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Abstract. Protein functioning is usually associated to conformational changes. In the last 

decades, several researchers have made use of elastic network models to investigate such shape 

changes, showing that these depend on the protein intrinsic flexibility. Moreover, it has been 

indicated that low-frequency modes, arising from the application of modal analysis, are strictly 

related to the conformational transition. Several efforts have also been made in order to 

generate feasible pathways as well as to investigate the active forces applied at specific 

locations driving the conformational change. The problem has usually been addressed by 

means of linear theories, under the assumption of small displacements. In this contribution, we 

question whether such assumption is reliable from a mechanical viewpoint. In particular, we 

investigate the influence of geometric nonlinearities, by applying both linear and (geometric) 

nonlinear analysis to the protein elastic network model and comparing the outcomes in terms 

of force profiles. Eventually, from the results regarding the conformational change of HIV-1 

protease subunit, we show that the displacements should not be considered small a priori.
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1 INTRODUCTION 

Protein activity has fascinated researchers for decades since many fundamental biological 

processes rely on it, e.g. oxygen transportation along the body due to hemoglobin performance, 

nutrients carriage inside the cell via molecular motors, ion exchange between the inside and the 

outside of the cell due to the activity of transmembrane proteins such as Na+/K+-ATPase and 

Ca2+-ATPase, etc. Protein functioning is known to be related to the three-dimensional structure, 

which in turns depends on the specific amino acid sequence and environmental conditions (pH, 

temperature, applied forces, etc.) [1]. Moreover, protein activity is usually associated to 

conformational changes, which imply a modification of the three-dimensional shape, e.g. 

hemoglobin exhibits a structural rearrangement when switching from the deoxy- to the oxy-

state, a large conformational transition (triggered by ATP-binding) occurs in kinesin heads 

when it walks along microtubules, etc. 

Although proteins are complex systems interacting among each other and with the external 

environment, simple elastic network models based on a purely mechanical description of the 

structure (point masses connected by linear springs) have proven their efficacy in describing 

protein dynamics and flexibility [2]. It has also been shown that even coarse-grained 

representations, based only on Cα atoms, are able to capture the essential characteristics of 

protein activity [3-5]. 

Elastic network models were also useful for investigating protein behavior under several 

perspectives. Tama and Sanejouand [6] investigated the contribution of the eigenmodes arising 

from normal mode analysis to the conformational change of several proteins, and observed that 

the low-frequency modes, generally implying large collective motions, are strictly related to 

the conformational transition. Moon et al. [7,8] made use of elastic network models in order to 

generate realistic pathways for protein conformational changes. Eyal and Bahar [9] investigated 

the mechanical behavior of proteins subject to forces applied at different locations and provided 

numerical insights on the experimental measurements performed with single-molecule 

manipulation techniques, like atomic force microscopy (AFM) and optical tweezers (OT). C. 

Atilgan and A. R. Atilgan [10] proposed the perturbation-response scanning (PRS) method to 

investigate the conformational change of ferric binding protein, by applying directional forces 

at single residues. The PRS was also subsequently applied by Atilgan et al. [11] to a set of 25 

proteins in order to evaluate the residues which had to be perturbed to generate an accurate 

description of the observed conformational change. More recently, Liu et al. [12] made use of 

an elastic network model in order to evaluate the active forces, originating from ATP 

hydrolysis, which drive the GroEL conformational change. 

The calculations performed by the abovementioned authors were based on the linear 

response theory, which implies considering small displacements from a Structural Mechanics 

viewpoint. However, dealing with elastic networks (which can be considered as space truss 

structures made up of bars connected together with spherical hinges), it is likely that geometric 

nonlinearities can affect the structural response if the displacements are not so small. As a 

matter of fact, the presence of nonlinear effects in relaxation dynamics of motor proteins has 

been suggested in [13,14]. Therefore, in this contribution, we investigate the influence of 

geometric nonlinearities on protein conformational transitions, questioning whether the 

assumption of small displacements is reliable. HIV-1 protease is selected as a case study and a 

coarse-grained elastic network model is considered to analyze the open-to-closed transition. 

In particular, starting from the displacement field of the observed conformational change, 

we evaluate the forces on the residues required to fulfill the equilibrium conditions, both 

referring to the undeformed (linear analysis) and deformed configuration (geometric nonlinear 

analysis). The calculations are performed also by changing some fundamental model 
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parameters, such as the cutoff value and the stiffness variation law of the connections. Finally, 

by comparing the results in terms of force values and orientations, we conclude that the 

displacements involved within the conformational change should not be considered small a 

priori from a mechanical viewpoint. 

2 METHODOLOGY 

As mentioned in the Introduction, the open-to-closed conformational transition of HIV-1 

protease subunit was analyzed here by means of a coarse-grained elastic network model.  

2.1 Protein elastic network model 

The elastic network was built considering only the coordinates of Cα atoms. These were 

taken from the Protein Data Bank [15] for the “open” (pdb code: 1hhp) and “closed” (1ajx) 

configuration. Three different cutoff values rc (8, 10 and 12 Å) were considered to create the 

connections among the nodes (Fig. 1). 

 

Figure 1: HIV-1 protease subunit open configuration (1hhp): (a) rc = 8 Å; (b) rc = 10 Å; (c) rc = 12 Å. 

Moreover, three different stiffness variation laws were considered for the connections, which 

are usually employed within elastic network models, i.e. constant (Eq. 1a), exponential decay 

(Eq. 1b) and inverse decay (Eq. 1c), as follows: 

 𝑘𝑚 = 𝑘0, (1a) 

 𝑘𝑚 = 𝑘0 exp (−
𝐿𝑚

2

𝐿0
2 ), (1b) 

 𝑘𝑚 =
𝑘0

∗

𝐿𝑚
, (1c) 

where 𝑘𝑚 is the stiffness of the mth connection, 𝐿𝑚 its length, and 𝑘0, 𝑘0
∗
 and 𝐿0 represent the 

parameters of the stiffness laws. In the present analysis, 𝑘0 and 𝑘0
∗
 were set equal to 1, since 

their values do not affect the distribution of the forces among the protein chain, but cause only 

a uniform scaling of such distribution. For this reason, the forces arising from the analyses will 

be expressed in “arbitrary units” (Section 3). The parameter 𝐿0 was set equal to 7 Å in 

agreement with Hinsen’s work [4]. Summarizing, the nine models reported in Tab. 1 were 

considered by varying the cutoff value and the stiffness variation law. 
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Model Cutoff [Å] Stiffness variation law 

M8C 8 Constant 

M8E 8 Exponential decay 

M8I 8 Inverse decay 

M10C 10 Constant 

M10E 10 Exponential decay 

M10I 10 Inverse decay 

M12C 12 Constant 

M12E 12 Exponential decay 

M12I 12 Inverse decay 

Table 1: Nine considered models for the protein elastic network. 

2.2 Evaluation of the open-to-closed conformational change 

As for the displacement field of the conformational change, this was computed by vector 

difference between the two end configurations, after they have been superimposed. Note that if 

the number of residues is N, the size of the conformational change vector 𝜹 is 3N × 1 (N = 99 

for HIV-1 protease subunit). The obtained absolute displacements are shown in Fig. 2. As can 

be seen, the conformational change is very localized in the central portion of the protein chain 

(the “flap” region). The maximum displacement is ~ 4 Å. 

 

Figure 2: Absolute displacements in the open-to-close transition of HIV-1 protease subunit. 

2.3 Equilibrium equations in the undeformed structure (linear analysis) 

Under the assumption of small displacements and linear elasticity, i.e. considering the 

equilibrium conditions in the  initial (undeformed) configuration, the structural problem could 

be formulated as a linear relationship as follows: 

 𝑭𝑳 = 𝑲𝜹, (2) 

where 𝑭𝑳 represents the 3N × 1 vector containing the forces applied to the residues (obtained 

via linear analysis), 𝜹 is the 3N × 1 conformational change vector (Section 2.2) and 𝑲 is the 3N 

× 3N stiffness matrix calculated in the open configuration. 

The stiffness matrix was computed by means of the displacements’ method, i.e. each 

stiffness coefficient 𝐾𝑖𝑗
𝛼𝛽

 (which refers to the nodes i and j, and to the directions α and β) could 

be calculated by imposing a unitary displacement on node j along the direction β and evaluating 

the reaction force along the direction α on node i. This procedure was automatized into MatLab 

environment so that, given the information on the structure (coordinates of the points and 

stiffness values of the connections), the global stiffness matrix could be automatically 
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computed. Obtained the stiffness matrix 𝑲 and known the vector of the observed 

conformational change 𝜹 (Section 2.2), the force vector 𝑭𝑳 could be obtained via Eq. 2. 

2.4 Equilibrium equations in the deformed structure (geometric nonlinear analysis) 

Removing the hypothesis of small displacements, in order to take into account geometric 

nonlinearities, the equilibrium equations were written in the deformed (final) configuration. 

The relationship between the force and displacement vector took now the following general 

form: 

 𝑭𝑵𝑳 = 𝒇(𝜹), (3) 

where 𝑭𝑵𝑳 represents the 3N × 1 vector containing the forces applied to the residues (obtained 

via geometric nonlinear analysis) and 𝒇 represents the system of nonlinear equations linking 

the force and displacement vectors. 

The nonlinear system reported in Eq. 3 could be written analytically by considering the 

equilibrium conditions in the final (deformed) configuration, through the following steps: (1) 

the elongation of the mth connection was computed based on the effective positions of the nodes 

in the initial and final configuration; (2) the internal force within the mth connection was 

computed based on the stiffness value of the connection (Eq. 1) and calculated elongation; (3) 

the total force on the ith node was finally computed by equilibrating all the internal forces acting 

on the ith node, referring to the final (deformed) configuration. 

2.5 Comparison between linear and nonlinear analysis 

It is clear that, if the hypothesis of displacements were valid, linear and nonlinear analysis 

should provide the same results, i.e. the force vectors evaluated via Eqs. 2 and 3 should be 

identical (𝑭𝑳,𝒊 = 𝑭𝑵𝑳,𝒊 for each residue i). Therefore, by comparing the obtained vectors 𝑭𝑳,𝒊 

and 𝑭𝑵𝑳,𝒊, the influence of geometric nonlinearities could be properly investigated. 

In particular, the modules of the force vectors 𝑭𝑳,𝒊 and 𝑭𝑵𝑳,𝒊 at the ith residue were compared, 

as well as the difference in their orientation. The latter was analyzed by means of the following 

cosine operator: 

 
cos 𝜃𝑖 =

𝑭𝑳,𝒊
𝑻𝑭𝑵𝑳,𝒊

√(𝑭𝑳,𝒊
𝑻𝑭𝑳,𝒊)√(𝑭𝑵𝑳,𝒊

𝑻𝑭𝑵𝑳,𝒊) 

, 
(4) 

which provides a numerical estimate of the different orientation between the vectors 𝑭𝑳,𝒊 and 

𝑭𝑵𝑳,𝒊. If linear and nonlinear analysis provided the same results, i.e. the influence of geometric 

nonlinearities were negligible, we should obtain for each residue |𝑭𝑳,𝒊| = |𝑭𝑵𝑳,𝒊| and cos 𝜃𝑖 =
1. Therefore, the larger the deviation from these conditions, the greater the influence of 

geometric nonlinearities. 

3 RESULTS AND DISCUSSION 

In Figs. 3-8 the results arising from the calculations described in Section 2 are reported. In 

particular, Figs. 3, 5 and 7 show the comparison of the force modules’ distributions (in a.u.), 

whereas the orientation difference between the force vectors is shown in Figs. 4, 6 and 8. 

As can be observed from the force comparisons, the profiles of the vector force modules 

|𝑭𝑳,𝒊| and |𝑭𝑵𝑳,𝒊| show several common features for large portions of the protein chain; 

however, significant differences are evident in the central region, specifically between residues 

45 and 55 (flap region), which in turn is the portion which exhibits the largest displacements 

(Fig. 2). For this reason, we can conclude that the displacements involved within the open-to-
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closed transition of HIV-1 protease subunit cannot be considered small from a mechanical point 

of view, and that the influence of geometric nonlinearities is not negligible. Note that this 

conclusion can be drawn from all the investigated models (Figs. 3, 5 and 7), making the model 

parameters not so critical for drawing such conclusion. 

The difference between the force vectors 𝑭𝑳,𝒊 and 𝑭𝑵𝑳,𝒊 in the central region of the protein 

chain is not only observable in terms of modules, but also in terms of spatial orientations. In 

fact, in this region the cosine operator (Eq. 4) exhibits values less than 1 (Figs. 4, 6 and 8). This 

indicates that the forces applied to the nodes of the flap region show different orientations, if 

they are computed via linear or nonlinear analysis. It is worth noting that also other protein 

portions are characterized by cosine values other than unity.   

 

Figure 3: |𝑭𝑳,𝒊| vs |𝑭𝑵𝑳,𝒊|: (a) M8C; (b) M8E; (c) M8I. 

 

Figure 4: Cos 𝜃𝑖: (a) M8C; (b) M8E; (c) M8I. 

 

Figure 5: |𝑭𝑳,𝒊| vs |𝑭𝑵𝑳,𝒊|: (a) M10C; (b) M10E; (c) M10I. 
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Figure 6: Cos 𝜃𝑖: (a) M10C; (b) M10E; (c) M10I. 

 

Figure 7: |𝑭𝑳,𝒊| vs |𝑭𝑵𝑳,𝒊|: (a) M12C; (b) M12E; (c) M12I. 

 

Figure 8: Cos 𝜃𝑖: (a) M12C; (b) M12E; (c) M12I. 

Since geometric nonlinearities have been shown to have a not negligible influence when 

investigating conformational changes through elastic network models, it is believed that some 

(snap-through-like) mechanical instability may also occur along the transition. This will be 

investigated in future research efforts by adopting a step-by-step approach, i.e. by writing the 

equilibrium equations for each of the intermediate configurations of a given (feasible) pathway. 

4 CONCLUSIONS  

In this contribution, we performed linear and geometric nonlinear analysis in order to 

investigate the influence of geometric nonlinearities on protein conformational transitions. In 

particular, a coarse-grained elastic network model was used for the analysis of HIV-1 protease 

subunit conformational change. Equilibrium equations were written both referring to the 

undeformed and deformed configuration, i.e. by neglecting or taking into account geometric 

nonlinearities, respectively. Different model parameters, such as cutoff values and stiffness 

variation laws, were also considered. From the comparison of the outcomes in terms of force 

values and orientation, we concluded that the displacements involved within the conformational 
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change should not be considered small from a mechanical perspective, and that the influence 

of geometric nonlinearities is not negligible. Moreover, it is also possible that some mechanical 

instabilities may subtend the conformational transition. 
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