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Abstract 

 

General Purpose Graphics Processing Units (GPGPUs) have been extensively used in the last decade as 

accelerators in high demanding applications, such as multimedia processing and high-performance computing. 

Nowadays, these devices are becoming popular even in safety-critical applications, such as in autonomous and 

semi-autonomous vehicles. However, these devices can suffer from the effects of transient faults, such as those 

produced by radiation effects. Among those effects, Single Event Upsets (SEUs), which are the focus of this 

paper, can cause application misbehaviors, which may lead to catastrophic consequences. In this work, we first 

describe how we extended the capabilities of an open-source VHDL GPGPU model (FlexGrip) and developed a 

new version named FlexGripPlus to study and analyze the effects of SEUs in a GPGPU in a much more detailed 

manner. We also performed extensive fault injection campaigns using FlexGripPlus, which allowed identifying 

the most critical effects within the GPGPU architecture. We finally focused on the scheduler controller since it 

represents a module that is specific to the GPGPU architecture and showed that it has different levels of SEU 

sensibility depending on the affected location. Moreover, the results of additional analyses varying the number 

of parallel execution units in the system are presented, demonstrating the correlation between the number of 

execution units in a GPGPU and the system reliability. 
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I. INTRODUCTION 

In recent years, GPGPU devices have become popular 

solutions in high-demanding data processing applications, 

including multimedia processing and high-performance 

computing (HPC). More and more, these devices are also 

adopted in several data-intensive safety-critical (i.e., 

autonomous vehicles [1-3]) and mission-critical (i.e., 

autonomous systems [4]) applications. Moreover, GPGPUs 

are designed and manufactured using the latest technology 

process to satisfy energy consumption and performance 

requirements. However, some studies have shown that these 

advanced semiconductor technologies are prone to suffer 

from internal effects impacting their reliability, such as aging 

and wear-out, and from external ones (i.e., Electromagnetic 

Interference EMI or radiation effects) [5-8]. Thus, reliability 

analyses can help to solve or mitigate these effects during the 

operational phase of such devices. 

The nature of a fault affecting a device can be related to 

the integration scale, the production process variation, and 

the operating conditions. Currently, new high-performance 

devices could be affected by aging and wear-out effects 

originated by the increased sensibility presented as a 

combination of the previous factors. The complexity of new 

designs in conjunction with lower voltage, timing, and noise 

margins reduces the probability of identifying wear-out-free 

devices correctly. Moreover, some manufacturing processes 

increase the susceptibility to radiation effects, so transient or 

intermittent fault effects could be present as fugacious faults 

[9] and corrupt the operation of the device. Similarly, delays 

caused by aging mechanisms (i.e., Negative bias temperature 

instability (NBTI) [10]) could affect critical paths in some 

modules of a device and, in the long term, behave as transient 

faults. 

Some types of external effects can be modeled as Single 

Event Upsets (SEUs) and may cause misbehaviors in a 

safety-critical context leading to catastrophic consequences. 

In real GPGPU devices, the impact of SEU effects can be 

analyzed through radiation experiments in a few specialized 

facilities using expensive and complex equipment. Other 

methods include software-based fault injection tools 

instrumenting the compiler, and modifying the application 

code [11] or using profiling tools to validate the proposed 

mechanisms [12]. However, in both cases, the analysis of 

reliability is complex to perform or limited, considering that 

detailed information about the structure of the device and its 

implementation are commonly unknown.  

An alternative solution is based on model simulation or 

emulation. In this approach, a model is available and can be 

instrumented to inject faults in the target module. Then, 

thanks to the model, we can compute the effect of a fault 

during the execution of a given application. The outputs can 

be observed and used to perform a reliability assessment or to 

identify structural or application weaknesses in a GPGPU. 

Moreover, these analyses are employed to choose the most 

suitable mitigation strategy in an application at different 

levels (e.g., hardware, software, or system) [13].  

The level of abstraction in a model is a crucial parameter 

that affects the expected conclusions and is related to the 

characteristics and the degree of similarity with the behavior 

of a real device. Hence, for the purpose of the reliability 

analysis against SEUs, models with low-level descriptions, 

e.g., implementations using some Hardware Description 

Language (HDL) at Register Transfer Level (RTL) or gate 

level, are preferable since they provide a detailed 

representation of the internal structures. However, such 

models require higher computational effort for simulation or 

emulation than the high-level ones. 

Regarding GPGPU devices, the number of available 

models to support reliability analysis is limited. Moreover, 

most models are described at high-level [14-20] or as a 

combination of multiple levels of abstraction [21], which 

renders reliability analysis against SEUs on critical units, 

such as controllers or arbiters unfeasible. On the other hand, 

there is a set of low-level GPGPU models available:  IPPro 

[22], FGPU [23], Simty [24], Nyami [25] and FlexGrip [26]. 

The first four models were designed targeting FPGA 

platforms using custom architectures. Thus, their custom 

architectures and implementation target technologies would 

limit the capability for reliability analysis, especially when 

commercially available GPGPU devices are concerned. On 

the other side, the architecture implemented in the FlexGrip 

model is closer to commercial devices by NVIDIA. FlexGrip 

also supports partial binary compatibility with the NVIDIA 

G80 instruction set. Unfortunately, the original version of the 

FlexGrip model has some restrictions related to technology 

dependency, instructions format support, and compiler 

compatibility, limiting the development and study of new 

applications to support reliability analysis. 

In this paper, FlexGripPlus
*
 is introduced as a new version 

of the FlexGrip model with improvements, including a set of 

architectural and functional changes in the model to increase 

flexibility while maintaining the architecture of the original 

                                                 
* 

Available at: https://github.com/Jerc007/Open-GPGPGU-FlexGrip- 



 

design. The FlexGripPlus replaced Xilinx FPGA library 

dependencies in the original version and now has support for 

a reviewed and extended set of instructions compatible with 

the NVIDIA programming environment. 

Some representative applications have also been 

developed for FlexGripPlus besides the five applications 

from the original version as benchmarks to evaluate the effect 

of SEUs in data-path and control-path modules. It is worth 

noting that in previous works [27], [28], some initial 

improvements have already been briefly described. Similarly, 

preliminary results have been presented in [29] and [30], 

characterizing the fault effects on some modules of the 

GPGPU model. 

The main contributions of this work are:  

 The detailed description of the approach we used to 

verify, correct and extend the functionality of the original 

GPGPU model at the microarchitecture level to develop the 

FlexGripPlus model; 

 The method used for performing the fault simulation 

campaigns on FlexGripPlus targeting SEUs;  

 The description of the new benchmark applications, as 

well as the required software environment to support further 

application development; 

 The analysis of the results coming from the fault 

simulation campaigns targeting both the data-path and the 

control-path of FlexGripPlus. To the best of our knowledge, 

this is the first work reporting a detailed analysis of the 

sensitivity of different modules of a GPGPU to SEUs under 

different encoding styles.  

The rest of the paper is organized as follows. Section II 

briefly describes the general organization of a GPGPU and 

the FlexGrip model. Then, section III introduces the proposed 

improvements introduced into FlexGripPlus and the adopted 

methodology. Section IV presents the fault injection setup, 

the targeted modules, and the selected benchmarks for the 

fault injection campaigns. Section V reports the experimental 

results and the reliability analysis regarding SEUs. Finally, 

Section VI draws some conclusions and outlines future 

works. 

II. BACKGROUND 

This section introduces the fundamentals of the 

microarchitecture of a GPGPU device and describes the 

relationship between the FlexGrip model and the related 

commercial devices. 

A. General GPGPU micro-architecture 

The GPGPU devices initially targeted for Graphics 

Processing (hence, the GPU in the name), are commonly 

based on the Single-Instruction Multiple-Data (SIMD) 

taxonomy [31] and its variations, such as the Single-

Instruction Multiple-Thread (SIMT) concept by NVIDIA 

[32]. Thanks to their high parallelism, these devices are more 

and more adopted in fields other than Graphic Processing, 

such as scientific computation, where data-intensive 

workloads can be processed in parallel. A GPGPU device 

based on SIMT, such as the ones from NVIDIA, is mainly 

composed of a set of highly parallel execution cores, also 

known as Streaming Multiprocessors (SMs) or Computing 

Units (CUs), each of which can execute multiple threads 

simultaneously utilizing its own registers, caches, local 

memories, control units, and execution units. The 

computational capability of a GPGPU device is proportional 

to the number of available SMs
†
 and the local resources 

available in each SM. 

Fig. 1 shows a general scheme of the architecture of a 

GPGPU device with four SMs. It includes a Block Scheduler 

to distribute the tasks among the SMs. Each SM block is 

mainly composed of multiple parallel execution cores 

(CUDA cores, Execution Units (EUs), or Scalar Processors 

(SPs)) and other modules, including instruction and data 

caches, a scheduler controller (or Warp Scheduler Controller 

(SC)), one or more warp dispatchers, a register file (RF), and 

some local memories. Modern GPGPU architectures may 

also include accelerators implementing complex operations, 

such as the cross product of matrices (Tensor-cores), 

floating-point operations (FP32/FP64), and transcendental 

functions (SFU). The scheduler controller and warp 

dispatchers are crucial modules in the SM to manage the 

executions of threads (particularly when local resources do 

not allow all threads, organized into warps, to be executed 

simultaneously) and to manage the occurrences of the intra-

warp divergences due to thread-dependent branches [32-35]. 

B. FlexGrip model 

The FlexGrip is an open-source soft-GPGPU model based 

on the NVIDIA G80 microarchitecture and implemented in 

                                                 
†
Through the paper, we use SM and CU indifferently as they are at the same 

level of parallelism. The same applies to CUDA core, Execution Units (EUs) 

and Scalar Processors (SPs) etc.  

Fig 1. A general scheme of the GPGPU micro-architecture. Adapted from 
[33], [34]. 
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VHDL. This GPGPU model was developed by the University 

of Massachusetts [26] and was designed to be fully 

compatible with the CUDA programming environment using 

the SM 1.0 compatibility. The FlexGrip model is based on 

the description of a Streaming Multiprocessor (SM) module 

and supports 27 assembly (SASS) instructions. Originally it 

was designed targeting a Xilinx SRAM-based FPGA. 
 

 
Fig. 2. The general scheme of the SM in the FlexGrip model [26]. 

The internal description of SM in FlexGrip is mainly 

composed of a five-stages pipeline (Fetch, Decode, Read, 

Execution, and Write-Back) following the G80 

microarchitecture [32], as shown in Fig. 2. The total number 

of SPs in the Execution stage is configurable during the 

synthesis to 8, 16, or 32 parallel cores. 

The FlexGrip model includes a basic memory hierarchy 

composed of system memory, a global or main memory, a 

shared memory, and constant memory. It is worth noting that 

cache memories are not included in the model. FlexGrip also 

includes two task schedulers (Block Scheduler and Warp 

Scheduler), both adopting a round-robin algorithm as a 

distribution policy to manage intra-warp divergences caused 

by a branch instruction. A custom branch module is 

implemented with a stack memory (denoted as “Divergence 

Stack” in Fig. 2) to handle up to 32 levels of divergence. 

Please note that there are registers between different stages of 

the pipeline (black boxes named “PRx” in Fig. 2), which may 

also be subject to SEUs. The Structural comparison between 

the schemes of the FlexGrip model and the commercial 

GPGPUs (from NVIDIA) shows that both share the same 

basic functional blocks, including the block and warp 

scheduler controllers, a register file, the parallel execution 

units, and the pipeline stages. 

Nevertheless, the memory hierarchy in FlexGrip differs 

from the one in the commercial devices by the missing cache 

memories. Moreover, FlexGrip has no floating-point modules 

or special purpose accelerators. These structural limitations in 

FlexGrip can affect the adoption of the most recent 

applications. However, we argue that the analysis of 

reliability and fault effects on data-path and control-path 

modules performed in FlexGrip can still be meaningful with 

respect to the commercial devices considering the 

architectural similarities between them. 

III. FLEXGRIPPLUS 

The development of more complex and detailed analysis 

and correlate results with real devices required the correction 

of some limitations present in the original FlexGrip version. 

So, FlexGripPlus has been implemented with some 

modifications and improvements based on the original 

version of FlexGrip. 

The major limitations of the original FlexGrip include the 

dependency on the Xilinx FPGA library, the limited number 

of supported instructions, and the incomplete compliance 

with the NVIDIA application development environment. 

During the FlexGripPlus development, the microarchitecture 

of the original model has been kept untouched while each 

initially supported instruction and the newly added 

instructions have been carefully verified for correctness. To 

achieve this, a methodology to improve the FlexGrip model 

has been used based on the following steps: 

1. Rigorous structural analysis of the FlexGrip model 

2. Development of basic test programs to verify each 

instruction supported by the design 

3. Simulation and interpretation of results 

4. Definition of potential corrections 

5. Application of the revisions and verification with 

previous programs 

6. Development of new applications based on typical 

applications and workloads for validation purposes. 
 

In the beginning, the analysis of the internal structures in 

FlexGrip revealed that some modules, including the 

distribution controller of RF, the Decode stage, and the 

Execution stage, are incomplete. These incomplete modules 

can lead to incorrect results under certain circumstances and 

had to be fixed. Then (in step 2), a large number of specific 

applications were developed to generate all the potential 

format of the supported instructions and verify the correct 

execution of each instruction. Each program was developed 

using the CUDA environment when possible, or directly at 

the assembly level. During this step, incompatibility issues 

between the instruction decoding implemented in FlexGrip 

and the binary code generated by the CUDA environment 

have been identified and fixed. Furthermore, for each 

modification, steps 3 to 5 have been repeated to verify the 

correctness of the new implementation. This methodology 

should serve as a guideline if the model has to be further 

improved and new modules have to be added. 

Through the process of implementing FlexGripPlus from 

the original FlexGrip, the introduced changes can be divided 

into three groups. 

 



 

1) Technology dependency 

The FlexGrip model was initially designed as soft-core 

targeting a Xilinx FPGA, and some internal modules, such as 

the memories, were automatically generated as IP cores using 

the Xilinx System Generator tool. The descriptions of these 

IP cores are not human-friendly to read or analyze and 

significantly limit the possibility to perform the required 

gate-level analysis when SEUs are concerned. 

In FlexGripPlus, we carefully modified each module by 

removing any reference or dependency on specific 

technology libraries, replacing them with equivalent generic 

descriptions. Through this process, the names of signals, 

interconnections, and modules were clarified to simplify the 

analysis on each signal after a fault simulation campaign. In 

the end, about 40% of the modules were modified for this 

purpose. It is worth noting that the model can now be easily 

imported into different simulation environments, such as 

ModelSim, QuestaSim, or Xcelium Parallel Simulator. 

Moreover, the removal of the technology dependency from 

the model allows mapping the model into other platforms or 

technologies that were not previously supported, such as 

ASICs. The FlexGripPlus model can be synthesized using 

proprietary or independent technology libraries, such as the 

ASIC 45nm OpenCell [36] or the 15nm OpenCell [37] 

libraries. 

2) Instruction format support 

The original FlexGrip implementation was intended to be 

compatible with the CUDA programming environment 

through SASS instructions. However, through simulation and 

analysis using the test programs we developed, some internal 

modules in control- and data-path units, such as decoding 

logic, intermediate registers, and block interconnections, 

were found to be not present or only partially implemented. 

Hence, we started from the initially supported instructions 

in FlexGrip, and each instruction was verified against the 

NVIDIA CUDA programming environment. As NVIDIA has 

not officially released the SASS op-codes (i.e., the instruction 

formats), the op-code and formats of some instructions were 

decoded using the CUDA binary tools, namely nvcc and 

cuobjdump, and the Decuda open-source project [38]. 

Additionally, multiple benchmark applications were designed 

targeting specific instructions to force the compiler to 

produce the target instruction op-code under various formats. 

Some issues, such as the compiler optimizations, and the 

change or removal of instructions, required the explicit 

addition of numerous output memory locations in the micro-

kernels. 

All the required changes (e.g., descriptions of missing 

registers, connections, combinational logic, or the correction 

of incomplete modules) were introduced in the FlexGripPlus 

model to fully support the set of instructions with all the 

format variations, including 28 instructions and 74 formats. 

Table I shows the supported control-flow instructions and 

their formats. Table II lists the supported arithmetic and logic 

instructions. Finally, Table III shows the data-handling and 

memory instructions. The parameter COMP_TYPE in Table 

II refers to the comparison type and modifies the state of a 

predicate flag as the effect of an arithmetic or logic operation. 

The COND parameter in Table I is related to the conditional 

execution of an instruction, considering the state of a 

predicate flag. The g[] and c[0x1][] fields correspond to 

instructions using operand sources coming from the shared 

memory and the constant memory, respectively. 

TABLE I. CONTROL-FLOW INSTRUCTIONS SUPPORTED IN FLEXGRIPPLUS 

Mnemonic Description Formats 

BRA branch BRA CX.COND Imm 

BRA Imm 

BAR barrier synchronization BAR.ARV.WAIT b0, 0xFFF 

RET return from kernel RET 

RET CX.COND 

SSY set synchronization point SSY Imm 

NOP no operation NOP  

NOP.S 

TABLE II. ARITHMETIC AND LOGIC INSTRUCTIONS IN FLEXGRIPPLUS 

Mnemonic Description Formats 

I2I integer to integer 

conversion 

I2I.U32.U16/S16  RZ, RX(L|H) / g[].U16 

I2I.U32.S32 RZ, |RX| / -RX 

I2I.U32.U16.BEXT RZ, RX(L|H) / g[].U8 

I2I.S32.S16.BEXT RZ, RX(L|H) / g[].S8 

IMUL/ 

 
 

IMUL32/ 
 

IMUL32I 

integer 

multiplication 

IMUL.U16.U16 RZ, RX(L|H) / g[].U16, RY(L|H) 

IMUL.S16.S16 RZ, RX(L|H) / g[].S16, RY(L|H) 
 

IMUL32.U16.U16 RZ, RX(L|H)/g[].U16, RY(L|H) 
 

IMUL32I.U16.U16 RZ, RX(L|H), Imm 

IMUL32I.S16.S16 RZ, RX(L|H), Imm 

SHL shift left SHL RZ, RX, RY / Imm 

SHL RZ, g [], Imm 

SHL.U16 RZ(L|H), RX(L|H), Imm 

SHR shift right SHR.S32 RZ, RX, RY / Imm 

SHR.S32 RZ, g [], Imm 

SHR.U16 / S16 RZ(L|H), RX(L|H), Imm 

SHR RZ, g[], Imm 

SHR RZ, RX, RY / Imm 

IADD/ 

 

 
 

IADD32/ 

 

 

 
 

IADD32I 

integer add IADD RZ, RX / -RX, RY 

IADD RZ, g[], RX /  -RX 

IADD RZ, RX, c[0x1][] 
 

IADD32 RZ, RX, RY / -RY 

IADD32 RZ, g [0x..], RX / -RX 

IADD32.U16 RZ(L|H), RX(L|H), RY(L|H) / 

-RY(L|H) 
 

IADD32I RZ, RX / -RX, Imm 

IADD32I RZ, g[], Imm 

IMAD/ 

 

 
 

IMAD32/ 
 

IMAD32I 

integer multiply 

and add 

IMAD.U16/ S16  RZ, RX(L|H), RY(L|H), RW 

IMAD.U16/ S16 RZ, RX(L|H), c[0x1][], RY 

IMAD. RZ, RX(L|H), c[0x1][], RY 
 

IMAD32.U16 RZ, RXL|H, RYL|H, RZ 
 

IMAD32I.U16/ S16 RZ, RX(L|H), Imm, RZ 

LOP bitwise logical 

Operation 

LOP.AND/OR/XOR/PASS_B RZ, RX/ g[], RY  

LOP.AND/OR/XOR/PASS_B RZ, RX, c[0x1] [] 

LOP.U16.AND/OR/XOR/PASS_B  

                                    RZ(L|H), RX(L|H), RY(L|H) 

ISET integer 

comparison 

ISET RZ, RX, RY / c[0x1][], COMP_TYPE 

ISET RZ, g[], RX, COMP_TYPE 

ISET.S32 RZ, RX, RY / c[0x1][], COMP_TYPE 

ISET.S32 RZ, g[], RX, COMP_TYPE 
 



 

TABLE III. DATA AND MEMORY INSTRUCTIONS IN FLEXGRIPPLUS 

Mnemonic Description Formats 

MVC load from constant 

memory 

MVC RX, c [0x1] [] 

GLD load from global 

memory 

GLD.U32|U16|S16|U8|S8 RZ, global14[] 

GST store to global 

Memory 

GST.U32|U16|S16|U8|S8 global14[], RX 

MOV/ 

 

 

MOV32 

move register to 

register/load from 

shared memory 

 

 

MOV RZ, RX / g[] 

MOV.U16 RZ(L|H), RX(L|H) / g[].(U16|U8) 

 

MOV32 RZ, RX / g[] 

MOV32.U16 RZ(L|H), RX(L|H) 

MVI move immediate to 

destination 

MVI RX, Imm 

R2G store to shared 

memory 

R2G.U32.U32 g [], RX 

R2G.U16.U16 g [], RXL|H 

R2G.U16.U8 g [], RX 

R2A move data register 

to address register 

R2A AX, RX 

A2R move address 

register to data 

register 

A2R RX, AX 

ADA move Address 

register to Address 
register 

ADA AX, AY 

 

In the end, about 4.8% of the code in FlexGrip was 

modified for this purpose. Most of those modifications were 

performed in the Decode and Read stages of the pipeline in 

the SM. 

3) Compiler restrictions 

The primary approach to develop new applications for the 

FlexGrip model was based on the CUDA programming 

environment. After the instruction compatibility issues 

mentioned above were fixed in FlexGripPlus, there was still a 

gap between all the instructions that can be generated by the 

CUDA compiler and the instructions supported in 

FlexGripPlus. Hence, three software tools have been 

developed to check and preserve the compatibility between 

the CUDA programming environment and the FlexGripPlus 

implementation. 

Firstly, an assembly language checker tool named SASS 

checker has been developed to check the binary code 

generated by the CUDA compiler nvcc against the 

instructions supported by FlexGripPlus. If any unsupported 

instruction is generated by nvcc, then the second tool, an 

assembly code writer tool named SASS parser, will try to 

convert any unsupported instruction into one or more 

supported instructions with the equivalent operation. 

However, in case of failure of such a conversion attempt, the 

tool will report an error, and the user manually modifies the 

source code to avoid the generation of unsupported 

instruction. 

Thirdly, a memory configuration tool named Index 

corrector can verify and correct the mismatches in the 

addressing indices, which are used to address the memories 

during the execution of an application. The index corrector is 

required considering that the locations to store the variables 

in a program are managed and decided by the compiler tool 

without significant user intervention. However, in multiple 

applications, it was required to verify and correct the indices 

used to address the memories of the system since the way 

FlexGripPlus manages the global, shared, and constant 

memories are not exactly the same as in NVIDIA devices. 

With the three tools, the time to develop new applications 

as benchmarks for reliability analysis using FlexGripPlus is 

greatly reduced. They are also used in step 6 mentioned 

previously to use new applications to verify modifications 

done in FlexGripPlus. 

In Table IV, a comparative analysis of the main features of 

FlexGrip and FlexGripPlus is presented to list the effects of 

the introduced modifications and the improvements 

mentioned above. 

It is worth noting that one additional instruction (ADA) 

was implemented, which is fully compatible with the 

programming environment. The ADA instruction manages 

the interaction among the address register modules in the 

GPGPU and is commonly used to access the shared memory. 

TABLE IV. COMPARATIVE ANALYSIS OF MAIN FEATURES IN THE 

FLEXGRIP AND FLEXGRIPPLUS MODELS 

 FlexGrip FlexGripPlus 

Instructions  27 instructions  
(partially supported) 

 28 Instructions fully 
supported 

 78 formats of instructions 

verified 

Programming 

environment 
 Partially compatible 

with the CUDA 
programming 

environment. 

 A manual mechanism to 
compile the CUDA (.cu) 

file and adapt to the model 

 Partially compatible with 

the CUDA programming 
environment. 

 A tool to translate the 

CUDA (.cu) description into 
the final binary file used in 

the model 

 A tool to develop 
applications at the assembly 

level (SASS) 

 A tool to verify the 

compatibility of the 
generated assembly code. 

Applications  Only 5 benchmarks  More than 20 verified 

applications 

Simulation or 

Implementatio

n  platforms 

 Simulation (ISIM, 

VIVADO simulator) 

 FPGAs (Xilinx) 

 Simulation (ModelSim, 

Xcelium Parallel Simulator) 

 FPGAs 

 ASICs 

Memory 

management 

support 

  An additional support to 
manage the address register 

file employed to access the 
Shared memory 

IV. FAULT INJECTION SETUP 

This section introduces a custom cross-platform fault 

injection environment developed to evaluate the effects of 

SEUs in the FlexGripPlus model.  It is worth noting that 

technological features were not considered in the experiments 

to represent SEU effects. The goal of our experiments was 



 

rather to compute the fault rate and the Architectural 

Vulnerability Factor (AVF)[39] of different modules in the 

FlexGripPlus model. Sub-section A describes the fault 

injection environment. Sub-section B presents the target 

modules in FlexGripPlus to be evaluated. Finally, sub-section 

C briefly describes the benchmarks selected to perform the 

fault campaigns. 

A. Fault injection environment 

The fault injection environment was developed based on 

the ModelSim simulator framework. Nevertheless, this can be 

easily adapted into other simulator frameworks, such as the 

Xcelium Parallel Simulator or QuestaSim. The developed 

environment follows the guidelines introduced in [40] using 

commands provided by the simulator to inject faults. 

Additionally, the environment can reduce the total time of the 

fault simulation by taking advantage of 1) parallel 

capabilities of the modern computers to run multiple 

simulations simultaneously and 2) a module de-rating factor 

(UDR) to pre-process the fault list and reduce the number of 

locations to inject faults. The UDR is computed utilizing 

results from a fault-free simulation. The information is 

analyzed (i.e., switching activity or correlation) in the target 

module, and finally, those unused locations by an application 

are removed [41, 42]. 

The fault injection environment is implemented in Python 

and is composed of three main modules, as shown in Fig. 3: 

1) a fault controller, 2) a fault injector, and 3) a fault checker 

and classifier. 
 

 
Fig. 3. A general scheme of the simulation environment for FlexGripPlus. 

The fault controller manages the execution of a fault 

campaign, including initialization of target design in the 

specific simulator, starting and ending of a fault injection run. 

In the case of FlexGripPlus, the fault controller loads the 

FlexGripPlus design, the parameters of the benchmark 

application (kernel), the initialization data of different 

memories, including the application itself in the System 

Memory and the input data in the Global Memory. In the 

meantime, the optimized fault list (generated by another tool, 

not shown in Fig. 3) is loaded by the fault controller and 

divided into chunks to be launched simultaneously. Once 

everything is ready, fault injection commands will be sent to 

the fault injector.  

The fault injector decodes a fault injection command from 

the fault controller and generates the command(s) to be 

executed by the target simulator, e.g., ModelSim. Currently, 

two types of faults are supported by the environment: 1) 

permanent Stuck-At faults, and 2) transient bit-flip faults. As 

the focus of this paper is on SEUs, the fault injection 

command generated in the fault simulation campaign 

includes the signal name (fault location), the event time (fault 

occurrence time), and duration (related to the clock frequency 

of target design). The fault injector then starts a simulation 

run with the generated command(s) and waits for the run to 

finish to process another fault injection command. 

Finally, the fault checker and classifier monitor the outputs 

until the termination of the simulation run, gather 

information, and classify the fault accordingly. In the case of 

FlexGripPlus, the faults are classified into the following 

categories: 1) Silent Data Corruption (SDC) when the 

injected fault affects only the final results in memory, 2) 

Detected Unrecoverable Error (DUE) when the DUT hangs 

or crashes during the simulation, 3) Timeout when the SEU 

produces performance degradation in simulation time and 4) 

Masked when the injected fault does not generate any impact. 

When using the developed fault injection environment for 

fault simulation campaigns targeting FlexGripPlus reported 

in this paper, the fault list is generated with a careful 

selection of fault location considering the actual used 

registers and memory locations used in each benchmark 

application, while the fault occurrence time is selected 

randomly. 

B. Targeted modules 

Two data-path and two control-path modules were targeted 

for evaluation in FlexGripPlus. 

1) Data-path modules 

Register File (RF): This module is located inside the SM 

and is composed of 16,384 32-bit registers. Each register can 

be accessed in the Read and Write-back stages by different 

threads depending on the parameters of the running kernel. 

The data stored in the registers can be computational data or 

addresses, which can affect the execution flow of the 

application. 

Pipeline Registers (PRs): These registers are located 

among the stages of the pipeline and the warp scheduler, as 

shown in Fig. 2. As these registers hold data and control 

signals, SEUs in them can lead to data corruption or 

interruption of the execution flow of the application. The size 

of PRs in FlexGripPlus is reported in Table V. 

 
 



 

TABLE V. SIZE OF PRS IN FLEXGRIPPLUS 

Location (between) Size (# bits) 

Fetch and Decode (F-D) 237 

Decode and Read (D-R) 408 

Execute and WriteBack (E-W) 6575 

Read and Execute (R-E) 3456 

WriteBack and Warp Scheduler (Wr-W) 133 

Warp Scheduler and Fetch (W-F) 140 
 

2) Control Path modules 

Warp Scheduler (SC): this module manages the warp 

execution inside the SM. A warp status memory is 

implemented inside the SC to store status information about 

the active warps. The warp status memory contains 32 128-

bit wide entries. The information stored on each entry is 

composed of the active thread mask (aTM), the actual warp 

program counter (wPC), and some additional parameters. The 

information about the active warp is updated after each 

instruction cycle. 

Divergence Stack Memory (DSM): this special purpose 

memory contains 32 32-bit wide entries storing the 

divergence addresses and the status information of the warp 

caused by branch instructions. The two execution paths 

(Taken and Not-taken) are stored using two entries in the 

DSM in terms of the starting (divergence) and finishing 

(convergence) points along with the execution flow. 

Additionally, each entry in DSM stores the warp index, the 

flow state condition, and the aTM value to trace the number 

of executed threads on each path. 

C. Benchmarks 

Six applications were carefully selected as benchmark 

applications to evaluate the behavior of FlexGripPlus against 

SEUs under different workload profiles. 

1) FFT: The application is based on the Coley-Turkey 

algorithm [43] and implements the butterfly element using 

CUDA. Since FlexGripPlus does not provide support for 

division operations, they were replaced by a software-based 

approach using logarithmic and logical operations. 

2) Edge detection (Edge): The application is based on the 

Sobel algorithm applying an image filter of  3x3 to a 2-

dimensions input. 

3) Vector_Add: This is one of the original applications 

developed for FlexGrip. It calculates the sum of two vectors. 

4) Bitonic-Sort (Sort): This is another original 

application developed for FlexGrip. The application sorts a 

sequence of consecutive data elements stored in an array. 

This application includes multiple combinations of data 

movements between memory and registers, and conditional 

control-flow instructions, generating multiple paths during 

execution. 

5) M3: This application implements a Software-Based 

Self-Test (SBST) algorithm introduced in [44]. M3 targets 

the memory in the SC. It is composed of multiple control-

flow instructions utilizing mainly the control-path modules. 

6) Matrix Multiplication (MxM): This application is 

based on the General Matrix Multiplication (GEMM) routine, 

which is optimized using the square tiling approach. The 

input matrices are firstly divided into blocks. Then, partial 

results are obtained by multiplication of corresponding 

blocks. Finally, partial results are accumulated to get the final 

results of matrix multiplication. The implementation is 

limited to 32x32 input matrices. 

V. EXPERIMENTAL RESULTS 

As mentioned before, FlexGripPlus can be configured to 

have 8, 16, or 32 SP cores in SM. Moreover, the benchmark 

applications (kernels) can be launched using different thread 

distribution strategies, so different combinations of 

configurations have been used in the fault injection 

campaigns.  

An initial set of fault injection campaigns was carried out 

using FlexGripPlus with 8, 16, or 32 SP cores to evaluate the 

impact of SEUs on different hardware organizations. The 

benchmark applications were launched using different thread 

distributions: 32 and 64 threads per block (TPB) except 

MxM was configured to 512 and 1024 TPB, given its 

characteristics. The second group of fault injection 

campaigns targeted a special analysis of SEU effects in the 

SC under different workload distributions: 32, 64, 128, 256, 

512, and 1024 TPB (though not for all the selected 

benchmark applications). It is worth noting that fault 

injection campaign employed the RT-level description of 

FlexGripPlus. 

A. Overall analysis with different configurations 

The Relative Mean Workload Between Failures (MWBF) 

[45] is selected as a metric for reliability analysis against 

SEUs. The motivation for this choice is that MWBF accounts 

not only for the percentage of faults producing a failure but 

also for the different execution time, thus taking into account 

the higher fault probability. When MWBF was calculated, a 

constant fault rate was assumed for all applications and all 

configurations, and the DUE errors were neglected. 

Moreover, the execution time of each benchmark was 

calculated, only considering the time interval from the 

execution of the first instruction up to the kernel termination. 

Table VI reports the results of the first set of fault injection 

campaigns in terms of MWBF, expressed in terms of the fault 

rate per bits per clock cycles (cc). Please note that the 

evaluation of SC is performed individually for the warp status 

memory and control logic. 

Though it is difficult to perform direct comparisons with 

previously reported experiments in literature, similar 

conclusions regarding how the number of available SPs and 



 

different thread distributions impact the reliability of 

application execution can be found. In [46], the authors 

concluded that an increment in the number of blocks reduces 

the MWBF of an application. Similarly, in [47], experiments 

proved that an application running in a GPGPU is more 

reliable when increasing the block size instead of increasing 

the number of blocks. The same trend can be observed in 

Table VI from the results of, for example, FFT when RF, 

PRs, and SC are targeted, and Edge when RF, PR are 

evaluated, etc. However, the opposite trend can also be 

observed from results of, for example, Vector_Add when 

warp status memory in SC is targeted, and M3 when DSM is 

targeted. The trend also changes even with the same 

application when the FlexGripPlus is configured to different 

numbers of SPs in SM, for example, Edge with 8 or 16 SPs 

available and 32 SPs when warp status memory in SC is 

targeted. 

Please note that, in this paper, we are targeting individual 

modules instead of the whole devices as in [46] and [47], so 

that the impact of reliability against SEUs of each individual 

modules are different, as reported in Table VI when 

FlexGripPlus is configured with different number of SPs and 

application launched with different thread distribution 

profiles. Besides, current FlexGripPlus implementation is still 

limited to one SM that Block Scheduler did not make any 

contributions to the fault injection campaign results. 

B. Detailed  analysis per module 

The Fault error rate was computed for each module under 

test and for each application categorized in three different 

effects, i.e., SDC, DUE, and Timeout. The obtained results 

are presented as follows w.r.t. each targeted module. 

1) Register File (RF) 

In total, 30 fault injection campaigns using the FFT, Edge, 

M3, Sort, and MxM benchmark applications have been 

performed, each considering 34,816 faults, resulting in the 

confidence of 99.46%. Meanwhile, for the Vector_Add 

application, 10,240 faults have been injected for 32 SPs 

configuration, and 8,192 faults for 16 and 8 SPs. With the 

aforementioned fault injection environment, the fault 

simulation time was reduced from about 200 hours to less 

than 25 hours: the adoption of the UDR factor allowed us to 

reduce by up to 95% the total amount of injected faults. Fig. 

4 reports the error rate percentage for each application. 

It can be observed that FFT and Edge show similar 

distribution when the RF module is targeted. Vector_Add 

does not produce any DUE or Timeout as it does not contain 

branch instruction in the implementation. Sort and M3 both 

have DUE as the majority due to the large percentage of 

branch instructions that can be affected by SEUs in the 

registers. For MxM, it shows a mixture of both as it is a data-

intensive application, while some branches in the 

TABLE VI. FAULT INJECTION CAMPAIGN RESULT IN TERMS OF MWBF 

 
RF  

MWBF (fault*bits/cc) 

PRs  

MWBF (fault*bits/cc) 

SC warp status memory 

MWBF (fault*bits/cc)  

SC logic 

MWBF(fault*bits/cc) 

DSM  

MWBF (fault*bits/cc)  

Benchmark 
#SP 

 

TPB 
8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 

FFT 
32  3.7  5.6  7.6 165.4 202.1 96.1 570.3 1,696 565.4 20.0 34.3 102.2 207.6 269.1 399.8 

64 8.5 6.8 11.5 292.2 353.7 157.7  7.5  33.6 766.2 25.4 85.6 140.1 63.7 155.7 259.9 

Edge 
32 10.6 16.4  22.0 543.6 599.3 301.3 174.5 974.1 2,570.7 104.7 285.4 210.4 1,338.0 1,903.0 2,688.0 

64 40.1 34.3  43.5 740.0 1,123.7 739.9 81.8 220.7 12,468.5 84.8 186.9 780.5 390.6 1,084.0 2,158.0 

Vector_Add 
32 57.0 79.7 139.2 3,878.8 4,219.8 4,735.5  361.1 2,166 16,163.7  615.7 970.7 1,766.9 - - - 

64 60.2 83.9 111.6 2,849.2 5,820.8 6,037.7 194.7 585.0 2,208.1 640.7 1,084.0 1,985.0 - - - 

M3 
32 473.6 354.0 227.1 976.9 339.5 236.6 11.8 8.7 46.4 46.9 106.9 18.9 30.6 54.2 21.8 

64 1,591.8 3270.2 2,349.7 1,830.5 654.0 637.8 436.9 996.2 998.6 61.3 53.2 2,366.5 26.3 6.3 8.4 

Sort 
32 307.7 165.7 31.4 173.1 176.1 125.6 207.7 238.3 282.5 212.3 252.2 393.0 358.4 14.2 17.6 

64 0.0 80.7 266.1 116.8 127.7 139.7 362.1 801.8 1,649.7 203.3 327.4 944.6 2.2 3.2 12.0 

MXM 
512 10,114.2 14,509.4 15,910.2 101.7 73.3 133.3 11,592.1 14,216.3 13,655.6 88.1 128.2 177.7 6.8 15.1 - 

1024 23,879.1 34,620.6 36,327.3 21.0 256.4 300.0 26,787.7 34,428.2 36,149.6 203.4 357.2 411.0 19.0 4.6 - 

 

 
Fig. 4. Fault rate results in the RF in FlexGripPlus (the horizontal axis, from top to bottom, are #SPs, TPB and application name). 

 



 

implementation can also be affected by SEUs to cause DUE. 

When comparing results from different configurations, 

from some applications, the trend of error rate is not so 

evident since the error rate is affected by several aspects, for 

example, the number of registers actually utilized during 

execution, the duration of each data stayed inside registers, 

etc. However, some interesting effects can be observed. In 

FFT, when the TPB increased from 32 to 64, a DUE 

decrement can be seen due to the fact the execution time is 

reduced, while as the number of registers utilized increased, 

the SDC rate is not decreased as DUE (except when the 

number of SP is configured to 8.  In Sort and M3, an growth 

of DUE rate can be observed when the TPB increase from 32 

to 64 as opposite in FFT, because Sort contains large portion 

of branch instructions whose execution depends on the value 

of data so that when more registers are utilized higher the 

probability of a DUE because of data corruption in register. 

In MxM, this trend of DUE rate increment is not as obvious 

as in Sort, because the branch instructions in MxM do not 

depend on the input data values, though it still depends on the 

loop variables. These observations are similar to those shown 

in [40] for applications with a high percentage of control-

flow instructions. 

Similar trends in different applications can be observed 

when the number of SPs in SM is increased from 8 to 16 then 

to 32, for example, the increment of DUE in the Sort 

application. However, the other applications do not present 

such consistent and visible increase, as when the number of 

SPs changes, not only the register utilization changes but also 

the threads have to be organized into warps differently, which 

causes changes in registers load and store pattern. 

2) Pipeline Registers (PRs) 

In total, 144 faults injection campaigns were performed 

targeting PRs in FlexGripPlus. A total of 30,000 SEUs were 

injected per configuration. The fault injection results in terms 

of the averaged fault rate in the entire structure are shown in 

Fig. 5. 

It can be observed from the results that increase TPB will 

lead to an increment of error rate, including SDC and DUE. 

This behavior can be explained as the additional time cost for 

processing warps of the same block increases the probability 

of an SEU in PR to be propagated through pipeline. Another 

clear trend that can be observed is that the error rates 

decrease when more SPs are available in SM. For Timeout, 

this trend is not consistent across different applications and 

configurations. 

For M3, DUE is the majority for all the configurations as it 

is control-flow oriented application. For Vector_Add, as it is 

data-oriented (without branch instruction), the majority effect 

land in SDC. For the other applications, it is less obvious. 

When analyzing the PRs between different stages, as listed 

in Table V, the SEU sensitivity fluctuates from 1.2 to 13.5 

times, shown in Fig. 6, which indicates the existence of 

 
Fig. 5. Fault rate results in the PRs in FlexGripPlus (the horizontal axis, from top to bottom, are #SPs, TPB and application name). 
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Fig. 6. Fault injection results of different PRs between different stages (the 

horizontal axis, from top to bottom, are #SPs, TPB and application name). 
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critical PRs. It turns out the PRs storing the instruction 

decoding and warp status information are the ones of highest 

sensitivity against SEU contributing a large proportion of 

SDC and DUE during fault injection campaigns. In  [40], the 

authors presented similar conclusions when evaluating the 

PRs of a GPGPU. Although a direct comparison of the results 

cannot be performed, both works show that the E-Wr PR is 

among the most SEU sensitive PRs, as indicated in Fig. 6. 

 

3) Warp Scheduler Controller (SC) 

The SC module was divided into two parts for analysis 

purposes: the internal memories and the sequential logic 

elements. Thirty-six fault campaigns have been carried out. 

 Contradicting to the criticality of this module, the fault 

injection campaign results show low sensitivity against SEU, 

in which, though the sequential logic corresponds to 14.3% of 

the entire elements in the SC, it generates between 85% and 

92% of DUE among the detected faults for all the tested 

applications. 

The unexpectedly low error rate in the SC internal 

memories is caused by a loop existing between the SC and 

the SM pipeline stages, which masks the fault effects. The 

execution of an instruction in the SM requires SC to control 

and check the execution, which causes the data in SC 

memories frequently refreshed before it is read after data 

corruption due to SEU. Nevertheless, in most benchmarks, 

which are configured with a fewer number of TPB, the fault-

masking behavior is effective when the workload is relatively 

small. However, it becomes ineffective in MxM as the 

probability of data in SC memories read before overwritten 

after an SEU increases with the workload. 

In the operation of the SC, it is expected that an SEU 

causes a single SDC effect and corrupt one value in the 

results. However, it was observed that multiple SDC 

conditions could also be presented in the output memory (i.e., 

lines, blocks, or random locations with erroneous results). 

Table VII reports the percentage of SEUs that causes SDC 

effects in the SC module divided into those generating single 

and multiple effects in the memory. 

An in-depth analysis shows that the multiple SDC 

conditions are caused by SEUs affecting the wPC and other 

fields of the memory in the SC, which are used redundantly 

by numerous threads (base addresses employed to access the 

RF or the shared memory). Similarly, the multiple SDCs are 

caused by logic elements in the SC related to the 

management of the information of the warps. 

In general, for all the analyzed applications, errors 

corrupting the wPC also affected the group of threads and 

propagate in the execution, so causing multiple SDC. In 

contrast, faults in the aTM field produce most single SDC 

effects. In some control-flow-based applications (EDGE, 

FFT, Sort, and M3), a small number of multiple SDC were 

caused by errors present in the aTM field. Those errors 

modified the execution of one thread in the execution paths 

and caused additional operations or the missing of operations, 

which affected subsequent executions in the program flow. 

 
TABLE VII. DISTRIBUTION OF SEU EFFECTS IN THE SC CAUSING SINGLE 

AND MULTIPLE OUTPUT EFFECT. 

Benchmark TPB SPs 

SDC (%) 

Warp Status memory Logic 

Single Multiple Total Single Multiple Total 

FFT 

32 

8 0.024 0.025 0.049 1.4 1.28 2.68 

16 0.014 0.01 0.024 1.2 1.12 2.32 

32 0.042 0.056 0.098 0.4 0.61 1.01 

64 

8 6.53 2.4 8.94 1.1 1.43 2.53 

16 2.19 1.2 3.39 0.7 0.56 1.26 

32 0.12 0.1 0.22 0.64 0.39 1.03 

VectorAdd 

32 

8 1.6 0.54 2.148 1 1.4 2.4 

16 0.3 0.16 0.464 0.9 1.06 1.95 

32 0.06 0.01 0.073 1.10 0.15 1.25 

64 

8 6.7 2.43 9.131 1.1 1.59 2.69 

16 3.1 1 4.102 1.2 0.95 2.15 

32 0 0 0 1.01 0.35 1.36 

Edge 

32 

8 0.35 0.18 0.537 0.5 1.14 1.64 

16 0.08 0.06 0.146 0.4 0.51 0.91 

32 0.02 0.03 0.049 0.20 0.51 0.71 

64 

8 1.1 1.51 2.612 0.8 1.89 2.69 

16 0.5 1.38 1.88 0.94 1.21 2.15 

32 0.01 0.039 0.049 0.4 0.8 1.2 

Sort 

32 

8 0,002 0,01 0,012 0,03 0,04 0,074 

16 0,002 0,01 0,012 0,05 0,05 0,106 

32 0,01 0,039 0,049 0,10 0,00 0,01 

64 

8 0,16 0,31 0,476 0,01 0,025 0,035 

16 0,25 0,33 0,585 0,1 0,27 0,37 

32 0,21 0,36 0,57 0,01 0,005 0,015 

M3 

32 

8 0,41 0,13 0,54 0,3 0,11 0,414 

16 0,28 0,18 0,46 0,12 0,17 0,297 

32 0,14 0,15 0,292 0,23 0,23 0,467 

64 

8 0,93 0,6 1,53 0,6 0,21 0,81 

16 1,48 0,7 2,185 0,66 0,24 0,9 

32 1,58 0,65 2,23 0,5 0,49 0,99 

MxM 

512 

8 13,51 20,69 34,2 0,16 0,1 0,26 

16 12,75 18,3 31,05 0,17 0,11 0,28 

32 11,39 13,2 24,59 0,22 0,1 0,32 

1024 

8 14,17 25,34 39,51 0,21 0,09 0,3 

16 14,38 23,21 37,59 0,28 0,11 0,39 

32 11,51 21,03 32,54 0,27 0,1 0,37 

 

More in detail, the distribution of single and multiple SDC 

effects differs on the applications and depends on parameters 

such as the coding style and internal modules employed that 

are correlated with the SC module. In the MxM application, 

the high percentage of multiple SDCs is caused by the 

existent connection between the status information of a warp 

stored in the SC and the RF and the shared memory modules. 

However, the trend is not present in other applications. 

Vector_Add and M3 have limited use of the RF and Shared 

memory, so the contribution of multiple SDCs by 

misbehaviors in the management of these modules is low. 

In other work [48], the authors reported the effect and 



 

criticality of SDCs affecting neural network applications in 

GPGPUs. In results, the authors also included results for the 

MxM application. A comparison between the results of the 

MxM with those introduced in the present work shows 

equivalent trends. In [48], the authors found that the 

distribution of SDCs caused by multiple errors in the output 

lay in the range from 45 to 65%, without error margins. In the 

listed results in Table VII, the MxM applications have an 

equivalent tendency for the pool memory with a distribution 

of SDCs in the range of 54 to 65%. 

In contrast, the tendency is not followed by the logic part 

of the SC, and it presents a lower range (27-39%). However, 

it should be noted that the experiments performed in [48] 

injected fault in all modules of a GPGPU. In contrast, we 

perform fault injection campaigns targeting specific parts of 

the SC module only. In any, case the obtained results show 

the criticality of the SC module and the susceptibility to 

SEUs of the MxM application. 

On the other hand, the trend in the distribution of SDCs for 

other applications is different. In Vector_Add, FFT, Edge, 

and M3, the trend shows a higher percentage of SDCs caused 

by single output errors than multiple ones, as analyzed 

previously. 

Furthermore, additional 24 fault injection campaigns have 

been performed on Vector_Add, and M3 with different TPB 

configures, and the number of SPs fixed to 32. The additional 

experiments are intended to provide remarks regarding the 

fault masking effect in the SC memories mentioned before. 

The two applications were selected mainly by the 

distinctive execution behaviors in the SC. Vector_Add 

program includes high data-intensive operations without 

control-flow or thread divergence operations. In contrast, M3 

is mainly composed of control-flow operations and thread 

divergence routines. Thus, SC is utilized in the two 

applications with entirely different patterns. The TPB 

configurations, used in the experiments, have a range from 32 

to 1024 for both applications. 

From the results, shown in Fig. 7, when the TPB is 

configured to be 32 or 64, the fault masking in SC memories 

is effective to limit the impact of SEUs, though we can still 

observe a small amount DUE caused by SEUs in the logic 

part of SC. When the TPB is increased up to 1024, the error 

rate goes up rapidly, and two different distributions of DUE 

and SDC can be observed when comparing results from 

Vector_Add and M3 applications. 

Thus, an optimized implementation for performance is, as 

it often happens, not the best solution when reliability is 

concerned. Further actions to increase reliability should be 

adopted, such as ECC in the memory and Triple Modular 

Redundancy (TMR) in the control logic. Finally, depending 

on the type of application, different solutions (or in 

combination) can have effectiveness for improving system 

reliability against SEU. 

4) Divergence Stack Memory (DSM) 

In total, 50,688 faults have been injected, targeting FFT, 

Sort, M3, and Edge applications to evaluate the sensitivity of 

DSM against SEUs. 

As the results are shown in Fig. 8, the DSM has a 

relatively low sensitivity against SEUs when comparing to 

other modules presented above. One reason for this is that 

DSM is less utilized in the applications and even fewer cases 

when multiple branches activate multiple level entries in 

DSM. However, the general trend shows that a fault affecting 

the SDM is critical and can cause a DUE collapsing the 

operation of the system.  
 

 
(a) Vector_Add 

 
(b) M3 

Fig. 7. Fault injection results of SC memories and logic under different TPB 

configurations (the horizontal axis, from top to bottom, are #SPs, TPB, and 
application name). 

Similarly, a change in the SP configuration seems to 

affect the sensibility of faults in the SDM module. This 

behavior can be observed in the FFT, Edge, and M3 

applications under 64 TPB. In each case, increasing the 

number of SPs is inversely proportional to the susceptibility 

to SEUs and is explained by the reduction in the management 

operations performed by the SC for a large number of SP 

cores in the SM. However, there is not any direct interaction 

among the DSM and the number of SPs, so the observed 

reduction in the 64 TPB is mainly caused by the correlation 

between reduced management operations in the SC and 

shorter operation times on the routines executed in a 
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divergence path. 

Among the four tested applications, Sort includes only 

one conditional control flow instruction generating multiple 

execution paths. However, the divergence in this benchmark 

is data-dependent, so the generation of a new path depends on 

the comparison of two operands from memory. This behavior 

explains that the error rate did not change so much with 

different configurations in Sort. 

The M3 is also different from others as it intends to 

generate multiple intra-warp divergences sequentially in the 

first 32 threads, leading to an intensive switching activity in 

SC. But it does not generate nesting divergence paths, i.e., it 

does not use multiple level entries in the DSM. So, when the 

TPB configuration is changed from 32 to 64, the switching 

activity in SC is reduced while the level of utilization of 

DSM due to divergence paths is not increased, leading to 

decreased error rate, as shown in Fig. 8.  

For FFT and Edge, similar trends can be observed as error 

rates increase with TPB and decrease with the number of SPs. 

This behavior is mainly due to the switching activity when 

the different combinations of TPB and the number of SPs 

affect the organization of warp execution. 

Regarding the distribution of the DUE and SDC error 

rates, it depends on the affected location within an entry in 

DSM. An SEU in the wPC field may create Timeout or DUE 

(or SDC). Similarly, an SEU affecting the aTM field may 

generate SDC, by interrupting thread execution (i.e., 

unfinished computation), or DUE by causing threads to miss 

the synchronization point. Finally, an SEU in the warp ID 

field produces Timeout effects. 

As seen in the comparison between FFT and Edge, a 

decrement in TPB can help to reduce more than 50% of the 

SDC error rate, which is coherent with the conclusion 

introduced in [47] and [49]. 

C. General Comments 

In contrast to previous work, this paper presents fault 

injection results based on simulation under different 

configurations involving different numbers of SPs and 

different TPB configurations, targeting separate modules in 

the proposed FlexGripPlus. Direct comparison with results of 

previous works, where the SEUs were injected into a GPGPU 

device indiscriminately [46-49] or at the instruction level [18] 

is hard. However, similar trends of reliability impact of SEUs 

with respect to different configurations, particularly in terms 

of TPB, can be found. Some cases exist, where opposite 

trends under certain combinations of settings are observed, as 

presented in the previous subsections. Results reported in this 

paper prove that modules inside a GPGPU device can be 

affected differently when trying to balance performance and 

system (application) reliability. Hence, different modules will 

require different approaches to achieve some target reliability 

figures. 

 

VI. CONCLUSIONS AND FUTURE WORKS 

In this paper we presented the new FlexGripPlus model, 

the methodology we followed to develop it, the fault injection 

simulation environment we used to gather extensive results 

about the sensitivity of different GPGPU modules to SEUs 

and different encoding styles, and the results gathered using 

six applications targeting different modules and with different 

configurations. 

Besides the improvements made towards increasing the 

set of supported instructions, another significant 

improvement in FlexGripPlus is the technology 

independence. This independence allows the usage of the 

model at a lower level without any limitation related to the 

targeted gate library and the simulation tool. More 

importantly, in this way, it is possible to investigate the SEU 

effects with fault injection techniques targeting specific 

modules. 

Although FlexGripPlus implements the NVIDIA G80 

microarchitecture (as inherited from the original FlexGrip 

model), it includes all principal and critical modules, which 

are also present in modern GPGPU architectures. Moreover, 

the compatibility of the model with commercial programming 

tools allows the use of the same tools as in real application 

development (with some limitations). Thus, it is possible to 

perform reliability analysis in FlexGripPlus considering 

 
Fig.  8. Fault injection results of DSM (the horizontal axis, from top to bottom, are #SPs, TPB and application name). 
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similar modules across generations of GPGPU architectures. 

The performed fault injection campaigns provided 

detailed results about the sensibility to SEUs of individual 

modules of the GPGPU under different encoding styles (e.g., 

varying the TPB parameter). The evaluation was performed 

employing representative applications with diverse workloads 

to sensitize each module with different patterns. In some 

cases, it was possible to determine correlations with previous 

works. However, the existence of some inconsistency across 

the different applications and configurations prompts for 

further investigation for evaluating specific modules in 

GPGPU devices against SEUs. 

In general, a major result stemming from the gathered 

results is that different modules behave in a rather different 

manner when changing the TPB parameter and show 

different sensitivity to SEUs. The specific characteristics of 

each application may further change the above behaviors. 

Previous results gathered at the GPGPU level could not catch 

these aspects, which must be taken into account when 

optimizing an application code for performance, reliability, or 

in conjunction. 

Although FlexGripPlus does not entirely match the 

architecture of the most recent GPGPUs, we still claim that 

the performed analyses to be valid considering the 

similarities in structures of modern devices. 

As an on-going work, we are currently extending the 

reliability analysis to other modules within FlexGripPlus. We 

also plan to further extend the instruction and hardware 

support of the FlexGripPlus model following the SM 1.0 

microarchitecture compatibility, including floating-point 

units and special functional units into the model. 
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