
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

FlexGripPlus: An improved GPGPU model to support reliability analysis / Rodriguez Condia, Josie E.; Du, Boyang;
Sonza Reorda, Matteo; Sterpone, Luca. - In: MICROELECTRONICS RELIABILITY. - ISSN 0026-2714. - 109:(2020), pp.
1-14. [10.1016/j.microrel.2020.113660]

Original

FlexGripPlus: An improved GPGPU model to support reliability analysis

Publisher:

Published
DOI:10.1016/j.microrel.2020.113660

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2820716 since: 2020-07-06T18:36:30Z

Elsevier

Contents lists available at ScienceDirect

Microelectronics Reliability

journal homepage: www.elsevier.com/locate/microrel

FlexGripPlus: An improved GPGPU model to support reliability analysis☆

Josie E. Rodriguez Condia⁎∗, Boyang Du, Matteo Sonza Reorda, Luca Sterpone
Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy

A B S T R A C T

General Purpose Graphics Processing Units (GPGPUs) have been extensively used in the last decade as accelerators in high demanding applications, such as mul-
timedia processing and high-performance computing. Nowadays, these devices are becoming popular even in safety-critical applications, such as in autonomous and
semi-autonomous vehicles. However, these devices can suffer from the effects of transient faults, such as those produced by radiation effects. Among those effects,
Single Event Upsets (SEUs), which are the focus of this paper, can cause application misbehaviors, which may lead to catastrophic consequences. In this work, we first
describe how we extended the capabilities of an open-source VHDL GPGPU model (FlexGrip) and developed a new version named FlexGripPlus to study and analyze
the effects of SEUs in a GPGPU in a much more detailed manner. We also performed extensive fault injection campaigns using FlexGripPlus, which allowed
identifying the most critical effects within the GPGPU architecture. We finally focused on the scheduler controller since it represents a module that is specific to the
GPGPU architecture and showed that it has different levels of SEU sensibility depending on the affected location. Moreover, the results of additional analyses varying
the number of parallel execution units in the system are presented, demonstrating the correlation between the number of execution units in a GPGPU and the system
reliability.

1. Introduction

In recent years, GPGPU devices have become popular solutions in
high-demanding data processing applications, including multimedia
processing and high-performance computing (HPC). More and more,
these devices are also adopted in several data-intensive safety-critical
(i.e., autonomous vehicles [1–3]) and mission-critical (i.e., autonomous
systems [4]) applications. Moreover, GPGPUs are designed and manu-
factured using the latest technology process to satisfy energy con-
sumption and performance requirements. However, some studies have
shown that these advanced semiconductor technologies are prone to
suffer from internal effects impacting their reliability, such as aging and
wear-out, and from external ones (i.e., Electromagnetic Interference
EMI or radiation effects) [5–8]. Thus, reliability analyses can help to
solve or mitigate these effects during the operational phase of such
devices.

The nature of a fault affecting a device can be related to the in-
tegration scale, the production process variation, and the operating
conditions. Currently, new high-performance devices could be affected
by aging and wear-out effects originated by the increased sensibility
presented as a combination of the previous factors. The complexity of
new designs in conjunction with lower voltage, timing, and noise
margins reduces the probability of identifying wear-out-free devices
correctly. Moreover, some manufacturing processes increase the sus-
ceptibility to radiation effects, so transient or intermittent fault effects

could be present as fugacious faults [9] and corrupt the operation of the
device. Similarly, delays caused by aging mechanisms (i.e., Negative
bias temperature instability (NBTI) [10]) could affect critical paths in
some modules of a device and, in the long term, behave as transient
faults.

Some types of external effects can be modeled as Single Event
Upsets (SEUs) and may cause misbehaviors in a safety-critical context
leading to catastrophic consequences. In real GPGPU devices, the im-
pact of SEU effects can be analyzed through radiation experiments in a
few specialized facilities using expensive and complex equipment.
Other methods include software-based fault injection tools in-
strumenting the compiler, and modifying the application code [11] or
using profiling tools to validate the proposed mechanisms [12]. How-
ever, in both cases, the analysis of reliability is complex to perform or
limited, considering that detailed information about the structure of the
device and its implementation are commonly unknown.

An alternative solution is based on model simulation or emulation.
In this approach, a model is available and can be instrumented to inject
faults in the target module. Then, thanks to the model, we can compute
the effect of a fault during the execution of a given application. The
outputs can be observed and used to perform a reliability assessment or
to identify structural or application weaknesses in a GPGPU. Moreover,
these analyses are employed to choose the most suitable mitigation
strategy in an application at different levels (e.g., hardware, software,
or system) [13].

https://doi.org/10.1016/j.microrel.2020.113660
Received 30 July 2019; Received in revised form 28 February 2020; Accepted 7 April 2020

☆ The European Commission has partially supported this work through the Horizon 2020 RESCUE-ETN project under grant 722325.
⁎ Corresponding author.
E-mail address: Josie.rodriguez@polito.it (J.E.R. Condia).

Microelectronics Reliability 109 (2020) 113660

Available online 06 May 2020
0026-2714/ © 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/00262714
https://www.elsevier.com/locate/microrel
https://doi.org/10.1016/j.microrel.2020.113660
https://doi.org/10.1016/j.microrel.2020.113660
mailto:Josie.rodriguez@polito.it
https://doi.org/10.1016/j.microrel.2020.113660
http://crossmark.crossref.org/dialog/?doi=10.1016/j.microrel.2020.113660&domain=pdf

The level of abstraction in a model is a crucial parameter that affects
the expected conclusions and is related to the characteristics and the
degree of similarity with the behavior of a real device. Hence, for the
purpose of the reliability analysis against SEUs, models with low-level
descriptions, e.g., implementations using some Hardware Description
Language (HDL) at Register Transfer Level (RTL) or gate level, are
preferable since they provide a detailed representation of the internal
structures. However, such models require higher computational effort
for simulation or emulation than the high-level ones.

Regarding GPGPU devices, the number of available models to sup-
port reliability analysis is limited. Moreover, most models are described
at high-level [14–20] or as a combination of multiple levels of ab-
straction [21], which renders reliability analysis against SEUs on cri-
tical units, such as controllers or arbiters unfeasible. On the other hand,
there is a set of low-level GPGPU models available: IPPro [22], FGPU
[23], Simty [24], Nyami [25] and FlexGrip [26]. The first four models
were designed targeting FPGA platforms using custom architectures.
Thus, their custom architectures and implementation target technolo-
gies would limit the capability for reliability analysis, especially when
commercially available GPGPU devices are concerned. On the other
side, the architecture implemented in the FlexGrip model is closer to
commercial devices by NVIDIA. FlexGrip also supports partial binary
compatibility with the NVIDIA G80 instruction set. Unfortunately, the
original version of the FlexGrip model has some restrictions related to
technology dependency, instructions format support, and compiler
compatibility, limiting the development and study of new applications
to support reliability analysis.

In this paper, FlexGripPlus1 is introduced as a new version of the
FlexGrip model with improvements, including a set of architectural and
functional changes in the model to increase flexibility while main-
taining the architecture of the original design. The FlexGripPlus re-
placed Xilinx FPGA library dependencies in the original version and
now has support for a reviewed and extended set of instructions com-
patible with the NVIDIA programming environment.

Some representative applications have also been developed for
FlexGripPlus besides the five applications from the original version as
benchmarks to evaluate the effect of SEUs in data-path and control-path
modules. It is worth noting that in previous works [27,28], some initial
improvements have already been briefly described. Similarly, pre-
liminary results have been presented in [29,30], characterizing the fault
effects on some modules of the GPGPU model.

The main contributions of this work are:

− The detailed description of the approach we used to verify, correct
and extend the functionality of the original GPGPU model at the
microarchitecture level to develop the FlexGripPlus model;

− The method used for performing the fault simulation campaigns on
FlexGripPlus targeting SEUs;

− The description of the new benchmark applications, as well as the
required software environment to support further application de-
velopment;

− The analysis of the results coming from the fault simulation cam-
paigns targeting both the data-path and the control-path of
FlexGripPlus. To the best of our knowledge, this is the first work
reporting a detailed analysis of the sensitivity of different modules
of a GPGPU to SEUs under different encoding styles.

The rest of the paper is organized as follows. Section II briefly de-
scribes the general organization of a GPGPU and the FlexGrip model.
Then, section III introduces the proposed improvements introduced into
FlexGripPlus and the adopted methodology. Section IV presents the
fault injection setup, the targeted modules, and the selected bench-
marks for the fault injection campaigns. Section V reports the

experimental results and the reliability analysis regarding SEUs.
Finally, Section VI draws some conclusions and outlines future works.

2. Background

This section introduces the fundamentals of the microarchitecture of
a GPGPU device and describes the relationship between the FlexGrip
model and the related commercial devices.

2.1. General GPGPU micro-architecture

The GPGPU devices initially targeted for Graphics Processing
(hence, the GPU in the name), are commonly based on the Single-
Instruction Multiple-Data (SIMD) taxonomy [31] and its variations,
such as the Single-Instruction Multiple-Thread (SIMT) concept by
NVIDIA [32]. Thanks to their high parallelism, these devices are more
and more adopted in fields other than Graphic Processing, such as
scientific computation, where data-intensive workloads can be pro-
cessed in parallel. A GPGPU device based on SIMT, such as the ones
from NVIDIA, is mainly composed of a set of highly parallel execution
cores, also known as Streaming Multiprocessors (SMs) or Computing
Units (CUs), each of which can execute multiple threads simultaneously
utilizing its own registers, caches, local memories, control units, and
execution units. The computational capability of a GPGPU device is
proportional to the number of available SMs2 and the local resources
available in each SM.

Fig. 1 shows a general scheme of the architecture of a GPGPU device
with four SMs. It includes a Block Scheduler to distribute the tasks
among the SMs. Each SM block is mainly composed of multiple parallel
execution cores (CUDA cores, Execution Units (EUs), or Scalar Pro-
cessors (SPs)) and other modules, including instruction and data caches,
a scheduler controller (or Warp Scheduler Controller (SC)), one or more
warp dispatchers, a register file (RF), and some local memories. Modern
GPGPU architectures may also include accelerators implementing
complex operations, such as the cross product of matrices (Tensor-
cores), floating-point operations (FP32/FP64), and transcendental
functions (SFU). The scheduler controller and warp dispatchers are
crucial modules in the SM to manage the executions of threads (parti-
cularly when local resources do not allow all threads, organized into
warps, to be executed simultaneously) and to manage the occurrences of
the intra-warp divergences due to thread-dependent branches [32–35].

2.2. FlexGrip model

The FlexGrip is an open-source soft-GPGPU model based on the
NVIDIA G80 microarchitecture and implemented in VHDL. This GPGPU
model was developed by the University of Massachusetts [26] and was
designed to be fully compatible with the CUDA programming en-
vironment using the SM 1.0 compatibility. The FlexGrip model is based
on the description of a Streaming Multiprocessor (SM) module and
supports 27 assembly (SASS) instructions. Originally it was designed
targeting a Xilinx SRAM-based FPGA.

The internal description of SM in FlexGrip is mainly composed of a
five-stages pipeline (Fetch, Decode, Read, Execution, and Write-Back)
following the G80 microarchitecture [32], as shown in Fig. 2. The total
number of SPs in the Execution stage is configurable during the synth-
esis to 8, 16, or 32 parallel cores.

The FlexGrip model includes a basic memory hierarchy composed of
system memory, a global or main memory, a shared memory, and
constant memory. It is worth noting that cache memories are not in-
cluded in the model. FlexGrip also includes two task schedulers (Block

1 Available at: https://github.com/Jerc007/Open-GPGPU-FlexGrip-.

2 Through the paper, we use SM and CU indifferently as they are at the same
level of parallelism. The same applies to CUDA core, Execution Units (EUs) and
Scalar Processors (SPs) etc.

J.E.R. Condia, et al. Microelectronics Reliability 109 (2020) 113660

2

https://github.com/Jerc007/Open-GPGPU-FlexGrip-

Scheduler and Warp Scheduler), both adopting a round-robin algorithm
as a distribution policy to manage intra-warp divergences caused by a
branch instruction. A custom branch module is implemented with a
stack memory (denoted as “Divergence Stack” in Fig. 2) to handle up to
32 levels of divergence. Please note that there are registers between
different stages of the pipeline (black boxes named “PRx” in Fig. 2),
which may also be subject to SEUs. The Structural comparison between
the schemes of the FlexGrip model and the commercial GPGPUs (from
NVIDIA) shows that both share the same basic functional blocks, in-
cluding the block and warp scheduler controllers, a register file, the
parallel execution units, and the pipeline stages.

Nevertheless, the memory hierarchy in FlexGrip differs from the one
in the commercial devices by the missing cache memories. Moreover,
FlexGrip has no floating-point modules or special purpose accelerators.
These structural limitations in FlexGrip can affect the adoption of the
most recent applications. However, we argue that the analysis of re-
liability and fault effects on data-path and control-path modules

performed in FlexGrip can still be meaningful with respect to the
commercial devices considering the architectural similarities between
them.

3. FLEXGRIPPLUS

The development of more complex and detailed analysis and cor-
relate results with real devices required the correction of some limita-
tions present in the original FlexGrip version. So, FlexGripPlus has been
implemented with some modifications and improvements based on the
original version of FlexGrip.

The major limitations of the original FlexGrip include the de-
pendency on the Xilinx FPGA library, the limited number of supported
instructions, and the incomplete compliance with the NVIDIA applica-
tion development environment. During the FlexGripPlus development,
the microarchitecture of the original model has been kept untouched
while each initially supported instruction and the newly added

Fig. 1. A general scheme of the GPGPU micro-architecture. Adapted from [33,34].

Fig. 2. The general scheme of the SM in the FlexGrip model [26].

J.E.R. Condia, et al. Microelectronics Reliability 109 (2020) 113660

3

instructions have been carefully verified for correctness. To achieve
this, a methodology to improve the FlexGrip model has been used based
on the following steps:

1. Rigorous structural analysis of the FlexGrip model
2. Development of basic test programs to verify each instruction sup-

ported by the design
3. Simulation and interpretation of results
4. Definition of potential corrections
5. Application of the revisions and verification with previous programs
6. Development of new applications based on typical applications and

workloads for validation purposes.

In the beginning, the analysis of the internal structures in FlexGrip
revealed that some modules, including the distribution controller of RF,
the Decode stage, and the Execution stage, are incomplete. These in-
complete modules can lead to incorrect results under certain circum-
stances and had to be fixed. Then (in step 2), a large number of specific
applications were developed to generate all the potential format of the
supported instructions and verify the correct execution of each in-
struction. Each program was developed using the CUDA environment
when possible, or directly at the assembly level. During this step, in-
compatibility issues between the instruction decoding implemented in
FlexGrip and the binary code generated by the CUDA environment have
been identified and fixed. Furthermore, for each modification, steps 3 to
5 have been repeated to verify the correctness of the new im-
plementation. This methodology should serve as a guideline if the
model has to be further improved and new modules have to be added.

Through the process of implementing FlexGripPlus from the original
FlexGrip, the introduced changes can be divided into three groups.

3.1. Technology dependency

The FlexGrip model was initially designed as soft-core targeting a
Xilinx FPGA, and some internal modules, such as the memories, were
automatically generated as IP cores using the Xilinx System Generator
tool. The descriptions of these IP cores are not human-friendly to read
or analyze and significantly limit the possibility to perform the required
gate-level analysis when SEUs are concerned.

In FlexGripPlus, we carefully modified each module by removing
any reference or dependency on specific technology libraries, replacing
them with equivalent generic descriptions. Through this process, the
names of signals, interconnections, and modules were clarified to sim-
plify the analysis on each signal after a fault simulation campaign. In
the end, about 40% of the modules were modified for this purpose. It is
worth noting that the model can now be easily imported into different
simulation environments, such as ModelSim, QuestaSim, or Xcelium
Parallel Simulator. Moreover, the removal of the technology de-
pendency from the model allows mapping the model into other plat-
forms or technologies that were not previously supported, such as
ASICs. The FlexGripPlus model can be synthesized using proprietary or

independent technology libraries, such as the ASIC 45 nm OpenCell
[36] or the 15 nm OpenCell [37] libraries.

3.2. Instruction format support

The original FlexGrip implementation was intended to be compa-
tible with the CUDA programming environment through SASS in-
structions. However, through simulation and analysis using the test
programs we developed, some internal modules in control- and data-
path units, such as decoding logic, intermediate registers, and block
interconnections, were found to be not present or only partially im-
plemented.

Hence, we started from the initially supported instructions in
FlexGrip, and each instruction was verified against the NVIDIA CUDA
programming environment. As NVIDIA has not officially released the
SASS op-codes (i.e., the instruction formats), the op-code and formats of
some instructions were decoded using the CUDA binary tools, namely
nvcc and cuobjdump, and the Decuda open-source project [38]. Ad-
ditionally, multiple benchmark applications were designed targeting
specific instructions to force the compiler to produce the target in-
struction op-code under various formats. Some issues, such as the
compiler optimizations, and the change or removal of instructions, re-
quired the explicit addition of numerous output memory locations in
the micro-kernels.

All the required changes (e.g., descriptions of missing registers,
connections, combinational logic, or the correction of incomplete
modules) were introduced in the FlexGripPlus model to fully support
the set of instructions with all the format variations, including 28 in-
structions and 74 formats. Table 1 shows the supported control-flow
instructions and their formats. Table 2 lists the supported arithmetic
and logic instructions. Finally, Table 3 shows the data-handling and
memory instructions. The parameter COMP_TYPE in Table 2 refers to
the comparison type and modifies the state of a predicate flag as the
effect of an arithmetic or logic operation. The COND parameter in
Table 1 is related to the conditional execution of an instruction, con-
sidering the state of a predicate flag. The g[] and c[0 × 1][] fields
correspond to instructions using operand sources coming from the
shared memory and the constant memory, respectively.

In the end, about 4.8% of the code in FlexGrip was modified for this
purpose. Most of those modifications were performed in the Decode and
Read stages of the pipeline in the SM.

3.3. Compiler restrictions

The primary approach to develop new applications for the FlexGrip
model was based on the CUDA programming environment. After the
instruction compatibility issues mentioned above were fixed in
FlexGripPlus, there was still a gap between all the instructions that can
be generated by the CUDA compiler and the instructions supported in
FlexGripPlus. Hence, three software tools have been developed to check
and preserve the compatibility between the CUDA programming en-
vironment and the FlexGripPlus implementation.

Firstly, an assembly language checker tool named SASS checker has
been developed to check the binary code generated by the CUDA
compiler nvcc against the instructions supported by FlexGripPlus. If any
unsupported instruction is generated by nvcc, then the second tool, an
assembly code writer tool named SASS parser, will try to convert any
unsupported instruction into one or more supported instructions with
the equivalent operation. However, in case of failure of such a con-
version attempt, the tool will report an error, and the user manually
modifies the source code to avoid the generation of unsupported in-
struction.

Thirdly, a memory configuration tool named Index corrector can
verify and correct the mismatches in the addressing indices, which are
used to address the memories during the execution of an application.
The index corrector is required considering that the locations to store the

Table 1
CONTROL-FLOW INSTRUCTIONS SUPPORTED IN FLEXGRIPPLUS.

Mnemonic Description Formats

BRA Branch BRA CX.COND Imm
BRA Imm

BAR Barrier synchronization BAR.ARV.WAIT b0, 0xFFF
RET Return from kernel RET

RET CX.COND
SSY Set synchronization point SSY Imm
CAL Call to subroutine CAL

CAL.NOINC
NOP No operation NOP

NOP.S

J.E.R. Condia, et al. Microelectronics Reliability 109 (2020) 113660

4

variables in a program are managed and decided by the compiler tool
without significant user intervention. However, in multiple applica-
tions, it was required to verify and correct the indices used to address
the memories of the system since the way FlexGripPlus manages the
global, shared, and constant memories are not exactly the same as in
NVIDIA devices.

With the three tools, the time to develop new applications as
benchmarks for reliability analysis using FlexGripPlus is greatly re-
duced. They are also used in step 6 mentioned previously to use new
applications to verify modifications done in FlexGripPlus.

In Table 4, a comparative analysis of the main features of FlexGrip
and FlexGripPlus is presented to list the effects of the introduced
modifications and the improvements mentioned above.

It is worth noting that one additional instruction (ADA) was im-
plemented, which is fully compatible with the programming environ-
ment. The ADA instruction manages the interaction among the address
register modules in the GPGPU and is commonly used to access the

shared memory.

4. FAULT INJECTION SETUP

This section introduces a custom cross-platform fault injection en-
vironment developed to evaluate the effects of SEUs in the FlexGripPlus
model. It is worth noting that technological features were not con-
sidered in the experiments to represent SEU effects. The goal of our
experiments was rather to compute the fault rate and the Architectural
Vulnerability Factor (AVF) [39] of different modules in the Flex-
GripPlus model. Sub-section A describes the fault injection environ-
ment. Sub-section B presents the target modules in FlexGripPlus to be
evaluated. Finally, sub-section C briefly describes the benchmarks se-
lected to perform the fault campaigns.

4.1. Fault injection environment

The fault injection environment was developed based on the
ModelSim simulator framework. Nevertheless, this can be easily
adapted into other simulator frameworks, such as the Xcelium Parallel
Simulator or QuestaSim. The developed environment follows the
guidelines introduced in [40] using commands provided by the simu-
lator to inject faults. Additionally, the environment can reduce the total
time of the fault simulation by taking advantage of 1) parallel cap-
abilities of the modern computers to run multiple simulations si-
multaneously and 2) a module de-rating factor (UDR) to pre-process the
fault list and reduce the number of locations to inject faults. The UDR is
computed utilizing results from a fault-free simulation. The information
is analyzed (i.e., switching activity or correlation) in the target module,
and finally, those unused locations by an application are removed
[41,42].

The fault injection environment is implemented in Python and is
composed of three main modules, as shown in Fig. 3: 1) a fault con-
troller, 2) a fault injector, and 3) a fault checker and classifier.

The fault controller manages the execution of a fault campaign, in-
cluding initialization of target design in the specific simulator, starting
and ending of a fault injection run. In the case of FlexGripPlus, the fault
controller loads the FlexGripPlus design, the parameters of the bench-
mark application (kernel), the initialization data of different memories,
including the application itself in the System Memory and the input
data in the Global Memory. In the meantime, the optimized fault list
(generated by another tool, not shown in Fig. 3) is loaded by the fault

Table 2
ARITHMETIC AND LOGIC INSTRUCTIONS IN FLEXGRIPPLUS.

Mnemonic Description Formats

I2I Integer to integer
conversion

I2I.U32.U16/S16 RZ, RX(L|H) / g
[].U16
I2I.U32.S32 RZ, |RX| / -RX
I2I.U32.U16.BEXT RZ, RX(L|H) / g
[].U8
I2I.S32.S16.BEXT RZ, RX(L|H) / g[].S8

IMUL/ Integer multiplication IMUL.U16.U16 RZ, RX(L|H) / g[].U16,
RY(L|H)
IMUL.S16.S16 RZ, RX(L|H) / g[].S16,
RY(L|H)

IMUL32/ IMUL32.U16.U16 RZ, RX(L|H)/g
[].U16, RY(L|H)

IMUL32I IMUL32I.U16.U16 RZ, RX(L|H), Imm
IMUL32I.S16.S16 RZ, RX(L|H), Imm

SHL Shift left SHL RZ, RX, RY / Imm
SHL RZ, g [], Imm
SHL.U16 RZ(L|H), RX(L|H), Imm

SHR Shift right SHR.S32 RZ, RX, RY / Imm
SHR.S32 RZ, g [], Imm
SHR.U16 / S16 RZ(L|H), RX(L|H), Imm
SHR RZ, g[], Imm
SHR RZ, RX, RY / Imm

IADD/ Integer add IADD RZ, RX / -RX, RY
IADD RZ, g[], RX / -RX
IADD RZ, RX, c[0x1][]

IADD32/ IADD32 RZ, RX, RY / -RY
IADD32 RZ, g [0x..], RX / -RX
IADD32.U16 RZ(L|H), RX(L|H), RY(L|H)
/
-RY(L|H)

IADD32I IADD32I RZ, RX / -RX, Imm
IADD32I RZ, g[], Imm

IMAD/ Integer multiply and add IMAD.U16/ S16 RZ, RX(L|H), RY(L|H),
RW
IMAD.U16/ S16 RZ, RX(L|H), c[0x1][],
RY
IMAD. RZ, RX(L|H), c[0x1][], RY

IMAD32/ IMAD32.U16 RZ, RXL|H, RYL|H, RZ
IMAD32I IMAD32I.U16/ S16 RZ, RX(L|H), Imm,

RZ
LOP Bitwise logical

Operation
LOP.AND/OR/XOR/PASS_B RZ, RX/ g
[], RY
LOP.AND/OR/XOR/PASS_B RZ, RX, c
[0x1] []
LOP.U16.AND/OR/XOR/PASS_B

RZ(L|H), RX(L|H), RY(L|H)
ISET Integer comparison ISET RZ, RX, RY / c[0x1][],

COMP_TYPE
ISET RZ, g[], RX, COMP_TYPE
ISET.S32 RZ, RX, RY / c[0x1][],
COMP_TYPE
ISET.S32 RZ, g[], RX, COMP_TYPE

Table 3
DATA AND MEMORY INSTRUCTIONS IN FLEXGRIPPLUS.

Mnemonic Description Formats

MVC Load from constant
memory

MVC RX, c [0x1] []

GLD Load from global memory GLD.U32|U16|S16|U8|S8 RZ,
global14[]

GST Store to global
Memory

GST.U32|U16|S16|U8|S8 global14[],
RX

MOV/ Move register to register/
load from shared memory

MOV RZ, RX / g[]
MOV.U16 RZ(L|H), RX(L|H) / g[].
(U16|U8)

MOV32 MOV32 RZ, RX / g[]
MOV32.U16 RZ(L|H), RX(L|H)

MVI Move immediate to
destination

MVI RX, Imm

R2G Store to shared memory R2G.U32.U32 g [], RX
R2G.U16.U16 g [], RXL|H
R2G.U16.U8 g [], RX

R2A Move data register to
address register

R2A AX, RX

A2R Move address register to
data register

A2R RX, AX

ADA Move Address register to
Address register

ADA AX, AY

J.E.R. Condia, et al. Microelectronics Reliability 109 (2020) 113660

5

controller and divided into chunks to be launched simultaneously. Once
everything is ready, fault injection commands will be sent to the fault
injector.

The fault injector decodes a fault injection command from the fault
controller and generates the command(s) to be executed by the target
simulator, e.g., ModelSim. Currently, two types of faults are supported
by the environment: 1) permanent Stuck-At faults, and 2) transient bit-
flip faults. As the focus of this paper is on SEUs, the fault injection
command generated in the fault simulation campaign includes the
signal name (fault location), the event time (fault occurrence time), and
duration (related to the clock frequency of target design). The fault
injector then starts a simulation run with the generated command(s) and
waits for the run to finish to process another fault injection command.

Finally, the fault checker and classifier monitor the outputs until the
termination of the simulation run, gather information, and classify the
fault accordingly. In the case of FlexGripPlus, the faults are classified
into the following categories: 1) Silent Data Corruption (SDC) when the
injected fault affects only the final results in memory, 2) Detected
Unrecoverable Error (DUE) when the DUT hangs or crashes during the
simulation, 3) Timeout when the SEU produces performance degrada-
tion in simulation time and 4) Masked when the injected fault does not
generate any impact.

When using the developed fault injection environment for fault si-
mulation campaigns targeting FlexGripPlus reported in this paper, the
fault list is generated with a careful selection of fault location con-
sidering the actual used registers and memory locations used in each
benchmark application, while the fault occurrence time is selected
randomly.

4.2. Targeted modules

Two data-path and two control-path modules were targeted for
evaluation in FlexGripPlus.

4.2.1. Data-path modules
4.2.1.1. Register File (RF). This module is located inside the SM and is
composed of 16,384 32-bit registers. Each register can be accessed in
the Read and Write-back stages by different threads depending on the
parameters of the running kernel. The data stored in the registers can be
computational data or addresses, which can affect the execution flow of
the application.

4.2.1.2. Pipeline Registers (PRs). These registers are located among the
stages of the pipeline and the warp scheduler, as shown in Fig. 2. As
these registers hold data and control signals, SEUs in them can lead to
data corruption or interruption of the execution flow of the application.
The size of PRs in FlexGripPlus is reported in Table 5.

4.2.2. Control path modules
4.2.2.1. Warp Scheduler (SC). This module manages the warp
execution inside the SM. A warp status memory is implemented
inside the SC to store status information about the active warps. The
warp status memory contains 32 128-bit wide entries. The information
stored on each entry is composed of the active thread mask (aTM), the
actual warp program counter (wPC), and some additional parameters.
The information about the active warp is updated after each instruction
cycle.

Table 4
COMPARATIVE ANALYSIS OF MAIN FEATURES IN THE FLEXGRIP AND FLEXGRIPPLUS MODELS.

FlexGrip FlexGripPlus

Instructions • 27 instructions
(partially supported)

• 28 Instructions fully supported

• 78 formats of instructions verified
Programming environment • Partially compatible with the CUDA programming

environment.

• A manual mechanism to compile the CUDA (.cu) file
and adapt to the model

• Partially compatible with the CUDA programming environment.

• A tool to translate the CUDA (.cu) description into the final binary file
used in the model

• A tool to develop applications at the assembly level (SASS)

• A tool to verify the compatibility of the generated assembly code.
Applications • Only 5 benchmarks • More than 20 verified applications
Simulation or Implementation platforms • Simulation (ISIM, VIVADO simulator)

• FPGAs (Xilinx)
• Simulation (ModelSim, Xcelium Parallel Simulator)

• FPGAs

• ASICs
Memory management support • An additional support to manage the address register file employed

to access the Shared memory

Fig. 3. A general scheme of the simulation environment for FlexGripPlus.

J.E.R. Condia, et al. Microelectronics Reliability 109 (2020) 113660

6

4.2.2.2. Divergence Stack Memory (DSM). This special purpose memory
contains 32 32-bit wide entries storing the divergence addresses and the
status information of the warp caused by branch instructions. The two
execution paths (Taken and Not-taken) are stored using two entries in
the DSM in terms of the starting (divergence) and finishing
(convergence) points along with the execution flow. Additionally,
each entry in DSM stores the warp index, the flow state condition,
and the aTM value to trace the number of executed threads on each
path.

4.3. Benchmarks

Six applications were carefully selected as benchmark applications
to evaluate the behavior of FlexGripPlus against SEUs under different
workload profiles.

1) FFT: The application is based on the Coley-Turkey algorithm [43]
and implements the butterfly element using CUDA. Since Flex-
GripPlus does not provide support for division operations, they were
replaced by a software-based approach using logarithmic and logical
operations.

2) Edge detection (Edge): The application is based on the Sobel al-
gorithm applying an image filter of 3 × 3 to a 2-dimensions input.

3) Vector_Add: This is one of the original applications developed for
FlexGrip. It calculates the sum of two vectors.

4) Bitonic-Sort (Sort): This is another original application developed
for FlexGrip. The application sorts a sequence of consecutive data
elements stored in an array. This application includes multiple
combinations of data movements between memory and registers,
and conditional control-flow instructions, generating multiple paths
during execution.

5) M3: This application implements a Software-Based Self-Test (SBST)
algorithm introduced in [44]. M3 targets the memory in the SC. It is
composed of multiple control-flow instructions utilizing mainly the
control-path modules.

6) Matrix Multiplication (MxM): This application is based on the
General Matrix Multiplication (GEMM) routine, which is optimized
using the square tiling approach. The input matrices are firstly di-
vided into blocks. Then, partial results are obtained by multi-
plication of corresponding blocks. Finally, partial results are accu-
mulated to get the final results of matrix multiplication. The
implementation is limited to 32 × 32 input matrices.

5. EXPERIMENTAL RESULTS

As mentioned before, FlexGripPlus can be configured to have 8, 16,
or 32 SP cores in SM. Moreover, the benchmark applications (kernels)
can be launched using different thread distribution strategies, so dif-
ferent combinations of configurations have been used in the fault in-
jection campaigns.

An initial set of fault injection campaigns was carried out using
FlexGripPlus with 8, 16, or 32 SP cores to evaluate the impact of SEUs
on different hardware organizations. The benchmark applications were
launched using different thread distributions: 32 and 64 threads per
block (TPB) except MxM was configured to 512 and 1024 TPB, given its

Table 5
SIZE OF PRS IN FLEXGRIPPLUS.

Location (between) Size (# bits)

Fetch and Decode (F-D) 237
Decode and Read (D-R) 408
Execute and WriteBack (E-W) 6575
Read and Execute (R-E) 3456
WriteBack and Warp Scheduler (Wr-W) 133
Warp Scheduler and Fetch (WeF) 140

Ta
bl
e
6

F A
U

LT
IN

JE
CT

IO
N

CA
M

PA
IG

N
RE

SU
LT

IN
TE

RM
S

O
F

M
W

BF
.

Be
nc
hm

ar
k

TP
B

RF M
W
BF

(f
au

lt
∗
bi
ts/

cc
)

PR
s

M
W
BF

(f
au

lt
∗
bi
ts/

cc
)

SC
w
ar
p
sta

tu
s
m
em

or
y
M
W
BF

(f
au

lt
∗
bi
ts/

cc
)

SC
lo
gi
c
M
W
BF

(f
au

lt
∗
bi
ts/

cc
)

D
SM

M
W
BF

(f
au

lt
∗
bi
ts/

cc

#
SP

8
16

32
8

16
32

8
16

32
8

16
32

8
16

32

FF
T

32
3.

7
5.

6
7.

6
16

5.
4

20
2.

1
96

.1
57

0.
3

1,
69

6
56

5.
4

20
.0

34
.3

10
2.

2
20

7.
6

26
9.

1
39

9.
8

64
8.

5
6.

8
11

.5
29

2.
2

35
3.

7
15

7.
7

7.
5

33
.6

76
6.

2
25

.4
85

.6
14

0.
1

63
.7

15
5.

7
25

9.
9

Ed
ge

32
10

.6
16

.4
22

.0
54

3.
6

59
9.

3
30

1.
3

17
4.

5
97

4.
1

2,
57

0.
7

10
4.

7
28

5.
4

21
0.

4
1,

33
8.

0
1,

90
3.

0
2,

68
8.

0
64

40
.1

34
.3

43
.5

74
0.

0
1,

12
3.

7
73

9.
9

81
.8

22
0.

7
12

,4
68

.5
84

.8
18

6.
9

78
0.

5
39

0.
6

1,
08

4.
0

2,
15

8.
0

Ve
ct
or
_A
dd

32
57

.0
79

.7
13

9.
2

3,
87

8.
8

4,
21

9.
8

4,
73

5.
5

36
1.

1
2,

16
6

16
,1

63
.7

61
5.

7
97

0.
7

1,
76

6.
9

–
–

–
64

60
.2

83
.9

11
1.

6
2,

84
9.

2
5,

82
0.

8
6,

03
7.

7
19

4.
7

58
5.

0
2,

20
8.

1
64

0.
7

1,
08

4.
0

1,
98

5.
0

–
–

–
M
3

32
47

3.
6

35
4.

0
22

7.
1

97
6.

9
33

9.
5

23
6.

6
11

.8
8.

7
46

.4
46

.9
10

6.
9

18
.9

30
.6

54
.2

21
.8

64
1,

59
1.

8
32

70
.2

2,
34

9.
7

1,
83

0.
5

65
4.

0
63

7.
8

43
6.

9
99

6.
2

99
8.

6
61

.3
53

.2
2,

36
6.

5
26

.3
6.

3
8.

4
So
rt

32
30

7.
7

16
5.

7
31

.4
17

3.
1

17
6.

1
12

5.
6

20
7.

7
23

8.
3

28
2.

5
21

2.
3

25
2.

2
39

3.
0

35
8.

4
14

.2
17

.6
64

0.
0

80
.7

26
6.

1
11

6.
8

12
7.

7
13

9.
7

36
2.

1
80

1.
8

1,
64

9.
7

20
3.

3
32

7.
4

94
4.

6
2.

2
3.

2
12

.0
M

XM
51

2
10

,1
14

.2
14

,5
09

.4
15

,9
10

.2
10

1.
7

73
.3

13
3.

3
11

,5
92

.1
14

,2
16

.3
13

,6
55

.6
88

.1
12

8.
2

17
7.

7
6.

8
15

.1
–

10
24

23
,8

79
.1

34
,6

20
.6

36
,3

27
.3

21
.0

25
6.

4
30

0.
0

26
,7

87
.7

34
,4

28
.2

36
,1

49
.6

20
3.

4
35

7.
2

41
1.

0
19

.0
4.

6
–

N
um

be
r

of
Fa

ul
ts

(%
).

J.E.R. Condia, et al. Microelectronics Reliability 109 (2020) 113660

7

characteristics. The second group of fault injection campaigns targeted
a special analysis of SEU effects in the SC under different workload
distributions: 32, 64, 128, 256, 512, and 1024 TPB (though not for all
the selected benchmark applications). It is worth noting that fault in-
jection campaign employed the RT-level description of FlexGripPlus.

5.1. Overall analysis with different configurations

The Relative Mean Workload Between Failures (MWBF) [45] is se-
lected as a metric for reliability analysis against SEUs. The motivation
for this choice is that MWBF accounts not only for the percentage of
faults producing a failure but also for the different execution time, thus
taking into account the higher fault probability. When MWBF was
calculated, a constant fault rate was assumed for all applications and all
configurations, and the DUE errors were neglected. Moreover, the ex-
ecution time of each benchmark was calculated, only considering the
time interval from the execution of the first instruction up to the kernel
termination.

Table 6 reports the results of the first set of fault injection cam-
paigns in terms of MWBF, expressed in terms of the fault rate per bits
per clock cycles (cc). Please note that the evaluation of SC is performed
individually for the warp status memory and control logic.

Though it is difficult to perform direct comparisons with previously
reported experiments in literature, similar conclusions regarding how
the number of available SPs and different thread distributions impact
the reliability of application execution can be found. In [46], the au-
thors concluded that an increment in the number of blocks reduces the
MWBF of an application. Similarly, in [47], experiments proved that an
application running in a GPGPU is more reliable when increasing the
block size instead of increasing the number of blocks. The same trend
can be observed in Table 6 from the results of, for example, FFT when
RF, PRs, and SC are targeted, and Edge when RF, PR are evaluated, etc.
However, the opposite trend can also be observed from results of, for
example, Vector_Add when warp status memory in SC is targeted, and
M3 when DSM is targeted. The trend also changes even with the same
application when the FlexGripPlus is configured to different numbers of
SPs in SM, for example, Edge with 8 or 16 SPs available and 32 SPs
when warp status memory in SC is targeted.

Please note that, in this paper, we are targeting individual modules
instead of the whole devices as in [46,47], so that the impact of relia-
bility against SEUs of each individual modules are different, as reported
in Table 6 when FlexGripPlus is configured with different number of
SPs and application launched with different thread distribution profiles.
Besides, current FlexGripPlus implementation is still limited to one SM
that Block Scheduler did not make any contributions to the fault in-
jection campaign results.

5.2. Detailed analysis per module

The Fault error rate was computed for each module under test and
for each application categorized in three different effects, i.e., SDC,
DUE, and Timeout. The obtained results are presented as follows w.r.t.
each targeted module.

5.2.1. Register File (RF)
In total, 30 fault injection campaigns using the FFT, Edge, M3, Sort,

and MxM benchmark applications have been performed, each con-
sidering 34,816 faults, resulting in the confidence of 99.46%.
Meanwhile, for the Vector_Add application, 10,240 faults have been
injected for 32 SPs configuration, and 8192 faults for 16 and 8 SPs.
With the aforementioned fault injection environment, the fault simu-
lation time was reduced from about 200 h to less than 25 h: the
adoption of the UDR factor allowed us to reduce by up to 95% the total
amount of injected faults. Fig. 4 reports the error rate percentage for
each application.

It can be observed that FFT and Edge show similar distribution when

the RF module is targeted. Vector_Add does not produce any DUE or
Timeout as it does not contain branch instruction in the implementa-
tion. Sort and M3 both have DUE as the majority due to the large
percentage of branch instructions that can be affected by SEUs in the
registers. For MxM, it shows a mixture of both as it is a data-intensive
application, while some branches in the implementation can also be
affected by SEUs to cause DUE.

When comparing results from different configurations, from some
applications, the trend of error rate is not so evident since the error rate
is affected by several aspects, for example, the number of registers ac-
tually utilized during execution, the duration of each data stayed inside
registers, etc. However, some interesting effects can be observed. In
FFT, when the TPB increased from 32 to 64, a DUE decrement can be
seen due to the fact the execution time is reduced, while as the number
of registers utilized increased, the SDC rate is not decreased as DUE
(except when the number of SP is configured to 8. In Sort and M3, an
growth of DUE rate can be observed when the TPB increase from 32 to
64 as opposite in FFT, because Sort contains large portion of branch
instructions whose execution depends on the value of data so that when
more registers are utilized higher the probability of a DUE because of
data corruption in register. In MxM, this trend of DUE rate increment is
not as obvious as in Sort, because the branch instructions in MxM do not
depend on the input data values, though it still depends on the loop
variables. These observations are similar to those shown in [40] for
applications with a high percentage of control-flow instructions.

Similar trends in different applications can be observed when the
number of SPs in SM is increased from 8 to 16 then to 32, for example,
the increment of DUE in the Sort application. However, the other ap-
plications do not present such consistent and visible increase, as when
the number of SPs changes, not only the register utilization changes but
also the threads have to be organized into warps differently, which
causes changes in registers load and store pattern.

5.2.2. Pipeline Registers (PRs)
In total, 144 faults injection campaigns were performed targeting

PRs in FlexGripPlus. A total of 30,000 SEUs were injected per config-
uration. The fault injection results in terms of the averaged fault rate in
the entire structure are shown in Fig. 5.

It can be observed from the results that increase TPB will lead to an
increment of error rate, including SDC and DUE. This behavior can be
explained as the additional time cost for processing warps of the same
block increases the probability of an SEU in PR to be propagated
through pipeline. Another clear trend that can be observed is that the
error rates decrease when more SPs are available in SM. For Timeout,
this trend is not consistent across different applications and config-
urations.

For M3, DUE is the majority for all the configurations as it is control-
flow oriented application. For Vector_Add, as it is data-oriented (without
branch instruction), the majority effect land in SDC. For the other ap-
plications, it is less obvious.

When analyzing the PRs between different stages, as listed in
Table 5, the SEU sensitivity fluctuates from 1.2 to 13.5 times, shown in
Fig. 6, which indicates the existence of critical PRs. It turns out the PRs
storing the instruction decoding and warp status information are the
ones of highest sensitivity against SEU contributing a large proportion
of SDC and DUE during fault injection campaigns. In [40], the authors
presented similar conclusions when evaluating the PRs of a GPGPU.
Although a direct comparison of the results cannot be performed, both
works show that the E-Wr PR is among the most SEU sensitive PRs, as
indicated in Fig. 6.

5.2.3. Warp Scheduler Controller (SC)
The SC module was divided into two parts for analysis purposes: the

internal memories and the sequential logic elements. Thirty-six fault
campaigns have been carried out.

Contradicting to the criticality of this module, the fault injection

J.E.R. Condia, et al. Microelectronics Reliability 109 (2020) 113660

8

campaign results show low sensitivity against SEU, in which, though
the sequential logic corresponds to 14.3% of the entire elements in the
SC, it generates between 85% and 92% of DUE among the detected
faults for all the tested applications.

The unexpectedly low error rate in the SC internal memories is
caused by a loop existing between the SC and the SM pipeline stages,
which masks the fault effects. The execution of an instruction in the SM
requires SC to control and check the execution, which causes the data in
SC memories frequently refreshed before it is read after data corruption
due to SEU. Nevertheless, in most benchmarks, which are configured
with a fewer number of TPB, the fault-masking behavior is effective
when the workload is relatively small. However, it becomes ineffective
in MxM as the probability of data in SC memories read before over-
written after an SEU increases with the workload.

In the operation of the SC, it is expected that an SEU causes a single
SDC effect and corrupt one value in the results. However, it was ob-
served that multiple SDC conditions could also be presented in the
output memory (i.e., lines, blocks, or random locations with erroneous
results). Table 7 reports the percentage of SEUs that causes SDC effects
in the SC module divided into those generating single and multiple
effects in the memory.

An in-depth analysis shows that the multiple SDC conditions are
caused by SEUs affecting the wPC and other fields of the memory in the
SC, which are used redundantly by numerous threads (base addresses
employed to access the RF or the shared memory). Similarly, the multiple
SDCs are caused by logic elements in the SC related to the management
of the information of the warps.

In general, for all the analyzed applications, errors corrupting the
wPC also affected the group of threads and propagate in the execution,
so causing multiple SDC. In contrast, faults in the aTM field produce
most single SDC effects. In some control-flow-based applications (EDGE,
FFT, Sort, and M3), a small number of multiple SDC were caused by
errors present in the aTM field. Those errors modified the execution of
one thread in the execution paths and caused additional operations or

the missing of operations, which affected subsequent executions in the
program flow.

More in detail, the distribution of single and multiple SDC effects
differs on the applications and depends on parameters such as the
coding style and internal modules employed that are correlated with
the SC module. In the MxM application, the high percentage of multiple
SDCs is caused by the existent connection between the status in-
formation of a warp stored in the SC and the RF and the shared memory
modules. However, the trend is not present in other applications.
Vector_Add and M3 have limited use of the RF and Shared memory, so
the contribution of multiple SDCs by misbehaviors in the management
of these modules is low.

In other work [48], the authors reported the effect and criticality of
SDCs affecting neural network applications in GPGPUs. In results, the
authors also included results for the MxM application. A comparison
between the results of the MxM with those introduced in the present
work shows equivalent trends. In [48], the authors found that the dis-
tribution of SDCs caused by multiple errors in the output lay in the
range from 45 to 65%, without error margins. In the listed results in
Table 7, the MxM applications have an equivalent tendency for the pool
memory with a distribution of SDCs in the range of 54 to 65%.

In contrast, the tendency is not followed by the logic part of the SC,
and it presents a lower range (27–39%). However, it should be noted
that the experiments performed in [48] injected fault in all modules of a
GPGPU. In contrast, we perform fault injection campaigns targeting
specific parts of the SC module only. In any, case the obtained results
show the criticality of the SC module and the susceptibility to SEUs of
the MxM application.

On the other hand, the trend in the distribution of SDCs for other
applications is different. In Vector_Add, FFT, Edge, and M3, the trend
shows a higher percentage of SDCs caused by single output errors than
multiple ones, as analyzed previously.

Furthermore, additional 24 fault injection campaigns have been
performed on Vector_Add, and M3 with different TPB configures, and

Fig. 4. Fault rate results in the RF in FlexGripPlus (the horizontal axis, from top to bottom, are #SPs, TPB and application name).

Fig. 5. Fault rate results in the PRs in FlexGripPlus (the horizontal axis, from top to bottom, are #SPs, TPB and application name).

J.E.R. Condia, et al. Microelectronics Reliability 109 (2020) 113660

9

the number of SPs fixed to 32. The additional experiments are intended
to provide remarks regarding the fault masking effect in the SC mem-
ories mentioned before.

The two applications were selected mainly by the distinctive ex-
ecution behaviors in the SC. Vector_Add program includes high data-
intensive operations without control-flow or thread divergence opera-
tions. In contrast, M3 is mainly composed of control-flow operations
and thread divergence routines. Thus, SC is utilized in the two appli-
cations with entirely different patterns. The TPB configurations, used in
the experiments, have a range from 32 to 1024 for both applications.

From the results, shown in Fig. 7, when the TPB is configured to be
32 or 64, the fault masking in SC memories is effective to limit the
impact of SEUs, though we can still observe a small amount DUE caused

by SEUs in the logic part of SC. When the TPB is increased up to 1024,
the error rate goes up rapidly, and two different distributions of DUE
and SDC can be observed when comparing results from Vector_Add and
M3 applications.

Thus, an optimized implementation for performance is, as it often
happens, not the best solution when reliability is concerned. Further
actions to increase reliability should be adopted, such as ECC in the
memory and Triple Modular Redundancy (TMR) in the control logic.
Finally, depending on the type of application, different solutions (or in
combination) can have effectiveness for improving system reliability
against SEU.

Fig. 6. Fault injection results of different PRs between different stages (the horizontal axis, from top to bottom, are #SPs, TPB and application name

J.E.R. Condia, et al. Microelectronics Reliability 109 (2020) 113660

10

5.2.4. Divergence Stack Memory (DSM)
In total, 50,688 faults have been injected, targeting FFT, Sort, M3,

and Edge applications to evaluate the sensitivity of DSM against SEUs.
As the results are shown in Fig. 8, the DSM has a relatively low

sensitivity against SEUs when comparing to other modules presented
above. One reason for this is that DSM is less utilized in the applications
and even fewer cases when multiple branches activate multiple level
entries in DSM. However, the general trend shows that a fault affecting
the SDM is critical and can cause a DUE collapsing the operation of the
system.

Similarly, a change in the SP configuration seems to affect the
sensibility of faults in the SDM module. This behavior can be observed
in the FFT, Edge, and M3 applications under 64 TPB. In each case, in-
creasing the number of SPs is inversely proportional to the suscept-
ibility to SEUs and is explained by the reduction in the management
operations performed by the SC for a large number of SP cores in the
SM. However, there is not any direct interaction among the DSM and
the number of SPs, so the observed reduction in the 64 TPB is mainly
caused by the correlation between reduced management operations in
the SC and shorter operation times on the routines executed in a di-
vergence path.

Among the four tested applications, Sort includes only one condi-
tional control flow instruction generating multiple execution paths.
However, the divergence in this benchmark is data-dependent, so the
generation of a new path depends on the comparison of two operands
from memory. This behavior explains that the error rate did not change
so much with different configurations in Sort.

The M3 is also different from others as it intends to generate mul-
tiple intra-warp divergences sequentially in the first 32 threads, leading
to an intensive switching activity in SC. But it does not generate nesting
divergence paths, i.e., it does not use multiple level entries in the DSM.
So, when the TPB configuration is changed from 32 to 64, the switching
activity in SC is reduced while the level of utilization of DSM due to
divergence paths is not increased, leading to decreased error rate, as
shown in Fig. 8.

For FFT and Edge, similar trends can be observed as error rates in-
crease with TPB and decrease with the number of SPs. This behavior is
mainly due to the switching activity when the different combinations of
TPB and the number of SPs affect the organization of warp execution.

Regarding the distribution of the DUE and SDC error rates, it de-
pends on the affected location within an entry in DSM. An SEU in the
wPC field may create Timeout or DUE (or SDC). Similarly, an SEU af-
fecting the aTM field may generate SDC, by interrupting thread ex-
ecution (i.e., unfinished computation), or DUE by causing threads to
miss the synchronization point. Finally, an SEU in the warp ID field
produces Timeout effects.

As seen in the comparison between FFT and Edge, a decrement in
TPB can help to reduce more than 50% of the SDC error rate, which is
coherent with the conclusion introduced in [47,49].

5.3. General comments

In contrast to previous work, this paper presents fault injection re-
sults based on simulation under different configurations involving dif-
ferent numbers of SPs and different TPB configurations, targeting se-
parate modules in the proposed FlexGripPlus. Direct comparison with
results of previous works, where the SEUs were injected into a GPGPU
device indiscriminately [46–49] or at the instruction level [18] is hard.
However, similar trends of reliability impact of SEUs with respect to
different configurations, particularly in terms of TPB, can be found.
Some cases exist, where opposite trends under certain combinations of
settings are observed, as presented in the previous subsections. Results
reported in this paper prove that modules inside a GPGPU device can be
affected differently when trying to balance performance and system
(application) reliability. Hence, different modules will require different
approaches to achieve some target reliability figures.

6. CONCLUSIONS AND FUTURE WORKS

In this paper we presented the new FlexGripPlus model, the meth-
odology we followed to develop it, the fault injection simulation en-
vironment we used to gather extensive results about the sensitivity of
different GPGPU modules to SEUs and different encoding styles, and the
results gathered using six applications targeting different modules and
with different configurations.

Besides the improvements made towards increasing the set of sup-
ported instructions, another significant improvement in FlexGripPlus is
the technology independence. This independence allows the usage of
the model at a lower level without any limitation related to the targeted
gate library and the simulation tool. More importantly, in this way, it is
possible to investigate the SEU effects with fault injection techniques
targeting specific modules.

Although FlexGripPlus implements the NVIDIA G80 micro-
architecture (as inherited from the original FlexGrip model), it includes
all principal and critical modules, which are also present in modern
GPGPU architectures. Moreover, the compatibility of the model with
commercial programming tools allows the use of the same tools as in
real application development (with some limitations). Thus, it is pos-
sible to perform reliability analysis in FlexGripPlus considering similar
modules across generations of GPGPU architectures.

The performed fault injection campaigns provided detailed results
about the sensibility to SEUs of individual modules of the GPGPU under
different encoding styles (e.g., varying the TPB parameter). The

Table 7
DISTRIBUTION OF SEU EFFECTS IN THE SC CAUSING SINGLE AND MULTIPLE OUTPUT EFFECT.

Benchmark TPB SPs SDC (%)

Warp Status memory Logic

Single Multiple Total Single Multiple Total

FFT 32 8 0.024 0.025 0.049 1.4 1.28 2.68
16 0.014 0.01 0.024 1.2 1.12 2.32
32 0.042 0.056 0.098 0.4 0.61 1.01

64 8 6.53 2.4 8.94 1.1 1.43 2.53
16 2.19 1.2 3.39 0.7 0.56 1.26
32 0.12 0.1 0.22 0.64 0.39 1.03

VectorAdd 32 8 1.6 0.54 2.148 1 1.4 2.4
16 0.3 0.16 0.464 0.9 1.06 1.95
32 0.06 0.01 0.073 1.10 0.15 1.25

64 8 6.7 2.43 9.131 1.1 1.59 2.69
16 3.1 1 4.102 1.2 0.95 2.15
32 0 0 0 1.01 0.35 1.36

Edge 32 8 0.35 0.18 0.537 0.5 1.14 1.64
16 0.08 0.06 0.146 0.4 0.51 0.91
32 0.02 0.03 0.049 0.20 0.51 0.71

64 8 1.1 1.51 2.612 0.8 1.89 2.69
16 0.5 1.38 1.88 0.94 1.21 2.15
32 0.01 0.039 0.049 0.4 0.8 1.2

Sort 32 8 0.002 0.01 0.012 0.03 0.04 0.074
16 0.002 0.01 0.012 0.05 0.05 0.106
32 0.01 0.039 0.049 0.10 0.00 0.01

64 8 0.16 0.31 0.476 0.01 0.025 0.035
16 0.25 0.33 0.585 0.1 0.27 0.37
32 0.21 0.36 0.57 0.01 0.005 0.015

M3 32 8 0.41 0.13 0.54 0.3 0.11 0.414
16 0.28 0.18 0.46 0.12 0.17 0.297
32 0.14 0.15 0.292 0.23 0.23 0.467

64 8 0.93 0.6 1.53 0.6 0.21 0.81
16 1.48 0.7 2.185 0.66 0.24 0.9
32 1.58 0.65 2.23 0.5 0.49 0.99

MxM 512 8 13.51 20.69 34.2 0.16 0.1 0.26
16 12.75 18.3 31.05 0.17 0.11 0.28
32 11.39 13.2 24.59 0.22 0.1 0.32

1024 8 14.17 25,34 39.51 0.21 0.09 0.3
16 14.38 23.21 37.59 0.28 0.11 0.39
32 11.51 21.03 32.54 0.27 0.1 0.37

J.E.R. Condia, et al. Microelectronics Reliability 109 (2020) 113660

11

evaluation was performed employing representative applications with
diverse workloads to sensitize each module with different patterns. In
some cases, it was possible to determine correlations with previous
works. However, the existence of some inconsistency across the dif-
ferent applications and configurations prompts for further investigation
for evaluating specific modules in GPGPU devices against SEUs.

In general, a major result stemming from the gathered results is that

different modules behave in a rather different manner when changing
the TPB parameter and show different sensitivity to SEUs. The specific
characteristics of each application may further change the above be-
haviors. Previous results gathered at the GPGPU level could not catch
these aspects, which must be taken into account when optimizing an
application code for performance, reliability, or in conjunction.

Although FlexGripPlus does not entirely match the architecture of

Fig. 7. Fault injection results of SC memories and logic under different TPB configurations (the horizontal axis, from top to bottom, are #SPs, TPB, and application
name).

0.
03

0.
02

0.
01 0.
06

0.
05

0.
04

0.
01

0.
01

0.
01 0.
04

0.
04

0.
02

0 0.
01
8

0.
01
4

0 0 0 0.
04
2

0.
04
2

0.
02
3

0.
00
5

0 0.
00
5

0.
35 0.
3 7

0.
33

1.
41

0.
92

0.
77

0.
29

0.
3

0.
29

1.
21

0.
84

0.
62

0.
90
9

1.
02
2

1.
02
7

0.
7

1.
07
9

1.
07
9

1.
35 1.
37

1.
43

0.
41
1

0.
22

0.
1 1
80.
2 4 0.
29

0.
26

1.
01

0 .
7

0.
6

0.
13

0.
14

0.
13

0.
56

0.
34

0.
26

0.
02
3

0.
00
94

0.
01
4

0.
00
94

0.
00
94

0.
01
8

0.
02 0.
03
3

0 0.
02
8

0.
00
5

0

8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

32 64 32 64 32 64 32 64

FFT EDGE SORT M3

Timeout DUE SDC

Fig. 8. Fault injection results of DSM (the horizontal axis, from top to bottom, are #SPs, TPB and application name).

J.E.R. Condia, et al. Microelectronics Reliability 109 (2020) 113660

12

the most recent GPGPUs, we still claim that the performed analyses to
be valid considering the similarities in structures of modern devices.

As an on-going work, we are currently extending the reliability
analysis to other modules within FlexGripPlus. We also plan to further
extend the instruction and hardware support of the FlexGripPlus model
following the SM 1.0 microarchitecture compatibility, including
floating-point units and special functional units into the model.

Authorship statement

All persons who meet authorship criteria are listed as authors, and
all authors certify that they have participated sufficiently in the work to
take public responsibility for the content, including participation in the
concept, design, analysis, writing, or revision of the manuscript.

CRediT authorship contribution statement

Josie E. Rodriguez Condia: Conceptualization, Data curation,
Formal analysis, Software, Validation, Visualization, Writing - ori-
ginal draft, Writing - review & editing. Boyang Du:
Conceptualization, Data curation, Formal analysis, Software,
Validation, Visualization, Writing - review & editing. Matteo Sonza
Reorda: Conceptualization, Data curation, Formal analysis,
Methodology, Supervision, Validation, Writing - review & editing.
Luca Sterpone: Conceptualization, Methodology, Supervision,
Validation.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

References

[1] W. Shi, M.B. Alawieh, X. Li, H. Yu, Algorithm and hardware implementation for
visual perception system in autonomous vehicle: a survey, Integration 59 (2017)
148–156 2017/09/01/.

[2] V. Campmany, S. Silva, A. Espinosa, J.C. Moure, D. Vázquez, A.M. López, GPU-
based pedestrian detection for autonomous driving, Procedia Computer Science 80
(2016) 2377–2381 2016/01/01/.

[3] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kitsukawa, et al.,
Autoware on board: enabling autonomous vehicles with embedded systems, 2018
ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS), 2018,
pp. 287–296.

[4] M. Yang, N. Otterness, T. Amert, J. Bakita, J.H. Anderson, F.D. Smith, Avoiding
pitfalls when using NVIDIA GPUs for real-time tasks in autonomous systems, 30th
Euromicro Conference on Real-Time Systems (ECRTS 2018), 2018.

[5] S. Hamdioui, D. Gizopoulos, G. Guido, M. Nicolaidis, A. Grasset, P. Bonnot,
Reliability challenges of real-time systems in forthcoming technology nodes, 2013
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2013, pp.
129–134.

[6] V. Sridharan, N. DeBardeleben, S. Blanchard, K.B. Ferreira, J. Stearley, J. Shalf,
et al., Memory errors in modern systems: the good, the bad, and the ugly, ACM
SIGARCH Computer Architecture News 43 (2015) 297–310.

[7] H.L. Hughes, J.M. Benedetto, Radiation effects and hardening of MOS technology:
devices and circuits, IEEE Trans. Nucl. Sci. 50 (2003) 500–521.

[8] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, T. Toba, Impact of scaling on neutron-
induced soft error in SRAMs from a 250 nm to a 22 nm design rule, IEEE
Transactions on Electron Devices 57 (2010) 1527–1538.

[9] J. Espinosa, D.d. Andrés, P. Gil, Increasing the dependability of VLSI systems
through early detection of fugacious faults, 2015 11th European Dependable
Computing Conference (EDCC), 2015, pp. 190–197.

[10] C.Y.H. Lin, R.H. Huang, C.H. Wen, A.C. Chang, Aging-aware statistical soft-error-
rate analysis for nano-scaled CMOS designs, 2013 International Symposium onVLSI
Design, Automation, and Test (VLSI-DAT), 2013, pp. 1–4.

[11] S.K.S. Hari, T. Tsai, M. Stephenson, S.W. Keckler, J. Emer, SASSIFI: an architecture-
level fault injection tool for GPU application resilience evaluation, 2017 IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS), 2017, pp. 249–258.

[12] S. Di Carlo, J.E.R. Condia, M. Sonza Reorda, An on-line testing technique for the
scheduler memory of a GPGPU, IEEE Access 8 (2020) 16893–16912.

[13] L.B. Gomez, F. Cappello, L. Carro, N. DeBardeleben, B. Fang, S. Gurumurthi, et al.,
GPGPUs: How to combine high computational power with high reliability, 2014
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2014,

pp. 1–9.
[14] S. Collange, M. Daumas, D. Defour, D. Parello, Barra: A parallel functional simulator

for GPGPU, 2010 IEEE International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, 2010, pp. 351–360.

[15] J. Power, J. Hestness, M.S. Orr, M.D. Hill, D.A. Wood, gem5-gpu: a heterogeneous
CPU-GPU Simulator, IEEE Comput. Archit. Lett. 14 (2015) 34–36.

[16] A. Bakhoda, G.L. Yuan, W.W. Fung, H. Wong, T.M. Aamodt, Analyzing CUDA
workloads using a detailed GPU simulator, Performance Analysis of Systems and
Software, 2009. ISPASS 2009. IEEE International Symposium on, 2009, pp.
163–174.

[17] A. Vallero, D. Gizopoulos, S. Di Carlo, SIFI: AMD southern islands GPU micro-
architectural level fault injector, 2017 IEEE 23rd International Symposium on on-
Line Testing and Robust System Design (IOLTS), 2017, pp. 138–144.

[18] N. Farazmand, R. Ubal, D. Kaeli, Statistical fault injection-based AVF analysis of a
GPU architecture, Proceedings of SELSE 12 (2012).

[19] S. Tselonis, D. Gizopoulos, GUFI: a framework for GPUs reliability assessment, 2016
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), 2016, pp. 90–100.

[20] R. De Jong, A. Sandberg, NoMali: Simulating a realistic graphics driver stack using a
stub GPU, 2016 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), 2016, pp. 255–262.

[21] R. Balasubramanian, V. Gangadhar, Z. Guo, C.H. Ho, C. Joseph, J. Menon, et al.,
MIAOW - an open source RTL implementation of a GPGPU, 2015 IEEE Symposium
in Low-Power and High-Speed Chips (COOL CHIPS XVIII), 2015, pp. 1–3.

[22] M. Amiri, F.M. Siddiqui, C. Kelly, R. Woods, K. Rafferty, B. Bardak, FPGA-based
soft-Core processors for image processing applications, Journal of Signal Processing
Systems 87 (2017) 139–156. April 01.

[23] M.A. Kadi, B. Janssen, M. Huebner, FGPU: an SIMT-architecture for FPGAs, 2016
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey,
California, USA, 2016.

[24] S. Collange, Simty: A Synthesizable General-purpose SIMT Processor, (2016).
[25] J. Bush, P. Dexter, T.N. Miller, A. Carpenter, Nyami: A synthesizable GPU archi-

tectural model for general-purpose and graphics-specific workloads, 2015 IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS), 2015, pp. 173–182.

[26] K. Andryc, M. Merchant, R. Tessier, FlexGrip: a soft GPGPU for FPGAs, 2013
International Conference on Field-Programmable Technology (FPT), 2013, pp.
230–237.

[27] B. Du, J.E.R. Condia, M. Sonza Reorda, An extended model to support detailed
GPGPU reliability analysis, 14th IEEE International Conference on Design &
Technology of Integrated Systems in Nanoscale Era (DTIS), 2019.

[28] J.E.R. Condia, M. Sonza Reorda, An extended GPGPU model to support detailed
reliability analysis, 15th IEEE Workshop on Silicon Errors in Logic – System Effects
(SELSE 15), 2019.

[29] B. Du, J.E.R. Condia, M. Sonza Reorda, L. Sterpone, On the evaluation of SEU effects
in GPGPUs, 2019 IEEE Latin American Test Symposium (LATS), 2019, pp. 1–6.

[30] M. M. Goncalves, J. R. Azambuja, J. E. R. Condia, M. Sonza Reorda, and L. Sterpone,
"Evaluating software-based hardening techniques for general-purpose registers on a
GPGPU," in 21st IEEE Latin-American Test Symposium (LATS2020), Brazil, 2020, (to
appear).

[31] M.J. Flynn, Some computer organizations and their effectiveness, IEEE Trans.
Comput. C-21 (1972) 948–960.

[32] E. Lindholm, J. Nickolls, S. Oberman, J. Montrym, NVIDIA tesla: a unified graphics
and computing architecture, IEEE Micro 28 (2008) 39–55.

[33] P.N. Glaskowsky, NVIDIA’s Fermi: the first complete GPU computing architecture,
White Paper 18 (2009).

[34] NVIDIA, NVIDIA Tesla V100 GPU Architecture, (2017).
[35] J.E. Lindholm, B.W. Coon, J. Wierzbicki, R.J. Stoll, S.F. Oberman, Credit-based

Streaming Multiprocessor Warp Scheduling, US20110072244A1, Google Patents,
2015.

[36] J. Knudsen, Nangate 45nm Open Cell Library, https://projects.si2.org/events_dir/
2008/oacspring2008/nan.pdf, (2008) Retrieved.

[37] M. Martins, J.M. Matos, R.P. Ribas, A. Reis, G. Schlinker, L. Rech, et al., Open cell
library in 15 nm FreePDK technology, 2015 Symposium on International Symposium
on Physical Design, Monterey, California, USA, 2015.

[38] W. J. Van der Laan. (2019, 18/07/2019). Decuda project. Available: https://github.
com/laanwj/decuda/wiki.

[39] S.S. Mukherjee, C.T. Weaver, J. Emer, S.K. Reinhardt, T. Austin, Measuring archi-
tectural vulnerability factors, IEEE Micro 23 (2003) 70–75.

[40] W. Nedel, F.L. Kastensmidt, J.R. Azambuja, Evaluating the effects of single event
upsets in soft-core GPGPUs, Test Symposium (LATS), 2016 17th Latin-American,
2016, pp. 93–98.

[41] H. Ziade, R.A. Ayoubi, R. Velazco, A survey on fault injection techniques, Int. Arab
J. Inf. Technol 1 (2004) 171–186.

[42] D. Alexandrescu, Circuit and system level single-event effects modeling and simu-
lation, Soft Errors in Modern Electronic Systems, Springer, 2011, pp. 103–140.

[43] J.W. Cooley, P.A.W. Lewis, P.D. Welch, The fast Fourier transform and its appli-
cations, IEEE Trans. Educ. 12 (1969) 27–34.

[44] B. Du, J.E.R. Condia, M. Sonza Reorda, L. Sterpone, About the functional test of the
GPGPU scheduler, 24th IEEE International on-Line Testing Symposium (IOLTS)
2018, 2018.

[45] T. Santini, P. Rech, G. Nazar, L. Carro, and F. R. Wagner, "Reducing embedded
software radiation-induced failures through cache memories," in 2014 19th IEEE
European Test Symposium (ETS), 2014, pp. 1–6.

[46] P. Rech, L.L. Pilla, P.O.A. Navaux, L. Carro, Impact of GPUs parallelism manage-
ment on safety-critical and HPC applications reliability, Dependable Systems and

J.E.R. Condia, et al. Microelectronics Reliability 109 (2020) 113660

13

http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0005
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0005
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0005
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0010
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0010
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0010
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0015
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0015
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0015
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0015
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0020
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0020
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0020
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0025
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0025
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0025
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0025
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0030
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0030
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0030
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0035
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0035
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0040
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0040
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0040
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0045
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0045
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0045
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0050
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0050
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0050
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0055
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0055
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0055
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0055
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0060
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0060
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0065
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0065
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0065
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0065
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0070
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0070
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0070
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0075
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0075
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0080
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0080
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0080
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0080
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0085
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0085
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0085
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0090
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0090
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0095
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0095
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0095
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0100
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0100
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0100
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0105
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0105
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0105
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0110
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0110
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0110
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0115
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0115
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0115
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0120
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0125
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0125
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0125
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0125
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0130
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0130
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0130
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0135
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0135
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0135
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0140
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0140
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0140
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0145
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0145
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0150
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0150
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0155
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0155
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0160
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0160
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0165
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0170
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0170
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0170
https://projects.si2.org/events_dir/2008/oacspring2008/nan.pdf
https://projects.si2.org/events_dir/2008/oacspring2008/nan.pdf
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0180
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0180
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0180
https://github.com/laanwj/decuda/wiki
https://github.com/laanwj/decuda/wiki
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0185
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0185
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0190
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0190
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0190
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0195
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0195
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0200
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0200
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0205
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0205
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0210
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0210
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0210
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0215
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0215

Networks (DSN), 2014 44th Annual IEEE/IFIP International Conference on, 2014,
pp. 455–466.

[47] P. Rech, T.D. Fairbanks, H.M. Quinn, L. Carro, Threads distribution effects on
graphics processing units neutron sensitivity, IEEE Trans. Nucl. Sci. 60 (2013)
4220–4225.

[48] F.F.d. Santos, P.F. Pimenta, C. Lunardi, L. Draghetti, L. Carro, D. Kaeli, et al.,

Analyzing and increasing the reliability of convolutional neural networks on GPUs,
IEEE Trans. Reliab. 68 (2019) 663–677.

[49] D.A.G.G.d. Oliveira, L.L. Pilla, T. Santini, P. Rech, Evaluation and mitigation of
radiation-induced soft errors in graphics processing units, IEEE Trans. Comput. 65
(2016) 791–804.

J.E.R. Condia, et al. Microelectronics Reliability 109 (2020) 113660

14

http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0215
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0215
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0220
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0220
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0220
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0225
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0225
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0225
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0230
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0230
http://refhub.elsevier.com/S0026-2714(19)30797-8/rf0230

	FlexGripPlus: An improved GPGPU model to support reliability analysis
	Introduction
	Background
	General GPGPU micro-architecture
	FlexGrip model

	FlexGripPLus
	Technology dependency
	Instruction format support
	Compiler restrictions

	Fault injection setup
	Fault injection environment
	Targeted modules
	Data-path modules
	Register File (RF)
	Pipeline Registers (PRs)
	Control path modules
	Warp Scheduler (SC)
	Divergence Stack Memory (DSM)

	Benchmarks

	Experimental results
	Overall analysis with different configurations
	Detailed analysis per module
	Register File (RF)
	Pipeline Registers (PRs)
	Warp Scheduler Controller (SC)
	Divergence Stack Memory (DSM)

	General comments

	Conclusions and future works
	Authorship statement
	CRediT authorship contribution statement
	Declaration of competing interest
	References

