
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

FlexGripPlus: An improved GPGPU model to support reliability analysis / Rodriguez Condia, Josie E.; Du, Boyang;
Sonza Reorda, Matteo; Sterpone, Luca. - In: MICROELECTRONICS RELIABILITY. - ISSN 0026-2714. - 109:(2020), pp.
1-14. [10.1016/j.microrel.2020.113660]

Original

FlexGripPlus: An improved GPGPU model to support reliability analysis

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.microrel.2020.113660

Terms of use:

Publisher copyright

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.microrel.2020.113660

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2820716 since: 2020-07-06T18:36:30Z

Elsevier

FlexGripPlus: an improved GPGPU model to support reliability

analysis

Josie E. Rodriguez Condia, Boyang Du, Matteo Sonza Reorda, Luca Sterpone

 Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy

Abstract

General Purpose Graphics Processing Units (GPGPUs) have been extensively used in the last decade as

accelerators in high demanding applications, such as multimedia processing and high-performance computing.

Nowadays, these devices are becoming popular even in safety-critical applications, such as in autonomous and

semi-autonomous vehicles. However, these devices can suffer from the effects of transient faults, such as those

produced by radiation effects. Among those effects, Single Event Upsets (SEUs), which are the focus of this

paper, can cause application misbehaviors, which may lead to catastrophic consequences. In this work, we first

describe how we extended the capabilities of an open-source VHDL GPGPU model (FlexGrip) and developed a

new version named FlexGripPlus to study and analyze the effects of SEUs in a GPGPU in a much more detailed

manner. We also performed extensive fault injection campaigns using FlexGripPlus, which allowed identifying

the most critical effects within the GPGPU architecture. We finally focused on the scheduler controller since it

represents a module that is specific to the GPGPU architecture and showed that it has different levels of SEU

sensibility depending on the affected location. Moreover, the results of additional analyses varying the number

of parallel execution units in the system are presented, demonstrating the correlation between the number of

execution units in a GPGPU and the system reliability.

The European Commission has partially supported this work through the Horizon 2020 RESCUE-ETN

project under grant 722325.

Corresponding author
Josie.rodriguez@polito.it
Tel: +39 (331) 5251 780

FlexGripPlus: an improved GPGPU model to

support reliability analysis

I. INTRODUCTION

In recent years, GPGPU devices have become popular

solutions in high-demanding data processing applications,

including multimedia processing and high-performance

computing (HPC). More and more, these devices are also

adopted in several data-intensive safety-critical (i.e.,

autonomous vehicles [1-3]) and mission-critical (i.e.,

autonomous systems [4]) applications. Moreover, GPGPUs

are designed and manufactured using the latest technology

process to satisfy energy consumption and performance

requirements. However, some studies have shown that these

advanced semiconductor technologies are prone to suffer

from internal effects impacting their reliability, such as aging

and wear-out, and from external ones (i.e., Electromagnetic

Interference EMI or radiation effects) [5-8]. Thus, reliability

analyses can help to solve or mitigate these effects during the

operational phase of such devices.

The nature of a fault affecting a device can be related to

the integration scale, the production process variation, and

the operating conditions. Currently, new high-performance

devices could be affected by aging and wear-out effects

originated by the increased sensibility presented as a

combination of the previous factors. The complexity of new

designs in conjunction with lower voltage, timing, and noise

margins reduces the probability of identifying wear-out-free

devices correctly. Moreover, some manufacturing processes

increase the susceptibility to radiation effects, so transient or

intermittent fault effects could be present as fugacious faults

[9] and corrupt the operation of the device. Similarly, delays

caused by aging mechanisms (i.e., Negative bias temperature

instability (NBTI) [10]) could affect critical paths in some

modules of a device and, in the long term, behave as transient

faults.

Some types of external effects can be modeled as Single

Event Upsets (SEUs) and may cause misbehaviors in a

safety-critical context leading to catastrophic consequences.

In real GPGPU devices, the impact of SEU effects can be

analyzed through radiation experiments in a few specialized

facilities using expensive and complex equipment. Other

methods include software-based fault injection tools

instrumenting the compiler, and modifying the application

code [11] or using profiling tools to validate the proposed

mechanisms [12]. However, in both cases, the analysis of

reliability is complex to perform or limited, considering that

detailed information about the structure of the device and its

implementation are commonly unknown.

An alternative solution is based on model simulation or

emulation. In this approach, a model is available and can be

instrumented to inject faults in the target module. Then,

thanks to the model, we can compute the effect of a fault

during the execution of a given application. The outputs can

be observed and used to perform a reliability assessment or to

identify structural or application weaknesses in a GPGPU.

Moreover, these analyses are employed to choose the most

suitable mitigation strategy in an application at different

levels (e.g., hardware, software, or system) [13].

The level of abstraction in a model is a crucial parameter

that affects the expected conclusions and is related to the

characteristics and the degree of similarity with the behavior

of a real device. Hence, for the purpose of the reliability

analysis against SEUs, models with low-level descriptions,

e.g., implementations using some Hardware Description

Language (HDL) at Register Transfer Level (RTL) or gate

level, are preferable since they provide a detailed

representation of the internal structures. However, such

models require higher computational effort for simulation or

emulation than the high-level ones.

Regarding GPGPU devices, the number of available

models to support reliability analysis is limited. Moreover,

most models are described at high-level [14-20] or as a

combination of multiple levels of abstraction [21], which

renders reliability analysis against SEUs on critical units,

such as controllers or arbiters unfeasible. On the other hand,

there is a set of low-level GPGPU models available: IPPro

[22], FGPU [23], Simty [24], Nyami [25] and FlexGrip [26].

The first four models were designed targeting FPGA

platforms using custom architectures. Thus, their custom

architectures and implementation target technologies would

limit the capability for reliability analysis, especially when

commercially available GPGPU devices are concerned. On

the other side, the architecture implemented in the FlexGrip

model is closer to commercial devices by NVIDIA. FlexGrip

also supports partial binary compatibility with the NVIDIA

G80 instruction set. Unfortunately, the original version of the

FlexGrip model has some restrictions related to technology

dependency, instructions format support, and compiler

compatibility, limiting the development and study of new

applications to support reliability analysis.

In this paper, FlexGripPlus
*
 is introduced as a new version

of the FlexGrip model with improvements, including a set of

architectural and functional changes in the model to increase

flexibility while maintaining the architecture of the original

*

Available at: https://github.com/Jerc007/Open-GPGPGU-FlexGrip-

design. The FlexGripPlus replaced Xilinx FPGA library

dependencies in the original version and now has support for

a reviewed and extended set of instructions compatible with

the NVIDIA programming environment.

Some representative applications have also been

developed for FlexGripPlus besides the five applications

from the original version as benchmarks to evaluate the effect

of SEUs in data-path and control-path modules. It is worth

noting that in previous works [27], [28], some initial

improvements have already been briefly described. Similarly,

preliminary results have been presented in [29] and [30],

characterizing the fault effects on some modules of the

GPGPU model.

The main contributions of this work are:

 The detailed description of the approach we used to

verify, correct and extend the functionality of the original

GPGPU model at the microarchitecture level to develop the

FlexGripPlus model;

 The method used for performing the fault simulation

campaigns on FlexGripPlus targeting SEUs;

 The description of the new benchmark applications, as

well as the required software environment to support further

application development;

 The analysis of the results coming from the fault

simulation campaigns targeting both the data-path and the

control-path of FlexGripPlus. To the best of our knowledge,

this is the first work reporting a detailed analysis of the

sensitivity of different modules of a GPGPU to SEUs under

different encoding styles.

The rest of the paper is organized as follows. Section II

briefly describes the general organization of a GPGPU and

the FlexGrip model. Then, section III introduces the proposed

improvements introduced into FlexGripPlus and the adopted

methodology. Section IV presents the fault injection setup,

the targeted modules, and the selected benchmarks for the

fault injection campaigns. Section V reports the experimental

results and the reliability analysis regarding SEUs. Finally,

Section VI draws some conclusions and outlines future

works.

II. BACKGROUND

This section introduces the fundamentals of the

microarchitecture of a GPGPU device and describes the

relationship between the FlexGrip model and the related

commercial devices.

A. General GPGPU micro-architecture

The GPGPU devices initially targeted for Graphics

Processing (hence, the GPU in the name), are commonly

based on the Single-Instruction Multiple-Data (SIMD)

taxonomy [31] and its variations, such as the Single-

Instruction Multiple-Thread (SIMT) concept by NVIDIA

[32]. Thanks to their high parallelism, these devices are more

and more adopted in fields other than Graphic Processing,

such as scientific computation, where data-intensive

workloads can be processed in parallel. A GPGPU device

based on SIMT, such as the ones from NVIDIA, is mainly

composed of a set of highly parallel execution cores, also

known as Streaming Multiprocessors (SMs) or Computing

Units (CUs), each of which can execute multiple threads

simultaneously utilizing its own registers, caches, local

memories, control units, and execution units. The

computational capability of a GPGPU device is proportional

to the number of available SMs
†
 and the local resources

available in each SM.

Fig. 1 shows a general scheme of the architecture of a

GPGPU device with four SMs. It includes a Block Scheduler

to distribute the tasks among the SMs. Each SM block is

mainly composed of multiple parallel execution cores

(CUDA cores, Execution Units (EUs), or Scalar Processors

(SPs)) and other modules, including instruction and data

caches, a scheduler controller (or Warp Scheduler Controller

(SC)), one or more warp dispatchers, a register file (RF), and

some local memories. Modern GPGPU architectures may

also include accelerators implementing complex operations,

such as the cross product of matrices (Tensor-cores),

floating-point operations (FP32/FP64), and transcendental

functions (SFU). The scheduler controller and warp

dispatchers are crucial modules in the SM to manage the

executions of threads (particularly when local resources do

not allow all threads, organized into warps, to be executed

simultaneously) and to manage the occurrences of the intra-

warp divergences due to thread-dependent branches [32-35].

B. FlexGrip model

The FlexGrip is an open-source soft-GPGPU model based

on the NVIDIA G80 microarchitecture and implemented in

†
Through the paper, we use SM and CU indifferently as they are at the same

level of parallelism. The same applies to CUDA core, Execution Units (EUs)

and Scalar Processors (SPs) etc.

Fig 1. A general scheme of the GPGPU micro-architecture. Adapted from
[33], [34].

FP32 x 16

INT x 16

Register File (RF)

Scheduler

Dispatcher

Instruction Cache

FP64 x 8 Tensor Core

SFU LD/TS x 8 FP32 x 16

INT x 16

Register File (RF)

Scheduler

Dispatcher

Instruction Cache

FP64 x 8 Tensor Core

SFU LD/TS x 8

FP32 x 16

INT x 16

Register File (RF)

Scheduler

Dispatcher

Instruction Cache

FP64 x 8 Tensor Core

SFU LD/TS x 8 FP32 x 16

INT x 16

Register File (RF)

Scheduler

Dispatcher

Instruction Cache

FP64 x 8 Tensor Core

SFU LD/TS x 8

B
lo

ck
 S

ch
ed

u
le

r

VHDL. This GPGPU model was developed by the University

of Massachusetts [26] and was designed to be fully

compatible with the CUDA programming environment using

the SM 1.0 compatibility. The FlexGrip model is based on

the description of a Streaming Multiprocessor (SM) module

and supports 27 assembly (SASS) instructions. Originally it

was designed targeting a Xilinx SRAM-based FPGA.

Fig. 2. The general scheme of the SM in the FlexGrip model [26].

The internal description of SM in FlexGrip is mainly

composed of a five-stages pipeline (Fetch, Decode, Read,

Execution, and Write-Back) following the G80

microarchitecture [32], as shown in Fig. 2. The total number

of SPs in the Execution stage is configurable during the

synthesis to 8, 16, or 32 parallel cores.

The FlexGrip model includes a basic memory hierarchy

composed of system memory, a global or main memory, a

shared memory, and constant memory. It is worth noting that

cache memories are not included in the model. FlexGrip also

includes two task schedulers (Block Scheduler and Warp

Scheduler), both adopting a round-robin algorithm as a

distribution policy to manage intra-warp divergences caused

by a branch instruction. A custom branch module is

implemented with a stack memory (denoted as “Divergence

Stack” in Fig. 2) to handle up to 32 levels of divergence.

Please note that there are registers between different stages of

the pipeline (black boxes named “PRx” in Fig. 2), which may

also be subject to SEUs. The Structural comparison between

the schemes of the FlexGrip model and the commercial

GPGPUs (from NVIDIA) shows that both share the same

basic functional blocks, including the block and warp

scheduler controllers, a register file, the parallel execution

units, and the pipeline stages.

Nevertheless, the memory hierarchy in FlexGrip differs

from the one in the commercial devices by the missing cache

memories. Moreover, FlexGrip has no floating-point modules

or special purpose accelerators. These structural limitations in

FlexGrip can affect the adoption of the most recent

applications. However, we argue that the analysis of

reliability and fault effects on data-path and control-path

modules performed in FlexGrip can still be meaningful with

respect to the commercial devices considering the

architectural similarities between them.

III. FLEXGRIPPLUS

The development of more complex and detailed analysis

and correlate results with real devices required the correction

of some limitations present in the original FlexGrip version.

So, FlexGripPlus has been implemented with some

modifications and improvements based on the original

version of FlexGrip.

The major limitations of the original FlexGrip include the

dependency on the Xilinx FPGA library, the limited number

of supported instructions, and the incomplete compliance

with the NVIDIA application development environment.

During the FlexGripPlus development, the microarchitecture

of the original model has been kept untouched while each

initially supported instruction and the newly added

instructions have been carefully verified for correctness. To

achieve this, a methodology to improve the FlexGrip model

has been used based on the following steps:

1. Rigorous structural analysis of the FlexGrip model

2. Development of basic test programs to verify each

instruction supported by the design

3. Simulation and interpretation of results

4. Definition of potential corrections

5. Application of the revisions and verification with

previous programs

6. Development of new applications based on typical

applications and workloads for validation purposes.

In the beginning, the analysis of the internal structures in

FlexGrip revealed that some modules, including the

distribution controller of RF, the Decode stage, and the

Execution stage, are incomplete. These incomplete modules

can lead to incorrect results under certain circumstances and

had to be fixed. Then (in step 2), a large number of specific

applications were developed to generate all the potential

format of the supported instructions and verify the correct

execution of each instruction. Each program was developed

using the CUDA environment when possible, or directly at

the assembly level. During this step, incompatibility issues

between the instruction decoding implemented in FlexGrip

and the binary code generated by the CUDA environment

have been identified and fixed. Furthermore, for each

modification, steps 3 to 5 have been repeated to verify the

correctness of the new implementation. This methodology

should serve as a guideline if the model has to be further

improved and new modules have to be added.

Through the process of implementing FlexGripPlus from

the original FlexGrip, the introduced changes can be divided

into three groups.

1) Technology dependency

The FlexGrip model was initially designed as soft-core

targeting a Xilinx FPGA, and some internal modules, such as

the memories, were automatically generated as IP cores using

the Xilinx System Generator tool. The descriptions of these

IP cores are not human-friendly to read or analyze and

significantly limit the possibility to perform the required

gate-level analysis when SEUs are concerned.

In FlexGripPlus, we carefully modified each module by

removing any reference or dependency on specific

technology libraries, replacing them with equivalent generic

descriptions. Through this process, the names of signals,

interconnections, and modules were clarified to simplify the

analysis on each signal after a fault simulation campaign. In

the end, about 40% of the modules were modified for this

purpose. It is worth noting that the model can now be easily

imported into different simulation environments, such as

ModelSim, QuestaSim, or Xcelium Parallel Simulator.

Moreover, the removal of the technology dependency from

the model allows mapping the model into other platforms or

technologies that were not previously supported, such as

ASICs. The FlexGripPlus model can be synthesized using

proprietary or independent technology libraries, such as the

ASIC 45nm OpenCell [36] or the 15nm OpenCell [37]

libraries.

2) Instruction format support

The original FlexGrip implementation was intended to be

compatible with the CUDA programming environment

through SASS instructions. However, through simulation and

analysis using the test programs we developed, some internal

modules in control- and data-path units, such as decoding

logic, intermediate registers, and block interconnections,

were found to be not present or only partially implemented.

Hence, we started from the initially supported instructions

in FlexGrip, and each instruction was verified against the

NVIDIA CUDA programming environment. As NVIDIA has

not officially released the SASS op-codes (i.e., the instruction

formats), the op-code and formats of some instructions were

decoded using the CUDA binary tools, namely nvcc and

cuobjdump, and the Decuda open-source project [38].

Additionally, multiple benchmark applications were designed

targeting specific instructions to force the compiler to

produce the target instruction op-code under various formats.

Some issues, such as the compiler optimizations, and the

change or removal of instructions, required the explicit

addition of numerous output memory locations in the micro-

kernels.

All the required changes (e.g., descriptions of missing

registers, connections, combinational logic, or the correction

of incomplete modules) were introduced in the FlexGripPlus

model to fully support the set of instructions with all the

format variations, including 28 instructions and 74 formats.

Table I shows the supported control-flow instructions and

their formats. Table II lists the supported arithmetic and logic

instructions. Finally, Table III shows the data-handling and

memory instructions. The parameter COMP_TYPE in Table

II refers to the comparison type and modifies the state of a

predicate flag as the effect of an arithmetic or logic operation.

The COND parameter in Table I is related to the conditional

execution of an instruction, considering the state of a

predicate flag. The g[] and c[0x1][] fields correspond to

instructions using operand sources coming from the shared

memory and the constant memory, respectively.

TABLE I. CONTROL-FLOW INSTRUCTIONS SUPPORTED IN FLEXGRIPPLUS

Mnemonic Description Formats

BRA branch BRA CX.COND Imm

BRA Imm

BAR barrier synchronization BAR.ARV.WAIT b0, 0xFFF

RET return from kernel RET

RET CX.COND

SSY set synchronization point SSY Imm

NOP no operation NOP

NOP.S

TABLE II. ARITHMETIC AND LOGIC INSTRUCTIONS IN FLEXGRIPPLUS

Mnemonic Description Formats

I2I integer to integer

conversion

I2I.U32.U16/S16 RZ, RX(L|H) / g[].U16

I2I.U32.S32 RZ, |RX| / -RX

I2I.U32.U16.BEXT RZ, RX(L|H) / g[].U8

I2I.S32.S16.BEXT RZ, RX(L|H) / g[].S8

IMUL/

IMUL32/

IMUL32I

integer

multiplication

IMUL.U16.U16 RZ, RX(L|H) / g[].U16, RY(L|H)

IMUL.S16.S16 RZ, RX(L|H) / g[].S16, RY(L|H)

IMUL32.U16.U16 RZ, RX(L|H)/g[].U16, RY(L|H)

IMUL32I.U16.U16 RZ, RX(L|H), Imm

IMUL32I.S16.S16 RZ, RX(L|H), Imm

SHL shift left SHL RZ, RX, RY / Imm

SHL RZ, g [], Imm

SHL.U16 RZ(L|H), RX(L|H), Imm

SHR shift right SHR.S32 RZ, RX, RY / Imm

SHR.S32 RZ, g [], Imm

SHR.U16 / S16 RZ(L|H), RX(L|H), Imm

SHR RZ, g[], Imm

SHR RZ, RX, RY / Imm

IADD/

IADD32/

IADD32I

integer add IADD RZ, RX / -RX, RY

IADD RZ, g[], RX / -RX

IADD RZ, RX, c[0x1][]

IADD32 RZ, RX, RY / -RY

IADD32 RZ, g [0x..], RX / -RX

IADD32.U16 RZ(L|H), RX(L|H), RY(L|H) /

-RY(L|H)

IADD32I RZ, RX / -RX, Imm

IADD32I RZ, g[], Imm

IMAD/

IMAD32/

IMAD32I

integer multiply

and add

IMAD.U16/ S16 RZ, RX(L|H), RY(L|H), RW

IMAD.U16/ S16 RZ, RX(L|H), c[0x1][], RY

IMAD. RZ, RX(L|H), c[0x1][], RY

IMAD32.U16 RZ, RXL|H, RYL|H, RZ

IMAD32I.U16/ S16 RZ, RX(L|H), Imm, RZ

LOP bitwise logical

Operation

LOP.AND/OR/XOR/PASS_B RZ, RX/ g[], RY

LOP.AND/OR/XOR/PASS_B RZ, RX, c[0x1] []

LOP.U16.AND/OR/XOR/PASS_B

 RZ(L|H), RX(L|H), RY(L|H)

ISET integer

comparison

ISET RZ, RX, RY / c[0x1][], COMP_TYPE

ISET RZ, g[], RX, COMP_TYPE

ISET.S32 RZ, RX, RY / c[0x1][], COMP_TYPE

ISET.S32 RZ, g[], RX, COMP_TYPE

TABLE III. DATA AND MEMORY INSTRUCTIONS IN FLEXGRIPPLUS

Mnemonic Description Formats

MVC load from constant

memory

MVC RX, c [0x1] []

GLD load from global

memory

GLD.U32|U16|S16|U8|S8 RZ, global14[]

GST store to global

Memory

GST.U32|U16|S16|U8|S8 global14[], RX

MOV/

MOV32

move register to

register/load from

shared memory

MOV RZ, RX / g[]

MOV.U16 RZ(L|H), RX(L|H) / g[].(U16|U8)

MOV32 RZ, RX / g[]

MOV32.U16 RZ(L|H), RX(L|H)

MVI move immediate to

destination

MVI RX, Imm

R2G store to shared

memory

R2G.U32.U32 g [], RX

R2G.U16.U16 g [], RXL|H

R2G.U16.U8 g [], RX

R2A move data register

to address register

R2A AX, RX

A2R move address

register to data

register

A2R RX, AX

ADA move Address

register to Address
register

ADA AX, AY

In the end, about 4.8% of the code in FlexGrip was

modified for this purpose. Most of those modifications were

performed in the Decode and Read stages of the pipeline in

the SM.

3) Compiler restrictions

The primary approach to develop new applications for the

FlexGrip model was based on the CUDA programming

environment. After the instruction compatibility issues

mentioned above were fixed in FlexGripPlus, there was still a

gap between all the instructions that can be generated by the

CUDA compiler and the instructions supported in

FlexGripPlus. Hence, three software tools have been

developed to check and preserve the compatibility between

the CUDA programming environment and the FlexGripPlus

implementation.

Firstly, an assembly language checker tool named SASS

checker has been developed to check the binary code

generated by the CUDA compiler nvcc against the

instructions supported by FlexGripPlus. If any unsupported

instruction is generated by nvcc, then the second tool, an

assembly code writer tool named SASS parser, will try to

convert any unsupported instruction into one or more

supported instructions with the equivalent operation.

However, in case of failure of such a conversion attempt, the

tool will report an error, and the user manually modifies the

source code to avoid the generation of unsupported

instruction.

Thirdly, a memory configuration tool named Index

corrector can verify and correct the mismatches in the

addressing indices, which are used to address the memories

during the execution of an application. The index corrector is

required considering that the locations to store the variables

in a program are managed and decided by the compiler tool

without significant user intervention. However, in multiple

applications, it was required to verify and correct the indices

used to address the memories of the system since the way

FlexGripPlus manages the global, shared, and constant

memories are not exactly the same as in NVIDIA devices.

With the three tools, the time to develop new applications

as benchmarks for reliability analysis using FlexGripPlus is

greatly reduced. They are also used in step 6 mentioned

previously to use new applications to verify modifications

done in FlexGripPlus.

In Table IV, a comparative analysis of the main features of

FlexGrip and FlexGripPlus is presented to list the effects of

the introduced modifications and the improvements

mentioned above.

It is worth noting that one additional instruction (ADA)

was implemented, which is fully compatible with the

programming environment. The ADA instruction manages

the interaction among the address register modules in the

GPGPU and is commonly used to access the shared memory.

TABLE IV. COMPARATIVE ANALYSIS OF MAIN FEATURES IN THE

FLEXGRIP AND FLEXGRIPPLUS MODELS

 FlexGrip FlexGripPlus

Instructions 27 instructions
(partially supported)

 28 Instructions fully
supported

 78 formats of instructions

verified

Programming

environment
 Partially compatible

with the CUDA
programming

environment.

 A manual mechanism to
compile the CUDA (.cu)

file and adapt to the model

 Partially compatible with

the CUDA programming
environment.

 A tool to translate the

CUDA (.cu) description into
the final binary file used in

the model

 A tool to develop
applications at the assembly

level (SASS)

 A tool to verify the

compatibility of the
generated assembly code.

Applications Only 5 benchmarks More than 20 verified

applications

Simulation or

Implementatio

n platforms

 Simulation (ISIM,

VIVADO simulator)

 FPGAs (Xilinx)

 Simulation (ModelSim,

Xcelium Parallel Simulator)

 FPGAs

 ASICs

Memory

management

support

 An additional support to
manage the address register

file employed to access the
Shared memory

IV. FAULT INJECTION SETUP

This section introduces a custom cross-platform fault

injection environment developed to evaluate the effects of

SEUs in the FlexGripPlus model. It is worth noting that

technological features were not considered in the experiments

to represent SEU effects. The goal of our experiments was

rather to compute the fault rate and the Architectural

Vulnerability Factor (AVF)[39] of different modules in the

FlexGripPlus model. Sub-section A describes the fault

injection environment. Sub-section B presents the target

modules in FlexGripPlus to be evaluated. Finally, sub-section

C briefly describes the benchmarks selected to perform the

fault campaigns.

A. Fault injection environment

The fault injection environment was developed based on

the ModelSim simulator framework. Nevertheless, this can be

easily adapted into other simulator frameworks, such as the

Xcelium Parallel Simulator or QuestaSim. The developed

environment follows the guidelines introduced in [40] using

commands provided by the simulator to inject faults.

Additionally, the environment can reduce the total time of the

fault simulation by taking advantage of 1) parallel

capabilities of the modern computers to run multiple

simulations simultaneously and 2) a module de-rating factor

(UDR) to pre-process the fault list and reduce the number of

locations to inject faults. The UDR is computed utilizing

results from a fault-free simulation. The information is

analyzed (i.e., switching activity or correlation) in the target

module, and finally, those unused locations by an application

are removed [41, 42].

The fault injection environment is implemented in Python

and is composed of three main modules, as shown in Fig. 3:

1) a fault controller, 2) a fault injector, and 3) a fault checker

and classifier.

Fig. 3. A general scheme of the simulation environment for FlexGripPlus.

The fault controller manages the execution of a fault

campaign, including initialization of target design in the

specific simulator, starting and ending of a fault injection run.

In the case of FlexGripPlus, the fault controller loads the

FlexGripPlus design, the parameters of the benchmark

application (kernel), the initialization data of different

memories, including the application itself in the System

Memory and the input data in the Global Memory. In the

meantime, the optimized fault list (generated by another tool,

not shown in Fig. 3) is loaded by the fault controller and

divided into chunks to be launched simultaneously. Once

everything is ready, fault injection commands will be sent to

the fault injector.

The fault injector decodes a fault injection command from

the fault controller and generates the command(s) to be

executed by the target simulator, e.g., ModelSim. Currently,

two types of faults are supported by the environment: 1)

permanent Stuck-At faults, and 2) transient bit-flip faults. As

the focus of this paper is on SEUs, the fault injection

command generated in the fault simulation campaign

includes the signal name (fault location), the event time (fault

occurrence time), and duration (related to the clock frequency

of target design). The fault injector then starts a simulation

run with the generated command(s) and waits for the run to

finish to process another fault injection command.

Finally, the fault checker and classifier monitor the outputs

until the termination of the simulation run, gather

information, and classify the fault accordingly. In the case of

FlexGripPlus, the faults are classified into the following

categories: 1) Silent Data Corruption (SDC) when the

injected fault affects only the final results in memory, 2)

Detected Unrecoverable Error (DUE) when the DUT hangs

or crashes during the simulation, 3) Timeout when the SEU

produces performance degradation in simulation time and 4)

Masked when the injected fault does not generate any impact.

When using the developed fault injection environment for

fault simulation campaigns targeting FlexGripPlus reported

in this paper, the fault list is generated with a careful

selection of fault location considering the actual used

registers and memory locations used in each benchmark

application, while the fault occurrence time is selected

randomly.

B. Targeted modules

Two data-path and two control-path modules were targeted

for evaluation in FlexGripPlus.

1) Data-path modules

Register File (RF): This module is located inside the SM

and is composed of 16,384 32-bit registers. Each register can

be accessed in the Read and Write-back stages by different

threads depending on the parameters of the running kernel.

The data stored in the registers can be computational data or

addresses, which can affect the execution flow of the

application.

Pipeline Registers (PRs): These registers are located

among the stages of the pipeline and the warp scheduler, as

shown in Fig. 2. As these registers hold data and control

signals, SEUs in them can lead to data corruption or

interruption of the execution flow of the application. The size

of PRs in FlexGripPlus is reported in Table V.

TABLE V. SIZE OF PRS IN FLEXGRIPPLUS

Location (between) Size (# bits)

Fetch and Decode (F-D) 237

Decode and Read (D-R) 408

Execute and WriteBack (E-W) 6575

Read and Execute (R-E) 3456

WriteBack and Warp Scheduler (Wr-W) 133

Warp Scheduler and Fetch (W-F) 140

2) Control Path modules

Warp Scheduler (SC): this module manages the warp

execution inside the SM. A warp status memory is

implemented inside the SC to store status information about

the active warps. The warp status memory contains 32 128-

bit wide entries. The information stored on each entry is

composed of the active thread mask (aTM), the actual warp

program counter (wPC), and some additional parameters. The

information about the active warp is updated after each

instruction cycle.

Divergence Stack Memory (DSM): this special purpose

memory contains 32 32-bit wide entries storing the

divergence addresses and the status information of the warp

caused by branch instructions. The two execution paths

(Taken and Not-taken) are stored using two entries in the

DSM in terms of the starting (divergence) and finishing

(convergence) points along with the execution flow.

Additionally, each entry in DSM stores the warp index, the

flow state condition, and the aTM value to trace the number

of executed threads on each path.

C. Benchmarks

Six applications were carefully selected as benchmark

applications to evaluate the behavior of FlexGripPlus against

SEUs under different workload profiles.

1) FFT: The application is based on the Coley-Turkey

algorithm [43] and implements the butterfly element using

CUDA. Since FlexGripPlus does not provide support for

division operations, they were replaced by a software-based

approach using logarithmic and logical operations.

2) Edge detection (Edge): The application is based on the

Sobel algorithm applying an image filter of 3x3 to a 2-

dimensions input.

3) Vector_Add: This is one of the original applications

developed for FlexGrip. It calculates the sum of two vectors.

4) Bitonic-Sort (Sort): This is another original

application developed for FlexGrip. The application sorts a

sequence of consecutive data elements stored in an array.

This application includes multiple combinations of data

movements between memory and registers, and conditional

control-flow instructions, generating multiple paths during

execution.

5) M3: This application implements a Software-Based

Self-Test (SBST) algorithm introduced in [44]. M3 targets

the memory in the SC. It is composed of multiple control-

flow instructions utilizing mainly the control-path modules.

6) Matrix Multiplication (MxM): This application is

based on the General Matrix Multiplication (GEMM) routine,

which is optimized using the square tiling approach. The

input matrices are firstly divided into blocks. Then, partial

results are obtained by multiplication of corresponding

blocks. Finally, partial results are accumulated to get the final

results of matrix multiplication. The implementation is

limited to 32x32 input matrices.

V. EXPERIMENTAL RESULTS

As mentioned before, FlexGripPlus can be configured to

have 8, 16, or 32 SP cores in SM. Moreover, the benchmark

applications (kernels) can be launched using different thread

distribution strategies, so different combinations of

configurations have been used in the fault injection

campaigns.

An initial set of fault injection campaigns was carried out

using FlexGripPlus with 8, 16, or 32 SP cores to evaluate the

impact of SEUs on different hardware organizations. The

benchmark applications were launched using different thread

distributions: 32 and 64 threads per block (TPB) except

MxM was configured to 512 and 1024 TPB, given its

characteristics. The second group of fault injection

campaigns targeted a special analysis of SEU effects in the

SC under different workload distributions: 32, 64, 128, 256,

512, and 1024 TPB (though not for all the selected

benchmark applications). It is worth noting that fault

injection campaign employed the RT-level description of

FlexGripPlus.

A. Overall analysis with different configurations

The Relative Mean Workload Between Failures (MWBF)

[45] is selected as a metric for reliability analysis against

SEUs. The motivation for this choice is that MWBF accounts

not only for the percentage of faults producing a failure but

also for the different execution time, thus taking into account

the higher fault probability. When MWBF was calculated, a

constant fault rate was assumed for all applications and all

configurations, and the DUE errors were neglected.

Moreover, the execution time of each benchmark was

calculated, only considering the time interval from the

execution of the first instruction up to the kernel termination.

Table VI reports the results of the first set of fault injection

campaigns in terms of MWBF, expressed in terms of the fault

rate per bits per clock cycles (cc). Please note that the

evaluation of SC is performed individually for the warp status

memory and control logic.

Though it is difficult to perform direct comparisons with

previously reported experiments in literature, similar

conclusions regarding how the number of available SPs and

different thread distributions impact the reliability of

application execution can be found. In [46], the authors

concluded that an increment in the number of blocks reduces

the MWBF of an application. Similarly, in [47], experiments

proved that an application running in a GPGPU is more

reliable when increasing the block size instead of increasing

the number of blocks. The same trend can be observed in

Table VI from the results of, for example, FFT when RF,

PRs, and SC are targeted, and Edge when RF, PR are

evaluated, etc. However, the opposite trend can also be

observed from results of, for example, Vector_Add when

warp status memory in SC is targeted, and M3 when DSM is

targeted. The trend also changes even with the same

application when the FlexGripPlus is configured to different

numbers of SPs in SM, for example, Edge with 8 or 16 SPs

available and 32 SPs when warp status memory in SC is

targeted.

Please note that, in this paper, we are targeting individual

modules instead of the whole devices as in [46] and [47], so

that the impact of reliability against SEUs of each individual

modules are different, as reported in Table VI when

FlexGripPlus is configured with different number of SPs and

application launched with different thread distribution

profiles. Besides, current FlexGripPlus implementation is still

limited to one SM that Block Scheduler did not make any

contributions to the fault injection campaign results.

B. Detailed analysis per module

The Fault error rate was computed for each module under

test and for each application categorized in three different

effects, i.e., SDC, DUE, and Timeout. The obtained results

are presented as follows w.r.t. each targeted module.

1) Register File (RF)

In total, 30 fault injection campaigns using the FFT, Edge,

M3, Sort, and MxM benchmark applications have been

performed, each considering 34,816 faults, resulting in the

confidence of 99.46%. Meanwhile, for the Vector_Add

application, 10,240 faults have been injected for 32 SPs

configuration, and 8,192 faults for 16 and 8 SPs. With the

aforementioned fault injection environment, the fault

simulation time was reduced from about 200 hours to less

than 25 hours: the adoption of the UDR factor allowed us to

reduce by up to 95% the total amount of injected faults. Fig.

4 reports the error rate percentage for each application.

It can be observed that FFT and Edge show similar

distribution when the RF module is targeted. Vector_Add

does not produce any DUE or Timeout as it does not contain

branch instruction in the implementation. Sort and M3 both

have DUE as the majority due to the large percentage of

branch instructions that can be affected by SEUs in the

registers. For MxM, it shows a mixture of both as it is a data-

intensive application, while some branches in the

TABLE VI. FAULT INJECTION CAMPAIGN RESULT IN TERMS OF MWBF

RF

MWBF (fault*bits/cc)

PRs

MWBF (fault*bits/cc)

SC warp status memory

MWBF (fault*bits/cc)

SC logic

MWBF(fault*bits/cc)

DSM

MWBF (fault*bits/cc)

Benchmark
#SP

TPB
8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

FFT
32 3.7 5.6 7.6 165.4 202.1 96.1 570.3 1,696 565.4 20.0 34.3 102.2 207.6 269.1 399.8

64 8.5 6.8 11.5 292.2 353.7 157.7 7.5 33.6 766.2 25.4 85.6 140.1 63.7 155.7 259.9

Edge
32 10.6 16.4 22.0 543.6 599.3 301.3 174.5 974.1 2,570.7 104.7 285.4 210.4 1,338.0 1,903.0 2,688.0

64 40.1 34.3 43.5 740.0 1,123.7 739.9 81.8 220.7 12,468.5 84.8 186.9 780.5 390.6 1,084.0 2,158.0

Vector_Add
32 57.0 79.7 139.2 3,878.8 4,219.8 4,735.5 361.1 2,166 16,163.7 615.7 970.7 1,766.9 - - -

64 60.2 83.9 111.6 2,849.2 5,820.8 6,037.7 194.7 585.0 2,208.1 640.7 1,084.0 1,985.0 - - -

M3
32 473.6 354.0 227.1 976.9 339.5 236.6 11.8 8.7 46.4 46.9 106.9 18.9 30.6 54.2 21.8

64 1,591.8 3270.2 2,349.7 1,830.5 654.0 637.8 436.9 996.2 998.6 61.3 53.2 2,366.5 26.3 6.3 8.4

Sort
32 307.7 165.7 31.4 173.1 176.1 125.6 207.7 238.3 282.5 212.3 252.2 393.0 358.4 14.2 17.6

64 0.0 80.7 266.1 116.8 127.7 139.7 362.1 801.8 1,649.7 203.3 327.4 944.6 2.2 3.2 12.0

MXM
512 10,114.2 14,509.4 15,910.2 101.7 73.3 133.3 11,592.1 14,216.3 13,655.6 88.1 128.2 177.7 6.8 15.1 -

1024 23,879.1 34,620.6 36,327.3 21.0 256.4 300.0 26,787.7 34,428.2 36,149.6 203.4 357.2 411.0 19.0 4.6 -

Fig. 4. Fault rate results in the RF in FlexGripPlus (the horizontal axis, from top to bottom, are #SPs, TPB and application name).

implementation can also be affected by SEUs to cause DUE.

When comparing results from different configurations,

from some applications, the trend of error rate is not so

evident since the error rate is affected by several aspects, for

example, the number of registers actually utilized during

execution, the duration of each data stayed inside registers,

etc. However, some interesting effects can be observed. In

FFT, when the TPB increased from 32 to 64, a DUE

decrement can be seen due to the fact the execution time is

reduced, while as the number of registers utilized increased,

the SDC rate is not decreased as DUE (except when the

number of SP is configured to 8. In Sort and M3, an growth

of DUE rate can be observed when the TPB increase from 32

to 64 as opposite in FFT, because Sort contains large portion

of branch instructions whose execution depends on the value

of data so that when more registers are utilized higher the

probability of a DUE because of data corruption in register.

In MxM, this trend of DUE rate increment is not as obvious

as in Sort, because the branch instructions in MxM do not

depend on the input data values, though it still depends on the

loop variables. These observations are similar to those shown

in [40] for applications with a high percentage of control-

flow instructions.

Similar trends in different applications can be observed

when the number of SPs in SM is increased from 8 to 16 then

to 32, for example, the increment of DUE in the Sort

application. However, the other applications do not present

such consistent and visible increase, as when the number of

SPs changes, not only the register utilization changes but also

the threads have to be organized into warps differently, which

causes changes in registers load and store pattern.

2) Pipeline Registers (PRs)

In total, 144 faults injection campaigns were performed

targeting PRs in FlexGripPlus. A total of 30,000 SEUs were

injected per configuration. The fault injection results in terms

of the averaged fault rate in the entire structure are shown in

Fig. 5.

It can be observed from the results that increase TPB will

lead to an increment of error rate, including SDC and DUE.

This behavior can be explained as the additional time cost for

processing warps of the same block increases the probability

of an SEU in PR to be propagated through pipeline. Another

clear trend that can be observed is that the error rates

decrease when more SPs are available in SM. For Timeout,

this trend is not consistent across different applications and

configurations.

For M3, DUE is the majority for all the configurations as it

is control-flow oriented application. For Vector_Add, as it is

data-oriented (without branch instruction), the majority effect

land in SDC. For the other applications, it is less obvious.

When analyzing the PRs between different stages, as listed

in Table V, the SEU sensitivity fluctuates from 1.2 to 13.5

times, shown in Fig. 6, which indicates the existence of

Fig. 5. Fault rate results in the PRs in FlexGripPlus (the horizontal axis, from top to bottom, are #SPs, TPB and application name).

0
.5
1

0
.3
0

0
.3
4 1
.5
2

0
.7
9

0
.5
2

0
.1
0

0
.4
5

0
.3
6

0
.6
3

0
.3
9

0
.1
3 1
.7
6

1
.0
6

0
.5
1 1
.7
2

2
.1
3

0
.7
7

0
.4
1

0
.1
9

0
.1
0

0
.5
9

0
.1
6

0
.0
9

0
.7
3

0
.7
4

0
.8
2

1
.1
0

0
.5
9

0
.1
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

8
.0
6

5
.7
1

3
.6
2

1
2
.1
7

9
.0
9

5
.3
0

9
.3
4

5
.8
4

1
.8
5

1
2
.8
0

9
.0
5

3
.6
5

1
0
.1
4

8
.3
7

4
.0
8

1
2
.8
1

8
.2
1

5
.1
4

9
.7
7

5
.8
5

3
.8
9

9
.8
2

7
.7
7

4
.8
8

1
0
.7
2

1
0
.8
1

8
.8
0

1
3
.9
9

1
2
.3
0

8
.2
2

0
.3
4

0
.5
1

0
.9
5

0
.5
0

0
.7
0

1
.0
2

1
6
.0
9

1
3
.7
0

1
0
.2
2

1
8
.6
2

1
7
.0
8

1
2
.5
1

1
3
.9
2

1
1
.6
4

6
.3
2

1
6
.2
0

1
4
.6
6

8
.4
7

1
3
.0
6

9
.6
0

5
.5
4

1
6
.1
9

1
1
.0
1

8
.6
6

1
2
.2
5

8
.9
8

6
.4
0

1
3
.2
5

1
0
.8
1

6
.7
7

6
.7
2

6
.2
3

5
.5
7 7
.6
8

6
.9
7

4
.8
9

0
.3
0

0
.1
6

0
.2
4

0
.3
1

0
.2
8

0
.2
7

8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

32 64 32 64 32 64 32 64 32 64 512 1024

FFT VECTOR_ADD EDGE SORT M3 MXM

Timeout DUE SDC

0

5

10

15

20

25

8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

32 64 64 64 32 32 32 64 64 64 32 32 32 64 64 64 32 32 32 64 64 64 32 32 32 64 64 64 512512512102410241024

FFT Vector_Add Edge Sort M3 MxM

W-F F-D D-R R-E E-Wr Wr-W

0

5

10

15

20

25

30

8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

32 64 64 64 32 32 32 64 64 64 32 32 32 64 64 64 32 32 32 64 64 64 32 32 32 64 64 64 512512512102410241024

FFT Vector_Add Edge Sort M3 MxM

W-F F-D D-R R-E E-Wr Wr-W

Fig. 6. Fault injection results of different PRs between different stages (the

horizontal axis, from top to bottom, are #SPs, TPB and application name).

(a) DUE

(b) SDC

critical PRs. It turns out the PRs storing the instruction

decoding and warp status information are the ones of highest

sensitivity against SEU contributing a large proportion of

SDC and DUE during fault injection campaigns. In [40], the

authors presented similar conclusions when evaluating the

PRs of a GPGPU. Although a direct comparison of the results

cannot be performed, both works show that the E-Wr PR is

among the most SEU sensitive PRs, as indicated in Fig. 6.

3) Warp Scheduler Controller (SC)

The SC module was divided into two parts for analysis

purposes: the internal memories and the sequential logic

elements. Thirty-six fault campaigns have been carried out.

 Contradicting to the criticality of this module, the fault

injection campaign results show low sensitivity against SEU,

in which, though the sequential logic corresponds to 14.3% of

the entire elements in the SC, it generates between 85% and

92% of DUE among the detected faults for all the tested

applications.

The unexpectedly low error rate in the SC internal

memories is caused by a loop existing between the SC and

the SM pipeline stages, which masks the fault effects. The

execution of an instruction in the SM requires SC to control

and check the execution, which causes the data in SC

memories frequently refreshed before it is read after data

corruption due to SEU. Nevertheless, in most benchmarks,

which are configured with a fewer number of TPB, the fault-

masking behavior is effective when the workload is relatively

small. However, it becomes ineffective in MxM as the

probability of data in SC memories read before overwritten

after an SEU increases with the workload.

In the operation of the SC, it is expected that an SEU

causes a single SDC effect and corrupt one value in the

results. However, it was observed that multiple SDC

conditions could also be presented in the output memory (i.e.,

lines, blocks, or random locations with erroneous results).

Table VII reports the percentage of SEUs that causes SDC

effects in the SC module divided into those generating single

and multiple effects in the memory.

An in-depth analysis shows that the multiple SDC

conditions are caused by SEUs affecting the wPC and other

fields of the memory in the SC, which are used redundantly

by numerous threads (base addresses employed to access the

RF or the shared memory). Similarly, the multiple SDCs are

caused by logic elements in the SC related to the

management of the information of the warps.

In general, for all the analyzed applications, errors

corrupting the wPC also affected the group of threads and

propagate in the execution, so causing multiple SDC. In

contrast, faults in the aTM field produce most single SDC

effects. In some control-flow-based applications (EDGE,

FFT, Sort, and M3), a small number of multiple SDC were

caused by errors present in the aTM field. Those errors

modified the execution of one thread in the execution paths

and caused additional operations or the missing of operations,

which affected subsequent executions in the program flow.

TABLE VII. DISTRIBUTION OF SEU EFFECTS IN THE SC CAUSING SINGLE

AND MULTIPLE OUTPUT EFFECT.

Benchmark TPB SPs

SDC (%)

Warp Status memory Logic

Single Multiple Total Single Multiple Total

FFT

32

8 0.024 0.025 0.049 1.4 1.28 2.68

16 0.014 0.01 0.024 1.2 1.12 2.32

32 0.042 0.056 0.098 0.4 0.61 1.01

64

8 6.53 2.4 8.94 1.1 1.43 2.53

16 2.19 1.2 3.39 0.7 0.56 1.26

32 0.12 0.1 0.22 0.64 0.39 1.03

VectorAdd

32

8 1.6 0.54 2.148 1 1.4 2.4

16 0.3 0.16 0.464 0.9 1.06 1.95

32 0.06 0.01 0.073 1.10 0.15 1.25

64

8 6.7 2.43 9.131 1.1 1.59 2.69

16 3.1 1 4.102 1.2 0.95 2.15

32 0 0 0 1.01 0.35 1.36

Edge

32

8 0.35 0.18 0.537 0.5 1.14 1.64

16 0.08 0.06 0.146 0.4 0.51 0.91

32 0.02 0.03 0.049 0.20 0.51 0.71

64

8 1.1 1.51 2.612 0.8 1.89 2.69

16 0.5 1.38 1.88 0.94 1.21 2.15

32 0.01 0.039 0.049 0.4 0.8 1.2

Sort

32

8 0,002 0,01 0,012 0,03 0,04 0,074

16 0,002 0,01 0,012 0,05 0,05 0,106

32 0,01 0,039 0,049 0,10 0,00 0,01

64

8 0,16 0,31 0,476 0,01 0,025 0,035

16 0,25 0,33 0,585 0,1 0,27 0,37

32 0,21 0,36 0,57 0,01 0,005 0,015

M3

32

8 0,41 0,13 0,54 0,3 0,11 0,414

16 0,28 0,18 0,46 0,12 0,17 0,297

32 0,14 0,15 0,292 0,23 0,23 0,467

64

8 0,93 0,6 1,53 0,6 0,21 0,81

16 1,48 0,7 2,185 0,66 0,24 0,9

32 1,58 0,65 2,23 0,5 0,49 0,99

MxM

512

8 13,51 20,69 34,2 0,16 0,1 0,26

16 12,75 18,3 31,05 0,17 0,11 0,28

32 11,39 13,2 24,59 0,22 0,1 0,32

1024

8 14,17 25,34 39,51 0,21 0,09 0,3

16 14,38 23,21 37,59 0,28 0,11 0,39

32 11,51 21,03 32,54 0,27 0,1 0,37

More in detail, the distribution of single and multiple SDC

effects differs on the applications and depends on parameters

such as the coding style and internal modules employed that

are correlated with the SC module. In the MxM application,

the high percentage of multiple SDCs is caused by the

existent connection between the status information of a warp

stored in the SC and the RF and the shared memory modules.

However, the trend is not present in other applications.

Vector_Add and M3 have limited use of the RF and Shared

memory, so the contribution of multiple SDCs by

misbehaviors in the management of these modules is low.

In other work [48], the authors reported the effect and

criticality of SDCs affecting neural network applications in

GPGPUs. In results, the authors also included results for the

MxM application. A comparison between the results of the

MxM with those introduced in the present work shows

equivalent trends. In [48], the authors found that the

distribution of SDCs caused by multiple errors in the output

lay in the range from 45 to 65%, without error margins. In the

listed results in Table VII, the MxM applications have an

equivalent tendency for the pool memory with a distribution

of SDCs in the range of 54 to 65%.

In contrast, the tendency is not followed by the logic part

of the SC, and it presents a lower range (27-39%). However,

it should be noted that the experiments performed in [48]

injected fault in all modules of a GPGPU. In contrast, we

perform fault injection campaigns targeting specific parts of

the SC module only. In any, case the obtained results show

the criticality of the SC module and the susceptibility to

SEUs of the MxM application.

On the other hand, the trend in the distribution of SDCs for

other applications is different. In Vector_Add, FFT, Edge,

and M3, the trend shows a higher percentage of SDCs caused

by single output errors than multiple ones, as analyzed

previously.

Furthermore, additional 24 fault injection campaigns have

been performed on Vector_Add, and M3 with different TPB

configures, and the number of SPs fixed to 32. The additional

experiments are intended to provide remarks regarding the

fault masking effect in the SC memories mentioned before.

The two applications were selected mainly by the

distinctive execution behaviors in the SC. Vector_Add

program includes high data-intensive operations without

control-flow or thread divergence operations. In contrast, M3

is mainly composed of control-flow operations and thread

divergence routines. Thus, SC is utilized in the two

applications with entirely different patterns. The TPB

configurations, used in the experiments, have a range from 32

to 1024 for both applications.

From the results, shown in Fig. 7, when the TPB is

configured to be 32 or 64, the fault masking in SC memories

is effective to limit the impact of SEUs, though we can still

observe a small amount DUE caused by SEUs in the logic

part of SC. When the TPB is increased up to 1024, the error

rate goes up rapidly, and two different distributions of DUE

and SDC can be observed when comparing results from

Vector_Add and M3 applications.

Thus, an optimized implementation for performance is, as

it often happens, not the best solution when reliability is

concerned. Further actions to increase reliability should be

adopted, such as ECC in the memory and Triple Modular

Redundancy (TMR) in the control logic. Finally, depending

on the type of application, different solutions (or in

combination) can have effectiveness for improving system

reliability against SEU.

4) Divergence Stack Memory (DSM)

In total, 50,688 faults have been injected, targeting FFT,

Sort, M3, and Edge applications to evaluate the sensitivity of

DSM against SEUs.

As the results are shown in Fig. 8, the DSM has a

relatively low sensitivity against SEUs when comparing to

other modules presented above. One reason for this is that

DSM is less utilized in the applications and even fewer cases

when multiple branches activate multiple level entries in

DSM. However, the general trend shows that a fault affecting

the SDM is critical and can cause a DUE collapsing the

operation of the system.

(a) Vector_Add

(b) M3

Fig. 7. Fault injection results of SC memories and logic under different TPB

configurations (the horizontal axis, from top to bottom, are #SPs, TPB, and
application name).

Similarly, a change in the SP configuration seems to

affect the sensibility of faults in the SDM module. This

behavior can be observed in the FFT, Edge, and M3

applications under 64 TPB. In each case, increasing the

number of SPs is inversely proportional to the susceptibility

to SEUs and is explained by the reduction in the management

operations performed by the SC for a large number of SP

cores in the SM. However, there is not any direct interaction

among the DSM and the number of SPs, so the observed

reduction in the 64 TPB is mainly caused by the correlation

between reduced management operations in the SC and

shorter operation times on the routines executed in a

0
.0
0

0
.0
0

0
.0
6

0
.1
0

0
.2
0

0
.0
4

0
.0
1

0
.0
0

1
.8
6

0
.0
0

1
.6
0

1
.8
5

0
.0
0

0
.0
1

2
.6
0

2
.1
6

1
1
.3
0

9
.2
3

0
.6
8

0
.2
4

0
.0
1

1
.7
0

0
.0
3

0
.0
0

0
.0
3

0
.0
2

1
.9
5

2
.4
2

6
.9
4

1
.2
0

0
.1
6

0
.1
3

4
.7
1

0
.5
8

4
.5
0

6
.8
5

32 64 128 256 512 1024 32 64 128 256 512 1024

MEMORIES LOGIC

Timeout DUE SDC

93.2

divergence path.

Among the four tested applications, Sort includes only

one conditional control flow instruction generating multiple

execution paths. However, the divergence in this benchmark

is data-dependent, so the generation of a new path depends on

the comparison of two operands from memory. This behavior

explains that the error rate did not change so much with

different configurations in Sort.

The M3 is also different from others as it intends to

generate multiple intra-warp divergences sequentially in the

first 32 threads, leading to an intensive switching activity in

SC. But it does not generate nesting divergence paths, i.e., it

does not use multiple level entries in the DSM. So, when the

TPB configuration is changed from 32 to 64, the switching

activity in SC is reduced while the level of utilization of

DSM due to divergence paths is not increased, leading to

decreased error rate, as shown in Fig. 8.

For FFT and Edge, similar trends can be observed as error

rates increase with TPB and decrease with the number of SPs.

This behavior is mainly due to the switching activity when

the different combinations of TPB and the number of SPs

affect the organization of warp execution.

Regarding the distribution of the DUE and SDC error

rates, it depends on the affected location within an entry in

DSM. An SEU in the wPC field may create Timeout or DUE

(or SDC). Similarly, an SEU affecting the aTM field may

generate SDC, by interrupting thread execution (i.e.,

unfinished computation), or DUE by causing threads to miss

the synchronization point. Finally, an SEU in the warp ID

field produces Timeout effects.

As seen in the comparison between FFT and Edge, a

decrement in TPB can help to reduce more than 50% of the

SDC error rate, which is coherent with the conclusion

introduced in [47] and [49].

C. General Comments

In contrast to previous work, this paper presents fault

injection results based on simulation under different

configurations involving different numbers of SPs and

different TPB configurations, targeting separate modules in

the proposed FlexGripPlus. Direct comparison with results of

previous works, where the SEUs were injected into a GPGPU

device indiscriminately [46-49] or at the instruction level [18]

is hard. However, similar trends of reliability impact of SEUs

with respect to different configurations, particularly in terms

of TPB, can be found. Some cases exist, where opposite

trends under certain combinations of settings are observed, as

presented in the previous subsections. Results reported in this

paper prove that modules inside a GPGPU device can be

affected differently when trying to balance performance and

system (application) reliability. Hence, different modules will

require different approaches to achieve some target reliability

figures.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we presented the new FlexGripPlus model,

the methodology we followed to develop it, the fault injection

simulation environment we used to gather extensive results

about the sensitivity of different GPGPU modules to SEUs

and different encoding styles, and the results gathered using

six applications targeting different modules and with different

configurations.

Besides the improvements made towards increasing the

set of supported instructions, another significant

improvement in FlexGripPlus is the technology

independence. This independence allows the usage of the

model at a lower level without any limitation related to the

targeted gate library and the simulation tool. More

importantly, in this way, it is possible to investigate the SEU

effects with fault injection techniques targeting specific

modules.

Although FlexGripPlus implements the NVIDIA G80

microarchitecture (as inherited from the original FlexGrip

model), it includes all principal and critical modules, which

are also present in modern GPGPU architectures. Moreover,

the compatibility of the model with commercial programming

tools allows the use of the same tools as in real application

development (with some limitations). Thus, it is possible to

perform reliability analysis in FlexGripPlus considering

Fig. 8. Fault injection results of DSM (the horizontal axis, from top to bottom, are #SPs, TPB and application name).

0.
03

0.
02

0.
01 0.
06

0.
05

0.
04

0.
01

0.
01

0.
01 0.
04

0.
04

0.
02

0 0.
01
8

0.
01
4

0 0 0 0.
04
2

0.
04
2

0.
02
3

0.
00
5

0 0.
00
5

0.
35 0.
37

0.
33

1.
41

0.
92

0.
77

0.
29

0.
3

0.
29

1.
21

0.
84

0.
62

0.
90
9

1.
02
2

1.
02
7

0.
7

1.
07
9

1.
07
9

1.
35

1.
37

1.
43

0.
41
1

0.
22

0.
11
8

0.
24 0.
29

0.
26

1.
01

0.
7

0.
6

0.
13

0.
14

0.
13

0.
56

0.
34

0.
26

0.
02
3

0.
00
94

0.
01
4

0.
00
94

0.
00
94

0.
01
8

0.
02

0.
03
3

0 0.
02
8

0.
00
5

0

8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

32 64 32 64 32 64 32 64

FFT EDGE SORT M3

Timeout DUE SDC

similar modules across generations of GPGPU architectures.

The performed fault injection campaigns provided

detailed results about the sensibility to SEUs of individual

modules of the GPGPU under different encoding styles (e.g.,

varying the TPB parameter). The evaluation was performed

employing representative applications with diverse workloads

to sensitize each module with different patterns. In some

cases, it was possible to determine correlations with previous

works. However, the existence of some inconsistency across

the different applications and configurations prompts for

further investigation for evaluating specific modules in

GPGPU devices against SEUs.

In general, a major result stemming from the gathered

results is that different modules behave in a rather different

manner when changing the TPB parameter and show

different sensitivity to SEUs. The specific characteristics of

each application may further change the above behaviors.

Previous results gathered at the GPGPU level could not catch

these aspects, which must be taken into account when

optimizing an application code for performance, reliability, or

in conjunction.

Although FlexGripPlus does not entirely match the

architecture of the most recent GPGPUs, we still claim that

the performed analyses to be valid considering the

similarities in structures of modern devices.

As an on-going work, we are currently extending the

reliability analysis to other modules within FlexGripPlus. We

also plan to further extend the instruction and hardware

support of the FlexGripPlus model following the SM 1.0

microarchitecture compatibility, including floating-point

units and special functional units into the model.

References

[1] W. Shi, M. B. Alawieh, X. Li, and H. Yu, "Algorithm and hardware
implementation for visual perception system in autonomous vehicle:

A survey," Integration, vol. 59, pp. 148-156, 2017/09/01/ 2017.

[2] V. Campmany, S. Silva, A. Espinosa, J. C. Moure, D. Vázquez, and
A. M. López, "GPU-based Pedestrian Detection for Autonomous

Driving," Procedia Computer Science, vol. 80, pp. 2377-2381,

2016/01/01/ 2016.
[3] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y.

Kitsukawa, et al., "Autoware on Board: Enabling Autonomous

Vehicles with Embedded Systems," in 2018 ACM/IEEE 9th
International Conference on Cyber-Physical Systems (ICCPS), 2018,

pp. 287-296.

[4] M. Yang, N. Otterness, T. Amert, J. Bakita, J. H. Anderson, and F. D.
Smith, "Avoiding pitfalls when using NVIDIA GPUs for real-time

tasks in autonomous systems," in 30th Euromicro Conference on

Real-Time Systems (ECRTS 2018), 2018.
[5] S. Hamdioui, D. Gizopoulos, G. Guido, M. Nicolaidis, A. Grasset, and

P. Bonnot, "Reliability challenges of real-time systems in forthcoming

technology nodes," in 2013 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2013, pp. 129-134.

[6] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J.

Stearley, J. Shalf, et al., "Memory errors in modern systems: The
good, the bad, and the ugly," ACM SIGARCH Computer Architecture

News, vol. 43, pp. 297-310, 2015.

[7] H. L. Hughes and J. M. Benedetto, "Radiation effects and hardening
of MOS technology: devices and circuits," IEEE Transactions on

Nuclear Science, vol. 50, pp. 500-521, 2003.

[8] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and T. Toba, "Impact of
Scaling on Neutron-Induced Soft Error in SRAMs From a 250 nm to a

22 nm Design Rule," IEEE Transactions on Electron Devices, vol. 57,

pp. 1527-1538, 2010.
[9] J. Espinosa, D. d. Andrés, and P. Gil, "Increasing the Dependability of

VLSI Systems through Early Detection of Fugacious Faults," in 2015

11th European Dependable Computing Conference (EDCC), 2015,
pp. 190-197.

[10] C. Y. H. Lin, R. H. Huang, C. H. Wen, and A. C. Chang, "Aging-

aware statistical soft-error-rate analysis for nano-scaled CMOS
designs," in 2013 International Symposium onVLSI Design,

Automation, and Test (VLSI-DAT), 2013, pp. 1-4.

[11] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer,
"SASSIFI: An architecture-level fault injection tool for GPU

application resilience evaluation," in 2017 IEEE International

Symposium on Performance Analysis of Systems and Software
(ISPASS), 2017, pp. 249-258.

[12] S. D. Carlo, J. E. R. Condia, and M. Sonza Reorda, "An On-Line

Testing Technique for the Scheduler Memory of a GPGPU," IEEE
Access, vol. 8, pp. 16893-16912, 2020.

[13] L. B. Gomez, F. Cappello, L. Carro, N. DeBardeleben, B. Fang, S.

Gurumurthi, et al., "GPGPUs: How to combine high computational
power with high reliability," in 2014 Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2014, pp. 1-9.

[14] S. Collange, M. Daumas, D. Defour, and D. Parello, "Barra: A Parallel
Functional Simulator for GPGPU," in 2010 IEEE International

Symposium on Modeling, Analysis and Simulation of Computer and

Telecommunication Systems, 2010, pp. 351-360.
[15] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood, "gem5-

gpu: A Heterogeneous CPU-GPU Simulator," IEEE Computer

Architecture Letters, vol. 14, pp. 34-36, 2015.
[16] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,

"Analyzing CUDA workloads using a detailed GPU simulator," in

Performance Analysis of Systems and Software, 2009. ISPASS 2009.
IEEE International Symposium on, 2009, pp. 163-174.

[17] A. Vallero, D. Gizopoulos, and S. Di Carlo, "SIFI: AMD southern

islands GPU microarchitectural level fault injector," in 2017 IEEE
23rd International Symposium on On-Line Testing and Robust System

Design (IOLTS), 2017, pp. 138-144.

[18] N. Farazmand, R. Ubal, and D. Kaeli, "Statistical fault injection-based
AVF analysis of a GPU architecture," Proceedings of SELSE, vol. 12,

2012.

[19] S. Tselonis and D. Gizopoulos, "GUFI: A framework for GPUs
reliability assessment," in 2016 IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS), 2016, pp.

90-100.
[20] R. De Jong and A. Sandberg, "NoMali: Simulating a realistic graphics

driver stack using a stub GPU," in 2016 IEEE International

Symposium on Performance Analysis of Systems and Software
(ISPASS), 2016, pp. 255-262.

[21] R. Balasubramanian, V. Gangadhar, Z. Guo, C. H. Ho, C. Joseph, J.
Menon, et al., "MIAOW - An open source RTL implementation of a

GPGPU," in 2015 IEEE Symposium in Low-Power and High-Speed

Chips (COOL CHIPS XVIII), 2015, pp. 1-3.
[22] M. Amiri, F. M. Siddiqui, C. Kelly, R. Woods, K. Rafferty, and B.

Bardak, "FPGA-Based Soft-Core Processors for Image Processing

Applications," Journal of Signal Processing Systems, vol. 87, pp. 139-
156, April 01 2017.

[23] M. A. Kadi, B. Janssen, and M. Huebner, "FGPU: An SIMT-

Architecture for FPGAs," in 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, Monterey,

California, USA, 2016.

[24] S. Collange, "Simty: a synthesizable general-purpose SIMT

processor," 2016.
[25] J. Bush, P. Dexter, T. N. Miller, and A. Carpenter, "Nyami: a

synthesizable GPU architectural model for general-purpose and

graphics-specific workloads," in 2015 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), 2015, pp.

173-182.

[26] K. Andryc, M. Merchant, and R. Tessier, "FlexGrip: A soft GPGPU
for FPGAs," in 2013 International Conference on Field-

Programmable Technology (FPT), 2013, pp. 230-237.

[27] B. Du, J. E. R. Condia, and M. Sonza Reorda, "An extended model to
support detailed GPGPU reliability analysis," in 14th IEEE

International Conference on Design & Technology of Integrated

Systems in Nanoscale Era (DTIS), 2019.
[28] J. E. R. Condia and M. Sonza Reorda, "An extended GPGPU model to

support detailed reliability analysis," in 15th IEEE Workshop on

Silicon Errors in Logic – System Effects (SELSE 15), 2019.
[29] B. Du, J. E. R. Condia, M. Sonza Reorda, and L. Sterpone, "On the

evaluation of SEU effects in GPGPUs," in 2019 IEEE Latin American

Test Symposium (LATS), 2019, pp. 1-6.
[30] M. M. Goncalves, J. R. Azambuja, J. E. R. Condia, M. Sonza Reorda,

and L. Sterpone, "Evaluating Software-based Hardening Techniques

for General-Purpose Registers on a GPGPU," in 21st IEEE Latin-
American Test Symposium (LATS2020), Brazil, 2020, to appear.

[31] M. J. Flynn, "Some Computer Organizations and Their Effectiveness,"

IEEE Transactions on Computers, vol. C-21, pp. 948-960, 1972.
[32] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, "NVIDIA

Tesla: A Unified Graphics and Computing Architecture," IEEE Micro,

vol. 28, pp. 39-55, 2008.
[33] P. N. Glaskowsky, "NVIDIA’s Fermi: the first complete GPU

computing architecture," White paper, vol. 18, 2009.

[34] NVIDIA, "NVIDIA Tesla V100 GPU Architecture," 2017.
[35] J. E. Lindholm, B. W. Coon, J. Wierzbicki, R. J. Stoll, and S. F.

Oberman, "Credit-based streaming multiprocessor warp scheduling,"

ed: Google Patents, 2015.
[36] J. Knudsen, "Nangate 45nm Open Cell Library," CDNLive, EMEA,

2008.

[37] M. Martins, J. M. Matos, R. P. Ribas, A. Reis, G. Schlinker, L. Rech,
et al., "Open Cell Library in 15nm FreePDK Technology," in 2015

Symposium on International Symposium on Physical Design,

Monterey, California, USA, 2015.
[38] W. J. Van der Laan. (2019, 18/07/1029). Decuda project. Available:

https://github.com/laanwj/decuda/wiki

[39] S. S. Mukherjee, C. T. Weaver, J. Emer, S. K. Reinhardt, and T.
Austin, "Measuring architectural vulnerability factors," IEEE Micro,

vol. 23, pp. 70-75, 2003.

[40] W. Nedel, F. L. Kastensmidt, and J. R. Azambuja, "Evaluating the
effects of single event upsets in soft-core GPGPUs," in Test

Symposium (LATS), 2016 17th Latin-American, 2016, pp. 93-98.

[41] H. Ziade, R. A. Ayoubi, and R. Velazco, "A survey on fault injection
techniques," Int. Arab J. Inf. Technol., vol. 1, pp. 171-186, 2004.

[42] D. Alexandrescu, "Circuit and System Level Single-Event Effects

Modeling and Simulation," in Soft Errors in Modern Electronic
Systems, ed: Springer, 2011, pp. 103-140.

[43] J. W. Cooley, P. A. W. Lewis, and P. D. Welch, "The Fast Fourier
Transform and Its Applications," IEEE Transactions on Education,

vol. 12, pp. 27-34, 1969.

[44] B. Du, J. E. R. Condia, M. Sonza Reorda, and L. Sterpone, "About the
functional test of the GPGPU scheduler," in 24th IEEE International

On-Line Testing Symposium (IOLTS) 2018, 2018.

[45] T. Santini, P. Rech, G. Nazar, L. Carro, and F. R. Wagner, "Reducing
embedded software radiation-induced failures through cache

memories," in 2014 19th IEEE European Test Symposium (ETS),

2014, pp. 1-6.
[46] P. Rech, L. L. Pilla, P. O. A. Navaux, and L. Carro, "Impact of GPUs

parallelism management on safety-critical and HPC applications

reliability," in Dependable Systems and Networks (DSN), 2014 44th

Annual IEEE/IFIP International Conference on, 2014, pp. 455-466.
[47] P. Rech, T. D. Fairbanks, H. M. Quinn, and L. Carro, "Threads

Distribution Effects on Graphics Processing Units Neutron

Sensitivity," IEEE Transactions on Nuclear Science, vol. 60, pp.
4220-4225, 2013.

[48] F. F. d. Santos, P. F. Pimenta, C. Lunardi, L. Draghetti, L. Carro, D.

Kaeli, et al., "Analyzing and Increasing the Reliability of
Convolutional Neural Networks on GPUs," IEEE Transactions on

Reliability, vol. 68, pp. 663-677, 2019.

[49] D. A. G. G. d. Oliveira, L. L. Pilla, T. Santini, and P. Rech,
"Evaluation and Mitigation of Radiation-Induced Soft Errors in

Graphics Processing Units," IEEE Transactions on Computers, vol.

65, pp. 791-804, 2016.

