rosso, M. Gravity Casting of Variable Composition Al Alloys : Innovation And 

New Potentialities. Mater. Today Proc. 2017, 10, 271–276. doi:10.1016/j.matpr.2018.10.406. 

15. Fracchia, E.; Gobber, F.S.; Lombardo, S.; Rosso, M. Colata per gravità di un FGM in lega di alluminio: 

Ottimizzazione del trattamento termico e proprietà finali. La Metallurgia Italiana 2019, 4, 5–12. 

16. Samuel, A.M.; Doty, H.W.; Valtierra, S.; Samuel, F.H. Effect of grain refining and Sr-modification 

interactions on the impact toughness of Al-Si-Mg cast alloys. Mater. Des. 2014, 56, 264–273. 

doi:10.1016/j.matdes.2013.10.029. 

17. Firouzdor, V.; Rajabi, M.; Nejati, E.; Khomamizadeh, F. Effect of microstructural constituents on the thermal 

fatigue life of A319 aluminum alloy. Mater. Sci. Eng. A 2007, 454, 528–535. doi:10.1016/j.msea.2007.01.018. 

18. Samuel, A.M.; Mohamed, S.S.; Doty, H.W.; Valtierra, S.; Samuel, F.H. Some aspects of grain refining of Al-

Si cast alloys. Int. J. Cast Met. Res. 2018, 32, 1–14. doi:10.1080/13640461.2018.1498623. 

19. Jasim, T.A. Review on the Mechanisms of Modification Al-Si alloys. J. Univ. Babylon Eng. Sci. 2019, 27, 338–

343. doi:10.29196/jubes.v27i1.2169. 

20. Mrówka-Nowotnik, G. Intermetallic Phases Examination in Cast AlSi5Cu1Mg and AlCu4Ni2Mg2 

Aluminium Alloys in As-Cast and T6 Condition. In Recent Trends in Processing and Degradation of Aluminium 

Alloys; IntechOpen: Rijeka, Croatia, 2011. 

21. Brůna, M.; Bolibruchová, D.; Kantorík, R. Filtration of aluminum alloys and its influence on mechanical 

properties and shape of eutectical silicium. Arch. Foundry Eng. 2008, 8, 13–16. 

22. Limmaneevichitr, C.; Eidhed, W. Fading mechanism of grain refinement of aluminum–silicon alloy with 

Al–Ti–B grain refiners. Mater. Sci. Eng. A. 2003, 349, 197–206. doi:10.1016/S0921-5093(02)00751-7. 

23. Lombardo, S.; Fracchia, E.; Gobber, F.; Rosso, M. Gestione delle conchiglie nella colata in gravità e possibili 

vie per migliorarne prestazioni e durata. La Metallurgia Italiana 2019, 6, 6. 

24. Fracchia, E.; Gobber, F.; Lombardo, S.; Rosso, M. Paint characterization to improve the mould durability in 

the aluminum gravity casting. In Proceedings of the Aluminum Two Thousand, Trevisio, Italy, 9–13 April 

2019. 

25. Gobber, F.S.; Pisa, A.G.; Ugues, D.; Rosso, M. Design of a Test Rig for the Characterization of Thermal 

Fatigue and Soldering Resistance of the Surfaces of Tool Steels for High‐Pressure Die‐Casting Dies. Steel 

Res. Int. 2019, 91. doi:10.1002/srin.201900480. 

26. Gobber, F.; Pisa, A.; Ugues, D.; Lombardo, S.; Fracchia, E.; Rosso, M. Study of the Effect of Surface—

Roughness of Dies and Tooling for HPDC on Soldering. Light Met. 2018, 977–981. doi:10.1007/978-3-319-

72284-9_127. 



Metals 2020, 10, 618 14 of 14 

 

27. Yu, B.B.; Yan, H.; Zhu, J.B.; Liu, J.L.; Li, H.G.; Nie, Q. Effects of La on Microstructure and Corrosion 

Behavior of AlSi5Cu1Mg Alloy. Acta Metall. Sin. 2019, 32, 443–451. doi:10.1007/s40195-018-0782-9. 

28. Zhu, J.; Luo, Z.; Wu, S.; Yan, H. The effect of Sr on the microstructure and wear properties of AlSi5Cu1Mg 

alloy, Adv. Mech. Eng. 2018, 10, 1–10. doi:10.1177/1687814018819536. 

29. Berlanga, C.; Bakedano, A.; Perez de Ciriza, A.; Rivero, P.J.; Mendez, S.; Rodriguez, R.; Niklas, A. 

Evaluation of the corrosion resistance of a new AlSi10MnMg(Fe) secondary alloy. Mater. Today Proc. 2019, 

10, 312–318. doi:10.1016/j.matpr.2018.10.411. 

30. Puerta-Morales, F.J.; Gomez, J.S.; Fernandez-Vidal, S.R. Study of the influence of helical milling parameters 

on the quality of holes in the UNS R56400 alloy. Appl. Sci. 2020, 10, 845. doi:10.3390/app10030845. 

31. Grosselle, F.; Timelli, G.; Bonollo, F. Doe applied to microstructural and mechanical properties of Al–Si–

Cu–Mg casting alloys for automotive applications. Mater. Sci. Eng. A 2010, 527, 3536–3545. 

doi:10.1016/j.msea.2010.02.029. 

32. Espinoza-Cuadra, J.; Gallegos-Acevedo, P.; Mancha-Molinar, H.; Picado, A. Effect of Sr and solidification 

conditions on characteristics of intermetallic in Al-Si 319 industrial alloys. Mater. Des. 2010, 31, 343–356. 

doi:10.1016/j.matdes.2009.06.017. 

33. Shabestari, S.G.; Shahri, F. Influence of modification, solidification conditions and heat treatment on the 

microstructure and mechanical properties of A356 aluminum alloy. J. Mater. Sci. 2004, 39, 2023–2032. 

doi:10.1023/B:JMSC.0000017764.20609.0d. 

 

©  2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


