
17 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Neural Networks Approach to Detecting Lost Heritage in Historical Video / Condorelli, Francesca; Rinaudo, Fulvio;
Salvadore, Francesco; Tagliaventi, Stefano. - In: ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION. - ISSN
2220-9964. - ELETTRONICO. - 9:(2020), pp. 1-26. [10.3390/ijgi9050297]

Original

A Neural Networks Approach to Detecting Lost Heritage in Historical Video

Publisher:

Published
DOI:10.3390/ijgi9050297

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2820692 since: 2020-05-07T12:09:29Z

MDPI



 International Journal of

Geo-Information

Article

A Neural Networks Approach to Detecting Lost
Heritage in Historical Video

Francesca Condorelli 1,* , Fulvio Rinaudo 1 , Francesco Salvadore 2 and Stefano Tagliaventi 2

1 DAD, Department of Architecture and Design, Politecnico di Torino, 10125 Turin, Italy;
fulvio.rinaudo@polito.it

2 HPC Department, CINECA, 00185 Rome, Italy; f.salvadore@cineca.it (F.S.); s.tagliaventi@cineca.it (S.T.)
* Correspondence: francesca.condorelli@polito.it

Received: 2 April 2020; Accepted: 4 May 2020; Published: 5 May 2020
����������
�������

Abstract: Documenting Cultural Heritage through the extraction of 3D measures with
photogrammetry is fundamental for the conservation of the memory of the past. However, when
the heritage has been lost the only way to recover this information is the use of historical images
from archives. The aim of this study is to experiment with new ways to search for architectural
heritage in video material and to save the effort of the operator in the archive in terms of efficiency
and time. A workflow is proposed to automatically detect lost heritage in film footage using Deep
Learning to find suitable images to process with photogrammetry for its 3D virtual reconstruction.
The performance of the network was tested on two case studies considering different architectural
scenarios, the Tour Saint Jacques which still exists for the tuning of the networks, and Les Halles
to test the algorithms on a real case of an architecture which has been destroyed. Despite the poor
quantity and low quality of the historical images available for the training of the network, it has been
demonstrated that, with few frames, it was possible to reach the same results in terms of performance
of a network trained on a large dataset. Moreover, with the introduction of new metrics based on time
intervals the measure of the real time saving in terms of human effort was achieved. These findings
represent an important innovation in the documentation of destroyed monuments and open new
ways to recover information about the past.

Keywords: machine learning; deep learning; neural networks; object detection; video processing and
classification; photogrammetry; lost cultural heritage; 3D reconstruction; open source algorithms;
metric quality assessment

1. Introduction

The documentation of Cultural Heritage plays a critical role in the conservation of memory
and knowledge of the past, and both are necessary to make the best decisions for its protection. An
important aspect of the documentation process concerns the collection of data and information about
heritage. For this reason, recent research in this field has seen the rapid development of technologies to
support the management and analysis of historical data regarding heritage. With Machine Learning
(ML), tasks like the processing of these great amounts of data and the reduction of human effort can be
made automatic and therefore more efficient. If Artificial Intelligence (AI) is combined with techniques
widely used in the heritage field such as photogrammetry, the documentation process can really be
improved, as demonstrated in this paper.

This research focuses on the examination of historical archive data, considering historical film
footage in particular. The importance of these multimedia materials lies in the fact that heritage
monuments and parts of a city that are no longer existing appear in them. For this reason, when
there are no other ways to document the lost heritage, these data become sources of key importance,
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from a cultural and architectural point of view. However, an important issue regarding historical
images concerns their availability and accessibility in archives, often made difficult by the lack of an
appropriate organization of these data. From a photogrammetric point of view, it is very difficult
to process historical material, because even if it was not acquired for this purpose, it has properties
that make it difficult to use in conventional photogrammetric workflows, such as poor image quality,
complete lack of camera parameters, the presence of distortion and damage due to poor storage.
The main disadvantage of historical film footage is that it was not shot for use in 3D reconstruction.
Information on camera type, camera movement and film used is not always available.

This study intends to determine how to improve ways to search for architectural heritage in video
material and to reduce the effort of the operator in the archive in terms of efficiency and time. In order
to achieve this goal, a workflow is proposed to automatically detect lost heritage in film footage and
its three-dimensional virtual reconstruction. Starting from the standard photogrammetric pipeline,
two new steps were added by the authors. The first one concerned the retrieval of suitable images to
process with photogrammetry using Deep Learning (DL) for the automatic recognition of heritage in
the film footage. The second one was the validation of photogrammetric reconstruction through the
metric quality assessment of the model obtained.

This paper is divided into four parts. In the first part the state of the art of DL applied to Cultural
Heritage is presented and the open issues in collecting historical material are identified. The second
part describes the methodology used for testing the workflow and the metrics used to evaluate it, both
standard and new. Two parallel case studies are presented in the third part, focusing on the collection
and preparation of the datasets. Finally, the fourth part analyses the performance of the networks
implemented and discusses the results on real cases, highlighting the efficiency of the experimented
workflow to test for the time and effort saved in the work of the final user.

2. State of the Art: Artificial Intelligence for Cultural Heritage

In recent years, there has been an increasing interest in the digitalization of Cultural Heritage
collections. Thanks to the launch of large campaigns of digitization by several institutional and
private entities, billions of documents are now available through online tools. Creating new tools for
the final user of these data is an appealing research topic especially in the AI domain. In fact, the
volume, the size and the variety of historical data lead to some critical factors. The most important is
concerned the manpower needed to organize and search the documents. To solve this problem the
application of Machine Learning gives opportunities to enhance historical archives and retrieval of
heritage information.

Machine Learning technique has become fundamental not only in the field of computer science
research, but also in everyday life, finding applications for example in web search engines, fraud
detection systems, spam filters, automatic text analysis systems, and medical diagnostic systems.
One of the reasons for this growing importance is the successful application of DL methods in areas
such as image classification [1–3], in which convolutional neural networks (CNNs) exceed the human
level in object recognition and image search [4,5]. However only a few studies in Cultural Heritage
have developed in this area. So far, thanks to this approach, researchers have been able to classify
interesting objects in images of buildings of architectural value [6]; identify different monuments
based on the feature of the images of monuments [7]; automatically annotate the cultural assets based
on their visual feature and the available metadata [8]; recognize a character in images of artworks
and their contexts [9]; interpret deep features learned by Convolutional Neural Networks for city
recognition [10].

Besides the improvements of Machine Learning techniques, hardware development, in particular
the use of Graphical Processing Units (GPUs), has given a boost to the computational efficiency of
such algorithms.

Existing research recognizes the important role played by historical data in archives and the
potentialities of ML and proposed different methods: to automatically index and label the documents
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and search through the collections [11]; to retrieve images and information on heritage [12] and
iconographic contents representing landscapes of the French territory [13]. However, the majority of
these works that consider the analysis of paintings, drawings, images, and film footage have been
hardly explored with these techniques. Only an example of Deep Learning application to extract
semantic features to analyze the role of intertitles in early cinema was conducted [14].

The reason is that, among the historical material, the collection of film footage is linked by some
specific critical factors. One limitation is represented by the difficulty of finding the material which
often requires physical access to the archives, which in many cases allow on-site consultation but not
data sharing. In this regard, the development of international projects (such as iMediaCities [15])
aimed at limiting the barriers to access to data in video archives deserves special attention. Another
problem is the need to identify the object of interest within the amount of material that potentially
contains it. The indexing of metadata for historical archival material is often incomplete or inaccurate,
and the corresponding search engines are therefore not very efficient. The human effort to find the
data of interest represents a significant percentage of the final user work.

These problems were initially addressed in [16] in which the first experiments on the use of Neural
Networks for the recognition of architectures in films were carried out. In this paper the application
of the workflow was extended in many respects, i.e., considering new experiments on real cases of
Cultural Heritage that no longer exist, investigating the quality and quantity of training datasets, and
proposing new metrics more oriented to the final user gain.

3. Proposed Workflow

In the workflow proposed in this paper a combination of DL techniques with photogrammetry
is presented. DL is used for the retrieval of primary data used as input material in the standard
Structure-from-Motion (SfM) pipeline.

In order to allow a better assessment of the validity of the pipeline, an additional validation step
of metric quality evaluation of the point cloud obtained concludes the workflow.

COLMAP [17] open-source Structure-from-Motion and Multi-View Stereo (MVS) algorithm
implementation, developed by ETH of Zurich [18], is the pipeline chosen as the reference in this work.

This software is designed to create a versatile incremental SfM system for the reconstruction of
collections of unordered photographs. The use of open-source algorithms allows the control of the
quality of the results at each stage of the photogrammetric pipeline and avoids the blind automatisms
of commercial software packages. The current state-of-the-art SfM algorithms fail to capture images
with low overlap, poor resolution and missing metadata, and deliver fully satisfactory results in
terms of completeness and robustness. The advantage of COLMAP is that the accuracy of the results
is significantly improved while increasing efficiency at every stage of incremental reconstruction.
Moreover, it allows the setting of a suitable scenario for video sequences.

Figure 1 shows the workflow in which the standard photogrammetric process is modified with
the object detection phase in the first part and the metric quality assessment in the last part.
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3.1. Object Detection Using Neural Networks

The first part of the workflow is concerning the use of Neural Networks (NN) intending to
detect the object of interest in the film footage. Among the different types available, Neural Networks
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that support the Object detection algorithm were chosen. This solution was indeed effective for
the experimented pipeline since it allows image classification even in complex images and with the
extraction of bounding boxes of the object recognized.

The usability of the workflow from the operator in the archive is an important aspect to consider.
For this reason, the Luminoth software [19] based on TensorFlow [20] was selected because it implements
an object detection algorithm through state-of-the-art networks. In particular, in this work the following
networks were used:

• Faster R-CNN [21]: stands for Faster Region-based Convolutional Neural Network and it is the
evolution of an R-CNN network [22] whose purpose is to reduce the object detection problem
to a classification problem made on limited regions of an image. The idea behind this type of
network is very simple: sub-portions of an image (regions) are selected and these regions are used
as the input of a classifier that uses convolution networks to determine the class of the extracted
object. From the computational point of view, it would not be possible to apply the classifier to
every possible sub-image of the starting image; for this reason R-CNN was designed to reduce the
number of possible regions to be used by the classifier. The R-CNN network uses an algorithm
for selecting possible regions (region-proposal) which reduces, around 2000 times, the number
of images fed to the classifier. For each proposed region, the classifier that determines the class
of the region is applied; and possibly a regression over a set of bounding boxes is applied to
determine the optimal bounding box of the region containing the object. For the selection of
the region module, a variety of methods for generating category-independent region proposals
exist. The main aspect of the Faster R-CNN network is the replacement of the region selection
algorithm (a computationally expensive part) with a convolutional network called the Region
Proposal Network. The result is a network hundreds of times faster than the I R-CNN but with a
comparable accuracy. A simplified sketch of the Faster R-CNN network is provided in Figure 2.

• SSD [23]: stands for Single Shot Detector and it is oriented to reduced computational demand while
keeping an adequate accuracy. The SSD model is simpler if compared to methods that require
object proposals because it completely eliminates proposal generation and subsequent pixel or
feature resampling stage and encapsulates all computation in a single network. The network
allows to discretize the output space of bounding boxes into a set of default boxes over different
aspect ratios and scales per feature map location. At prediction time, the network generates scores
for the presence of each object category in each default box and produces adjustments to the box
to better match the object shape. A simplified sketch of the SSD network is provided in Figure 2.
As a general rule, SSD networks are usually expected to be faster but less accurate than Faster
R-CNN networks. This behavior, however, depends on the sizes of the considered objects and
other factors, and it will be discussed in Section 5 of this paper in the context of investigated
Cultural Heritage cases.

The described networks are provided already pre-trained by Luminoth. However, it is possible to
add a new element to detect with a further training phase. This point is particularly important for the
Cultural Heritage field because specific training is a necessary step.

From a user perspective, data preparation can also be a critical issue. The tool VGG Image
Annotator (VIA) has been used for the annotation of the bounding box of the architectural heritage.
VIA is a simple and standalone manual annotation tool for images, audio and video that allows the
description of spatial regions in images or video frames. These manual annotations can be exported to
plain text data formats such as JSON and CSV and therefore are ready for further processing by other
software tools [24].

The file with the bounding box coordinates was used to prepare the dataset according to the
requirements of Luminoth. After that, a configuration file has to be created specifying some necessary
information, such as a run name, the location of the dataset and the model to use to train the network.
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Luminoth also allows users to select the hyperparameters of the training, i.e., the parameters
whose values are used to control the learning process. The selection is performed by manually
customizing the training configuration file. Tuning the hyperparameters can be crucial to optimally
solve the machine learning problem, e.g., in terms of convergence, stability and performance of training
and inference phases. All in all, the default values provided by Luminoth mostly demonstrated to be
effective in terms of all of the objectives. In particular, the momentum optimizer [25] was adequate to
reach convergence. As for the learning rate tuning, the default values were usually adequate but for
some SSD-based training runs, some convergence issues arose, and these problems were addressed by
modifying the learning rate value from the default (0.0003) to lower values (e.g., 0.00006). Luminoth
also integrates an automatic data augmentation mechanism and it was helpful to increase the entropy
of data used in the training. As concerns the number of epochs to be used during the training, it was
manually selected to ensure a complete training convergence. An early stopping mechanism might
be possible but it was not attempted so far to always get the best results for the considered test cases.
Finally, in the Section 5 of this work, an analysis of computing time performances comparing different
generations of hardware is provided to complete the picture also from that point of view.

Evaluation Metrics of Neural Networks

As introduced, the NNs potentially improve the efficiency of the first part of the photogrammetric
workflow. However, it is necessary to evaluate this performance more objectively, directly addressing
also the efficiency and reliability of the algorithm in reducing the effort of the final user activity.
According to these considerations, two different types of metrics evaluation of the network are
considered in this paper. In the first type, the efficiency of the performance of NN is evaluated
using standard metrics based on images or frames evaluated separately, while in the second type
of evaluation the metrics are more closely related to the final tasks of the network, i.e., discovering
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the time intervals where a selected object appears in a video minimizing the human time required
to manually analyze the movies. According to the frame-based approach, standard conventions can
be followed: given a dataset of images, it is first defined P (N) as the number of images in which the
object is present (not present), respectively. During the real-world inference phase, these values are not
known, and the network output is P’ (N’) that represents the images in which the network has found
(not found) the object. When performing the object detection inference, a probability of the presence
of the object is typically returned. Therefore, in order to get the P’ and N’ values, it is necessary to
define a probability threshold which is the minimum probability to be returned to consider the object
as found. In order to validate the network performances, a test phase in which P and N are known is
taken in consideration so that it is possible to categorize the images according to four statuses: True
Positive (TP, image in both P a‘d P ’), True Negative (TN, image both in N and ‘n N ’), False Positive
(FP, image’in P’ but not in P) and False Negative (FN, image ‘n N ’but not in N). Obviously, T=TP+FN
and N=TN+FP. Such quantities can be combined to define meaningful parameters. In particular, a
typical indicator is the accuracy, calculated as:

AC =
TP + T

TP + TN + FP + FN
(1)

Two other typical indicators are:

1. Sensitivity (SN): defined as the number of correct positive predictions divided by the total number
of positives:

SN =
TP

TP + FN
(2)

2. Specificity (SP): defined as the number of correct negative predictions divided by the total number
of negatives:

SP =
TN

TN + FP
(3)

Considering a set of test images composed only of positive (negative) images, it is clear that TN =

FP = 0 (TP = FN = 0) and the accuracy exactly corresponds to the sensitivity (specificity). As detailed
in the next section, considering positive-only (or negative-only) sets is very useful during the network
training and validation phase to evaluate different capabilities of the network.

The indicators above are useful because they can work with both images and video frames,
allowing fine-grained comparisons, and are especially useful to assess the quality of the network
during the training phase. However, considering the usage of the network in a real-world context,
where a certain object has to be detected from a large number of video archives, the authors believe
that a set of metrics based on the time intervals is more suitable to summarize the advantages of using
NNs in preference to the manual alternative. Referring these measures to the intervals is more natural
if we consider that once a time interval with the searched object is found also with a single-frame, it is
easy to identify the correct time set in which the monument appeared simply by going back or forward
in the video. The proposed metrics are, therefore:

• Discovery Rate (DR): calculated as the number of the intervals correctly predicted by the
network divided by the total number of the true intervals:

DR =
TP (n. correctly predicted intervals)

P (n. correctly true intervals)
(4)

A time interval in which the searched object appears is considered “correctly predicted” if there is
a predicted interval that overlaps with the true interval for at least 1 s of video. This discovery rate is
somehow related to the sensitivity; indeed, it indicates a measure of the correct positive predictions
over the total number of positive cases. This metric describes an issue that is very important for the
user, i.e., the capacity of the network to detect monuments avoiding loss of information.
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• Time save Rate (TSR): calculated as the total time length of the video divided by the sum of
the times of the measured intervals:

TSR =
Total video length

Sum. times of predicted intervals
(5)

This parameter is somehow related to the specificity and indicates how much time the operator
would save in his manual work of watching videos if the automatism of the network is used. This
parameter clearly depends also on the type of videos used for testing. The vast majority of the results
presented in this paper are based on videos which contain at least one occurrence of the searched object,
such a circumstance artificially limits the measured time save rate. To circumvent the dependency on
the archive source, another time save related parameter is defined.

• Time save Efficiency (TSE): as said, the time save rate indicates the quantitative advantage for
the end-user who adopts NN. It would be interesting to compare the time save rate with the ideal time
save rate, which is the minimum time save rate knowing in advance the true intervals to watch. The
ratio between the measured time save and the ideal time save rate is the time save efficiency:

TSE =
TSR measured

TSR ideal
=

Total video length
Sum. times of predicted intervals

Total video length
Sum. times of true intervals

=
Sum. times of true intervals

Sum. times

(6)

The time save efficiency is less prone to bias due to the type of archive source. The value of this
efficiency is typically reduced when dealing with false positives, i.e., when some measured intervals
do not correspond to true intervals. However, it is worth noting that this efficiency can also reach
values greater than 1 and this can happen when not all the true intervals are correctly found by the
measured intervals. In this scenario, despite the false-positive intervals, it is possible that the total
time of the measured intervals becomes shorter than the time of true intervals. However, this is a clear
symptom of a poor discovery rate.

In general, discovery-rate, time save rate, and time save efficiency should all be maximized to
improve training but, when it is not possible, the choice of one metric or another is a matter of usage
context. Because of the type of use of the network within the photogrammetric pipeline, two extreme
cases of use are considered:

1. In the first situation in which the videos selected by the ML are then manually watched to decide
which are the most suitable for photogrammetry, it is ideal to maximize the discovery rate to
avoid losing useful information.

2. In the second situation in which the pipeline is managed more automatically, it is instead
preferable to maximize the time save parameters to prevent incorrect images from entering the
subsequent processing.

3.2. SfM Pipeline Using COLMAP

In the second part of the workflow, the photogrammetric processing was implemented according
to the standard principal steps. The first one is the detection and extraction of the feature in the frame
extracted from the video that contains the heritage. During this phase, a camera model suitable to
control the distortion effects was chosen, due to the lack of knowledge of the intrinsic parameter. The
model considered five parameters, f for the focal length, cx and cy for the two coordinates of the
principal point and k1 and k2 as the two radial distortion parameters. The second step is the feature
matching of sequential images such as those obtained from a video and during this phase consecutive
frames with visual overlap were matched. The last step of the reconstruction of the 3D model allowed
the achievement of the final point cloud.
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The last part of the workflow consisted of the evaluation of the metric quality of this model. In
order to analyze the precision of the point cloud, the values of the average of the reprojection residuals
overall image observations, expressed in pixel, from the bundle adjustment report of the SfM process
were examined. These values were compared with a benchmark of the maximum metric quality that
can be reached by implementing photogrammetry on videos, according to specific camera motion
and a taking distance [26]. Finally, the comparison between the sparse point cloud resulted from the
processing and a dense point cloud or a mesh conclude the metric assessment.

4. Case Studies and Datasets

Two case studies were selected in Paris in order to evaluate the proposed method. The first one
was adopted to determine the best performance between two different kinds of Neural Networks
implemented and to test different training scenarios. For this reason, an existing monument was
chosen, the Tour Saint Jacques, in order to use a great number of images as well as contemporary
pictures of the monument for both the training and the validation phases. The second part of this
exploratory study was conducted considering both the tower and the second monument selected,
Les Halles, which no longer exists. This second part was experimented with by applying the results
obtained during the first part to a real case such as the recognition of a lost monument in film footage.
To allow a deeper insight into the minimum number of images necessary to train a network, both case
studies were analyzed in parallel. Cultural Heritage can be found not only in architecture which still
exists. It is still present even where the building or monument has been destroyed. For this reason, the
choice of these particular case studies was a conscious decision.

4.1. Case Studies

4.1.1. Tour Saint Jacques

The first case study chosen is the Tour Saint Jacques (Figure 3) that is located in Rue Rivoli in
Paris’s 4th arrondissement. This bell tower is in flamboyant gothic style and it has been inscribed in
the UNESCO Heritage List since 1998 for its historical importance. The building, in fact, is the only
evidence of the lost Saint-Jacques-de-la-Boucherie church, a Carolingian chapel destroyed in 1797 after
civil unrest. The tower was saved from destruction because of its high architectonic value and after
restoration, it was moved from its location and elevated on a decorative stone podium [27,28].
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chosen, the Tour Saint Jacques, in order to use a great number of images as well as contemporary 
pictures of the monument for both the training and the validation phases. The second part of this 
exploratory study was conducted considering both the tower and the second monument selected, 
Les Halles, which no longer exists. This second part was experimented with by applying the results 
obtained during the first part to a real case such as the recognition of a lost monument in film footage. 
To allow a deeper insight into the minimum number of images necessary to train a network, both 
case studies were analyzed in parallel. Cultural Heritage can be found not only in architecture which 
still exists. It is still present even where the building or monument has been destroyed. For this 
reason, the choice of these particular case studies was a conscious decision. 

4.1. Case Studies 

4.1.1. Tour Saint Jacques 

The first case study chosen is the Tour Saint Jacques (Figure 3) that is located in Rue Rivoli in 
Paris’s 4th arrondissement. This bell tower is in flamboyant gothic style and it has been inscribed in 
the UNESCO Heritage List since 1998 for its historical importance. The building, in fact, is the only 
evidence of the lost Saint-Jacques-de-la-Boucherie church, a Carolingian chapel destroyed in 1797 
after civil unrest. The tower was saved from destruction because of its high architectonic value and 
after restoration, it was moved from its location and elevated on a decorative stone podium [27,28].  
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Figure 3. The tour Saint Jacques in Paris. (a) The tower in a historical photograph by Melville; and (b) 
in the contemporary state. 

Figure 3. The tour Saint Jacques in Paris. (a) The tower in a historical photograph by Melville; and (b)
in the contemporary state.
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4.1.2. Les Halles

The pavilions of the ancient market of Les Halles (Figure 4) were built in Paris in 1852 by the
architect Baltard. Les Halles constituted a nerve center in the city of Paris and became the object of
numerous political and social debates [29,30]. Les Halles was destroyed in 1971 and now only two
pavilions still exist: one is in Nogent-sur-Marne, Île-de-France, and one is in Yokohama, Japan.
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Figure 4. The pavilions of Les Halles. (a) Les Halles in a historical photograph by Melville; and (b)
from a top view.

One case study is of a place that still exists; the other no longer exists. This choice was made in
order to represent two different aspects of architectural heritage. In fact, although the tower still exists,
it is not in the original position, while Les Halles has been demolished, therefore they currently do not
exist but were present until the 60s. However, both architectures appear in historical film footage from
the 1910s until the 1970s. A lot of video materials, both documentary and fictional, which were set
in the market and near the tower, were examined in several video archives in Paris (Lobster, Ina.fr
CNC, Forum des Images, Gaumont Pathé Archives, Les Documents Cinematographique). Moreover,
historical photographs, drawings and design projects were collected together with the films and a 3D
model, obtained from a recent photogrammetric survey of the existing tower using UAV, made by
Iconem in 2015. Therefore, they represent good case studies to test the proposed algorithm.

4.2. Dataset

Although much data was available on the tower and Les Halles, no suitable datasets existed. In
order to implement the Neural Network, it was necessary to create new specific datasets.

The quality of primary data used in the implementation of the NN plays a crucial role in the
achievement of good results. This strongly influences the training and a significant level of data entropy
is necessary for the machine to learn the features of the object. It was easier to use the tower for this
because, in addition to historical images retrieved for both case studies, it was also possible to collect
hundreds of contemporary images with different backgrounds, lighting conditions and points of view.
The methods used for the collection were the following: (1) web crawling; (2) ad hoc photographic
survey in the new location of the tower; (3) historical archives consultation in Paris.

The experimentation was conducted in two different steps and on three different datasets, described
in the following paragraphs.

4.2.1. Dataset 1: Reference Case—Tour Saint Jacques

The first dataset was created with the aim to analyze two different Neural Networks on the best
possible scenario of an existing heritage such as the Tour Saint Jacques case study. The collected images
of the tower (Figure 5) were firstly divided into four categories based on the following criteria:
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1. Images of the entire tower both contemporary and historical;
2. Views with the skyline of Paris because they appear in the film footage;
3. Images that show monuments or architectures similar to the Saint Jacques tower for shape

(for example other towers) or style (for example gothic architecture). These last images act as
“negative matching” and can lower the incidence of the false-positive ratio in Machine Learning
classification problems [31,32];

4. Images representing only details or parts of the tower, since it is a typical situation when dealing
with film footage that the camera moves shooting only parts of an object.

During the training phase different combinations in the number and type of images were extracted
to improve the performance of the network, as shown in Table 1 and explained in the next section.
Moreover, during validation, 80 images from each group of the dataset, named respectively as valid1,
valid2, valid3 and valid4, were used to assess the quality of results from different perspectives (Table 1).

Table 1. Description of the training and validation dataset 1 on the reference case of the Tour
Saint Jacques.

Description From
Web

From
Survey

From Historical
Photographs

Number in Training Number in
ValidationRUN A RUN B RUN C

Tour Saint Jacques x x x 400 400 400 80
Landscape x 80

Negative matching x x 200 200 80
Tour Saint Jacques Parts x x 80 80 80 80
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Figure 5. A selection of the pictures from the dataset 1: (1) Tour Saint Jacques; (2) landscape; (3)
negative matching; (4) tower parts.

4.2.2. Dataset 2: Video

The second dataset was created to test the performance of the algorithm in a realistic case. For
both case studies historical videos from archives in Paris have been collected. Despite the criticalities
in retrieving these materials (see Section 2), a significant set of footage was collected, and their
characteristics are described in Tables 2 and 3.



ISPRS Int. J. Geo-Inf. 2020, 9, 297 11 of 26

Table 2. Description of the video dataset of the Tour Saint Jacques.

Dataset Duration Year Director Type Film Colour Archive

La tour Saint Jacques 9 min 47s 1967 J. Sanger documentary B&W Ina.fr
Études sur Paris 76 min 1928 A. Sauvage documentary 16 mm B&W CNC and VOD

Paris, Roman d’une Ville 49 min 1991 S. Neumann documentary 16 mm B&W Forum des Images
Paris 2ème partie 4 min 44 s 1935 G. Auger documentary 16 mm B&W Forum des Images
Passant par Paris 13 min 39 s 1955 P. Perrier fiction 8 mm B&W Forum des Images

Vue Panoramique sur Paris 2 min 1954 A. Lartigue documentary 16 mm B&W Forum des Images
Un film sur Paris 45 min 1926 C. Lambert, J. Levesque documentary B&W Lobster

La nouvelle babylone 24 s 1929 L. Trauberg, G. Kozintsev historical B&W Lobster
Paris, 1946 13 min 1946 J.C. Bernard documentary Colour Lobster

La grande roue 4 min 20 s 1913 documentary B&W Lobster
Paris et ses monuments 7 s 1912 Pathe documentary B&W Lobster

Table 3. Description of the video dataset of Les Halles.

Dataset Duration Year Director Type Film Colour Archive

Crainquebille 1 min 32 s 1922 J. Feyder drama 35 mm B&W Lobster
Les Halles 1960 35 min 15 s 1960 amateur Colour Lobster

Paris Mémoire d’écran 21 s documentary B&W
Gaumont

Pathé
Archives

Le ventre de Paris 5 min 55 s documentary B&W Ina.fr
Le ventre de paris 3 min 11 s 2008 JP. Beaurenaut documentary Colour Ina.fr

Les halles centrales 12 min 29 s 1969 J. Sanger documentary B&W Ina.fr

La Destruction des Halles de Paris 3 min 28 s 1971 H. Corbin, J. Humbert documentary 35 mm B&W
Les

Documents
Cinemato-graphiques

Le dernier marché aux Halles de Paris 2 min 28 s 1969 G. Chouchan documentary B&W Ina.fr
Les Halles: histoire d’un marché

incontournable à Paris 2 min 5 s documentary B&W Ina.fr

Les Halles de Paris en 1971 1 min 2 s 1971 documentary B&W Ina.fr
Les Halles 2 min 37 s documentary B&W Ina.fr
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4.2.3. Dataset 3: Real Case—Tour Saint Jacques and Les Halles

Evaluating the implementation of the NN on film footage in which a lost monument appears
means that it is not possible to use a dataset that contains contemporary images of the building since it
no longer exists. For this reason, the third dataset (Figures 6 and 7) was created to test the algorithm to
this real case on both case studies. With this aim, the categories of images were categorized in three
different groups:

1. Historical photographs of the monument.
2. Historical images, both photographs and frames extracted from the video dataset in which the

searched monument appears.
3. Negative matching, for the tower this coincides with the third group of the first dataset; for Les

Halles are the images with buildings of Paris that appear in the film footage.

Moreover, for the tower some images were collected in a new validation group called valid5
and added to the previous dataset 1 to test the algorithm on this reference case. For Les Halles the
validation group on which the algorithm was tested is called valid1. The number of images used
during the training and the validation and the combinations for the different runs are shown in Tables 4
and 5 and will be further explained in the next section.
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Table 4. Description of the training and validation dataset 3 on the real case of the Tour Saint Jacques.

Dataset
Number in Training RUN Number in

Validation

T1A T1B T1C T1D T1E T1F T2A T2B T2C T2D T2E T2F VALID5

1. Tour Saint
Jacques—Historical

Photographs
50 42 35 25 15 5 25 20 10 5 7 2 0

2. Tour Saint
Jacques—Frame 0 0 0 0 0 0 25 22 25 20 8 3 29

3. Negative
matching 50 42 35 25 15 5 50 42 35 25 15 5 0

Table 5. Description of the training and validation dataset 3 on the real case of Les Halles.

Dataset
Number in Training RUN Number in

Validation

T1A T1B T1C T1D T1E T1F T2A T2B T2C T2D T2E T2F VALID1

1. Halles Historical
Photographs 50 42 35 25 15 5 25 17 23 16 6 0 32

2. Halles Frame 0 0 0 0 0 0 25 25 12 9 9 5 46
3. Negative
matching 50 42 35 25 15 5 50 42 35 25 15 5 0

5. Results and Discussion

In this section, the Neural Network results are discussed. In the first subsection, the training stage
is detailed and the network model choice is discussed alongside the type of training dataset and the
probability threshold selection. In the second subsection, the influence of the training dataset size and
source is discussed. In the third subsection, the network is evaluated in a realistic scenario underlining
the behaviors of the metrics more closely related to the end-user activity. In the fourth subsection, a
brief discussion of the computational power required to utilize neural networks is presented. Finally,
in the fifth subsection, the Neural Network results are discussed with respect to the final step of the
pipeline, i.e., the photogrammetric reconstruction.

5.1. Network Model Selection and Tuning

The first part of training experimentations is based on the Tour Saint-Jacques case due to the
high availability of past and modern pictures in addition to some sets of historical videos. The
experimentation started with the adoption of the RCNN network, also called “accurate network” in the
Luminoth reference. In the first training—labelled as RUN A—only positive matches, represented by
images of St. Jacques tower with complete or partial views (datasets 1 and 4) were used. The results of
the sensitivity analysis conducted on the training and validation sets containing the tower (respectively
valid1 and valid4) are shown in Figure 8 considering two reference probability acceptance thresholds
equal to 0.5 and 0.9, respectively.
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What can be clearly seen in the graph is that the network rapidly converges and reaches a very
high value of training accuracy (i.e., sensitivity), as well as very high values of validation accuracy for
the valid1 set which includes only images of the entire tower. The accuracy is more limited (around
0.8) for valid4 because partial views of the tower are not always detected. Furthermore, as expected,
the network becomes more selective by increasing the probability threshold, and the sensitivity tends
to significantly decrease, especially for valid4.

The validation behavior of the validation sets that contain the images without the tower is shown
in Figure 9 for both valid2 and valid3 sets. For the valid2 dataset which contains images with the
landscape around the location of the tower, the trend is quite good and reaches a specificity value of 90%.
For the valid3 set, the presence of non-Saint-Jacques towers creates confusion in the network learning
and leads to poor results close to 50% of specificity. It means that the network is not able to distinguish
the real tower from other similar towers with high accuracy. By increasing the threshold, the network
becomes more selective and the problem of false positives is therefore at least partially alleviated.
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The difference between the specificity results of valid2 and valid3 sets is not surprising. Since
the training runs start from pre-trained networks, it is expected that common categories are already
stored—in the neural network sense—in the initial weights of the network. Indeed, from the validation
results represented in Figure 9, it can be ascertained that only a few false positives correspond to
landscapes whereas a significant amount of shapes similar to the tower are misinterpreted by the
network as the Tour-Saint Jacques tower. In this scenario, to address the most frequent false positive
type, the valid3 image set, containing shapes similar to the searched Tour Saint Jacques, was used as a
negative matching set in the subsequent runs.

The second training RUN B was still based on the Faster-RCNN network but it was performed
including the negative matching set of images with the aim of improving the performance of the
network minimizing the false positive results. In Figure 10 the sensitivity analysis of the RUN B
network is shown. As expected, in comparison with the previous training scenario, the network
becomes more selective. The graphs reveal a slight degradation of the recognition of the true positives
compared to RUN A where negative matching images are not used in training. However, in terms of
specificity—as shown in Figure 11—the problem of false-positive results seems to be mostly solved.
The significant specificity improvement of RUN B compared to RUN A demonstrates that using valid3
as the “negative matching” set was an effective choice. Overall, the advantages of RUN B training
outweigh the disadvantages. However, according to the use of the algorithm, it could be decided to
always prefer sensitivity, so RUN A would be slightly better.
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Figures 12 and 13 reveal the analysis of sensitivity and specificity trends for the two trainings RUN
A and RUN B in order to evaluate the influence of the probability threshold on the results. The value
of sensitivity is likely to decrease with the threshold whereas the specificity is expected to increase.
From both figures, it results that 0.9 can be a good compromise on the threshold selection.
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The third training RUN C which was attempted is based on the SSD network, while keeping fixed
the training dataset (including negative matches). The results of the comparison between the RCNN
network and the SSD network are shown in Figures 14 and 15. What can be seen is that in positive cases
the SSD network provides better values of sensitivity at least for the valid 4 set (Figure 13). However,
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from a visual inspection, it turns out that the images which are detected only by the SSD network are
usually very poor-quality images or even drawings and therefore not suitable for the photogrammetric
extraction. In terms of specificity, from Figure 15 it turns out that the values for both networks are
high. Especially for the RUN B the values are very close to the ideal value of the unit. On the other
hand, from Figure 15 it results that there is a specificity degradation for the SSD network. Even though,
the specificity degradation seems small—around 2%—it is worth noting that in realistic scenarios the
amount of negative images is huge and having 2% of false positives may be incredibly costly for the
end-user activity.
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Summarizing, the SSD network is lighter in terms of computation than the Faster-RCNN and can
detect more (usually poor quality) true positives, but at the same time it detects a too high number of
false positives. The consequence is a greater number of videos to watch for the user. For these reasons,
the threshold value of 0.9 together with the Faster-CNN were identified as the most reliable feature of
the network to use in the next experimentations.

5.2. Assessment of the Training Dataset

The previous investigation identified Faster-CNN as a suitable model of the network to utilize. It
also highlighted the advantage of inserting negative matching in the training datasets. Finally, the
selection of 0.9 as the object detection threshold proved to be a good compromise. The following part of
this paper moves on to examine the application of these assumptions to a real case. When architectural
heritage is lost, only historical archival material is available. For this reason, in the following analyses
only historical images, both photographs and frames from videos, were used in the training phase.
Considering the difficulty of finding the first monument images needed for training, considerations
need to be given to both the source of suitable images of the monument and the number of images
required for a good quality training phase. In order to investigate these issues in this study, several
training phases were performed. First, two different kinds of runs were chosen. In the first one, the
training was performed using only historical photographs, in the second one also the frames extracted
from historical videos were added to the dataset. To enhance generality, both the case studies of the
tower and of the pavilions were tested: the terms T1 and H1 refer to the runs with the training datasets
that contain only historical photographs, respectively, for the tour Saint Jacques and Les Halles. The
terms T2 and H2 refer to the runs that also employ the frames extracted from videos. Furthermore,
with the aim of calculating the minimum number of images required to achieve acceptable training
results of the network, six different runs were processed with a decreasing number of elements in the
dataset: these runs are labeled as A-B-C-D-E-F. For example, T1A stands for the run trained using
50 true images and 50 negative matchings, considering only historical photographs. On the other
hand, T2A stands for the run trained using 50 true images and 50 negative matchings, considering 25
historical photographs and 25 video frames containing the monument. The other letters are related
to the number of training images as follows: B = 42, C = 35, D = 25, E = 15, F = 5. A comparison
among each case study was performed by validating the network against datasets that contained
only historical images, called valid5 (valid1) for the tower (Les Halles) test cases. The evaluation was
achieved considering single frames of the videos.

The results are provided in Figures 16–18, where the sensitivity is plotted against the number
of training images for each test case and each source of training images (only historical photo or
combination of historical photo and video frames). Since the involved test datasets always contain the
searched monument, the sensitivity equals the accuracy.
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The provided results show a monotonically increasing trend of the sensitivity when the number
of images increases, for all of the four considered evaluations. Furthermore, a saturation trend for all of
the cases can be ascertained. To achieve reasonably saturated results, around 25 images were required
for the tower case, whereas 35 images were needed for the Les Halles case. What is interesting in these
charts is that there is no great difference between the trend of the four curves, when compared to the
curve fittings based on the simple power-law f(x) = a + b·xc. This is represented in Figures 16 and 17.
Even though this analysis is limited to two test cases, a first brief indication is that with a minimum of
30 images it is possible to train the network adequately to find the requested object. For low numbers
of images, in particular the T2 and H2 cases present a measurable advantage in terms of sensitivity
performances compared to the T1 and H1 counterparts. For a higher number of training images, the
advantage is smaller and more difficult to detect. All in all, at least for these two test cases, the source
and the type of the images do not significantly influence the performance of the learning process of the
network. Instead, the number of training images is crucial to achieving good quality training.

5.3. Network Evaluation in a Realistic Scenario

5.3.1. Frame-Based Metrics

In the previous section, a detailed investigation of sensitivity performances when varying the
number and source of training images was provided. The sensitivity basically summarizes the
capability of the network to detect the searched monument but does not provide information about the
time save achievable using Neural Networks in comparison to manual procedures. In order to discuss
the latter point, the first quantity to be evaluated is the specificity. In order to evaluate meaningful
specificity values, a realistic test dataset is recommended. Indeed, in a realistic scenario where the
amount of positive and negative is as balanced as expected in a real archive, it is possible to evaluate
the best compromise between the metrics to be maximized. For this reason, the same analysis varying
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the number of training images is repeated considering the videos as the test dataset (as usual, the
video frames used during the training are not used in the test dataset). Starting with the use of the
standard metrics applied to video frames, the resulting charts are provided in Figures 19 and 20 for
both sensitivity and specificity parameters. As regards the sensitivity, the trends against the number of
training images are similar to the previous sensitivity analyses, but the absolute values are slightly
smaller, as expected considering that the average quality of video frames is lower than the historical
photos used in the previous test datasets. All in all, the analysis shows that the monuments correctly
detected as positive are less than half of the total positive ones, therefore some information is lost. As
regards the specificity, the trends are not monotonous; the ability to recognize true negatives fluctuates
but does not show a definite trend in all four cases. The specificity values are always greater than 84%.
This percentage is related to the time-saving advantage for the end-user, but a direct interpretation of
the value in this sense is not obvious. Moreover, it is worth noting that the specificity value is limited
by the fact that the test videos were manually selected to contain at least one occurrence of the searched
object, such a circumstance does not correspond to a realistic archive analysis.
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5.3.2. Time Interval-Based Metrics

As discussed in Section 3, the evaluation of metrics based on time-intervals may be more suitable
to realistically analyze the quality of trained networks concerning the end-user activity.
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In Figure 21 the time interval discovery-rate is plotted against the number of training images
for T1, H1, T2, H2 cases. The percentage of correctly predicted intervals in which the monument
appears found by the runs T2 and H2 of the network, in which both historical photographs and frames
were used, reached a higher number than the T1 and H1 since the value of probability to detect the
correct object is around 75% against 50%. As previously explained, the evaluation of the discovery
rate is somehow related to the frame-by-frame sensitivity, even if calculated on intervals. Comparing
the results of discovery-rate and standard sensitivity, it is evident that using a metric based on time
intervals leads to an evaluation less strict than the counterpart based on the frame, but the time interval
perspective is more significant from the point of view of the final user.
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images are usually the best quality ones and therefore are more usable for the next steps of our 
pipeline. In this scenario, the time save rate efficiency close to unity can be considered an optimal 
result. 

Figure 21. Discovery Rate analysis.

In Figure 22, the time save parameter is plotted against the number of training images. It turns
out that for T2 and H2 runs with a low number of images the time save is around 1000. However,
in this range the discovery rate is very poor. With the increase in the number of images the value
decreases around 10/50 which is still a satisfactory value for the time save. It is expected that the value
increases, even more, when generic video archives are taken into consideration.
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In order to get rid of the dependency on the type of considered videos, it is possible to compare
the time save rate with the ideal time save rate, thus defining the time-saving efficiency. Time save
efficiency results are plotted in Figure 23. For a low number of training images, the time save efficiency
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is higher than unity and this is due to poorly trained network, which is not capable of detecting both
true and false positives. For mid-range and high-range numbers of training images, the efficiency
is order 1 which means that the operator time save is close to the ideal time save. Obviously, this is
possible because not all of the objects are correctly found. However, the found images are usually the
best quality ones and therefore are more usable for the next steps of our pipeline. In this scenario, the
time save rate efficiency close to unity can be considered an optimal result.
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Table 6. Hardware comparison. 

NVIDIA 630M NVIDIA K40 NVIDIA P100 NVIDIA V100 NVIDIA 1650 
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Figure 23. Time Save Efficiency analysis.

5.4. Hardware Analysis: High-Performance Computing vs. General Purpose

The use of GPUs (Graphical Processing Units) has emerged as a cutting-edge technology in the
context of Machine Learning due to the high computing power achievable and the relatively low
amount of energy consumption. Modern frameworks for neural networks support GPU computing.
GPUs are available in common home computers or small work-stations, but GPUs are nowadays also
protagonists as accelerators of High-Performance Computing (HPC) clusters. In Table 6, we report the
time required to process an image during the training stage.

To follow the evolution trend of the GPUs, results based on low/mid-range GPUs were reported
up to results from top GPUs used in HPC centers. The order follows the release date of the devices.
The type of GPU is also described as distinguishing HPC GPUs from consumer GPUs. It turns out that
the improvement over the years is important, with a speed-up around 3 years after 5 years. Another
very important point is the advantage of using HPC-oriented GPUs compared to normal laptop GPUs.
The difference in timing is very marked. For complete training, the elapsed time may pass from several
tens of days to less than 24h. In the massive inference phase, the use of HPC platforms can become a
fundamental requirement.

Table 6. Hardware comparison.

NVIDIA 630M NVIDIA K40 NVIDIA P100 NVIDIA V100 NVIDIA 1650

2012 2014 2016 2018 2019

Low-range Laptop HPC HPC HPC Mid-range Laptop

30 s/image 1 s/image 0.5 s/image 0.3 s/image 9 s/image

5.5. Photogrammetry: Processing and Evaluation

The frames that contained the architectural heritage detected were automatically extracted from
the film footage and used during the photogrammetric process. Two different films to be processed
were chosen among the footage correctly detected by the Neural Network. The first one is “Études
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sur Paris” from the CNC-VOD archive (Figure 24a) and contains sequences of images of the Tour
Saint Jacques, taken with tilting camera motion. The second video, with images of pavilions, is “La
Destruction des Halles de Paris” found in Les Documents Cinematographiques archive (Figure 24b).
The type of camera motion in which the video was shot is the trucking. The two films present the
characteristics shown in Table 7:
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Figure 24. A selection of frames from the film footage: (a) “Études sur Paris”; (b) “La Destruction des
Halles de Paris”.

Table 7. Technical features of the films used during the photogrammetric processing.

Film Gauge Focal Length Digital Format
Resolution

N◦

Frame
Camera
Motion

Études sur Paris 16 mm 25 mm 480 × 360 pixels 16 Tilting
La Destruction des Halles de Paris 35 mm 35 mm 492 × 360 pixels 49 Trucking

Figure 25 shows the results of the SfM pipeline applied to the two case studies.
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Figure 25. Results from Structure-from-Motion (SfM) pipeline: (a) reconstruction of the Tour Saint
Jacques; (b) reconstruction of the Halles.

In order to assess the quality of the point clouds obtained from the photogrammetric process, the
values of the residuals were used for the calculation of the mean and standard deviation. The following
graphs analyze the trend of the data and the comparison with the benchmark (Figures 26 and 27).

In addition, the minimum and maximum values were converted to centimeters with the calculation
of the Ground Sample Distance (GSD). The results are reported in Table 8; for the tower a distance of 15
m was considered (GSD benchmark = 1.2 [cm/px], GSD tower = 1.43), and in Table 9 for the pavilions,
a distance of 120 m was considered (GSD benchmark = 11.2 [cm/px], GSD Les Halles = 23.6 [cm/px]).

Table 8. Mean, standard deviation, Min and Max values of residuals.

TOUR SAINT JACQUES

Case
Mean St Dev Min Residual Max Residual

px cm px cm px cm px cm

Benchmark 0.36 0.10 0.10 0.80 0.13 0.10 0.60 0.80
Case study 0.23 0.33 0.06 0.08 0.10 0.14 0.35 0.50
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Table 9. Mean, standard deviation, Min and Max values of residuals.

LES HALLES

Case
Mean St Dev Min Residual Max Residual

px cm px cm px cm px cm

Benchmark 0.47 5.20 0.13 1.40 0.10 1.10 0.77 8.70
Case study 0.50 11.80 0.10 2.30 0.18 4.20 0.79 18.60

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 24 of 28 

 

 

 

Figure 26. Comparison of normal distribution of the residual value between benchmark and case 
study considering the tilting camera motion for the Tour Saint Jacques. 

 

Figure 27. Comparison of normal distribution of the residual value between benchmark and case 
study considering the trucking camera motion for Les Halles. 

In addition, the minimum and maximum values were converted to centimeters with the 
calculation of the Ground Sample Distance (GSD). The results are reported in Table 8; for the tower 
a distance of 15 m was considered (GSD benchmark = 1.2 [cm/px], GSD tower = 1.43), and in Table 9 
for the pavilions, a distance of 120 m was considered (GSD benchmark = 11.2 [cm/px], GSD Les Halles 
= 23.6 [cm/px]). 
  

Figure 26. Comparison of normal distribution of the residual value between benchmark and case study
considering the tilting camera motion for the Tour Saint Jacques.

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 24 of 28 

 

 

 

Figure 26. Comparison of normal distribution of the residual value between benchmark and case 
study considering the tilting camera motion for the Tour Saint Jacques. 

 

Figure 27. Comparison of normal distribution of the residual value between benchmark and case 
study considering the trucking camera motion for Les Halles. 

In addition, the minimum and maximum values were converted to centimeters with the 
calculation of the Ground Sample Distance (GSD). The results are reported in Table 8; for the tower 
a distance of 15 m was considered (GSD benchmark = 1.2 [cm/px], GSD tower = 1.43), and in Table 9 
for the pavilions, a distance of 120 m was considered (GSD benchmark = 11.2 [cm/px], GSD Les Halles 
= 23.6 [cm/px]). 
  

Figure 27. Comparison of normal distribution of the residual value between benchmark and case study
considering the trucking camera motion for Les Halles.

The graphs show that the curves in both the case studies follow the Gaussian distribution as in
the case of the benchmark. What it is noted from the tables is that when comparing the two results,
the differences between the values of the case study related to the tower and the benchmark are not
significant. Instead, concerning Les Halles, the values in pixels are almost the same, but, after the
transformation in centimeters through the GSD calculation, the values of the case study are higher
than those of the benchmark. These disparities could derive from the approximation about the focal
length of the camera used to shoot the film footage and the taking distance. For this reason, a margin
of error has to be considered in this evaluation.
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Finally, the point cloud of the tower obtained by the process, although of low density, was
compared with the 3D model of Iconem. The comparison (Figure 28) showed that the calculated
distances between the model mesh and the resulting point cloud were less than 0.5 pixels.
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Despite some limitations derived from the lack of certain information about the technical features
of the camera and the film used to shoot the videos and the unavailability of a precise 3D model for
the case study of Les Halles, since it no longer exists, these findings are very encouraging for the
metric certification of the models obtained. This represents a fundamental aspect of the scientific
documentation of heritage sites.

6. Conclusions

This study sets out to recognize (in an automatic way) lost architectural heritage in film footage in
order to create a 3D model that can be metrically certified. The experiment focused on the reduction
of human effort in the detection of the searched object and increased efficiency in the work of the
operator in the archive. In order to achieve this aim, Machine Learning algorithms were identified as
potential solutions to reduce the time needed to search for monuments in video documents in historical
archives. The originality of the proposed workflow lies in the boosting of the photogrammetric pipeline
with the use of Deep Learning algorithms. In fact, the detection of the monument in the video was
inserted as the first step of the photogrammetric reconstruction. The research has also shown how to
effectively train state-of-the-art Neural Networks to search for lost historical monuments. In particular,
two different architectures were chosen as case studies, the Tour Saint Jacques for the tuning of the
networks in the best situation of a heritage that still exists, and Les Halles to test the algorithms on a
real case of an architecture which has been destroyed. The performance of the network was evaluated
using different datasets, according to the different conditions that could be found in historical material.
According to the appropriate metrics of the cases in question, the quality of the results is encouraging
both in terms of saving human time and in terms of results achieved. The metric quality of the 3D
models obtained from the historical videos were also evaluated according to a previously defined and
useful benchmark.

This study makes an original contribution to the field of Cultural heritage providing a new tool
for the research of historical material in archives. This approach will prove useful in expanding
the understanding of how the use of ML could really improve and boost well-known methods for
the documentation of lost heritage. Nowadays, a large amount of multimedia content is produced.
Therefore, the findings of this research will be of interest to create more efficient and accurate systems
to manage and organize these materials that will become a memory for the future. In this direction,
further research in this field would be of great help in simplifying the use of ML in view of a possible
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non-expert user. For example, the development of an intuitive interface could allow the automation of
the entire workflow.
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