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CoopNet: Cooperative Convolutional Neural
Network for Low-Power MCUs

Luca Mocerino, Andrea Calimera
Politecnico di Torino, 10129, Torino Italy

Abstract—Fixed-point quantization and binarization are two
reduction methods adopted to deploy Convolutional Neural
Networks (CNNs) on end-nodes powered by low-power micro-
controller units (MCUs). While most of the existing works use
them as stand-alone optimizations, this work aims at demonstrat-
ing there is margin for a joint cooperation that leads to inferential
engines with lower latency and higher accuracy. Called CoopNet,
the proposed heterogeneous model is conceived, implemented and
tested on off-the-shelf MCUs with small on-chip memory and
few computational resources. Experimental results conducted on
three different CNNs using as test-bench the low-power RISC
core of the Cortex-M family by ARM validate the CoopNet
proposal by showing substantial improvements w.r.t. designs
where quantization and binarization are applied separately.

I. INTRODUCTION

Inference engines built upon end-to-end deep learning methods
represent the state-of-the-art in several application domains.
Deep Convolutional Neural Networks (CNNs), in particular,
have brought about breakthroughs in the field of computer
vision, speech recognition and natural language processing [1].
Many Internet-of-Things (IoT) services rely on CNNs to infer
information from the raw data gathered by end-user portable
devices and/or embedded sensors. While the majority of IoT
frameworks run CNNs in the cloud, namely, on centralized
data centers physically very far from the source of data, to
have CNNs on hand is a means to higher efficiency and more
user privacy [2]. Enabling the inferential stage on the mobile
edge is challenging as it requires the processing of CNNs, large
in size and computationally intensive, with limited hardware
resources. The picture gets even more complicated when
considering applications, like wearable [1] or ambient and
infrastructural sensors [3], which must run on tiny cores with
few hundreds of kByte of on-chip memory and an active power
consumption below the 100 mW mark. As practical example,
this work considers the micro-controller units (MCUs) of the
Cortex-M family designed by ARM for the IoT segment1.
In such cases, the only available option is to shrink down
the cardinality of the CNN model until it fits the underlying
hardware architecture.
Among the available algorithmic optimizations, post-training
quantization via integer arithmetic has become a must-do
stage: most of the MCU cores deployed on the end-nodes do
not have floating-point units indeed. The use of arithmetic rep-
resentations with scaled bit-widths helps to reduce the memory
footprint, but above all it ensures a larger memory bandwidth
as multiple data can be packed within the same word. This
ensures lower latency and hence smaller energy consumption
w.r.t 32-bit floating point. In [4] the authors demonstrate that
8-bit fixed-point integer guarantees near-to-zero accuracy loss
with 4× memory reduction. Extreme quantization to 1-bit [5],

1https://os.mbed.com/platforms
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Figure 1. Structure of a typical CNN. (a) Basic block of a standard Integer
CNN; (b) Basic block of a BNN with binarized weights and activations

[6], [7] leads to Binary CNNs with the smallest footprint, but
also the lightest workload as (some) integer arithmetic get
replaced with bit-wise Boolean operators. However, binary
CNNs come with significant accuracy loss: from 2%, up to
10%, 20%, and even more, depending on the original CNN
and the complexity of the training data-set. This represents a
key limiting factor.
This work aims to address this drawback demonstrating there
exist margins to exploit binary CNNs for building highly
accurate, yet fast inferential models that can be deployed on
the edge. The proposed solution, called Cooperative Con-
volutional Neural Network (CoopNet), consists of a joint
combination of binary and 8-bit fixed-point CNN models
controlled by a probabilistic thresholding policy. The resulting
heterogeneous inferential model improves the classification
accuracy and meets the hardware constraints of low-power
MCUs. Experimental results, conducted on three CNNs trained
to run classification on three data-set belonging to different
domains, reveal CoopNet deployed on the Cortex-M cores
by ARM outperforms classical homogeneous CNN, therefore
achieving an improved accuracy-latency tradeoff.

II. BACKGROUND

A. Convolutional Neural Networks (CNNs)

CNNs are a special class of end-to-end trainable models
mostly suited for the classification of multi-dimensional spatial
inputs, like multi-channel images. They consist of several com-
putational layers chained to form a deep architecture. Existing
CNNs mainly differ for their internal topology, namely, how
different kinds of hidden layers are sized and connected. It
is however possible to recognize a common structure which
is made up of two macroblocks (Fig. 1): Feature Extraction,
where relevant features learned during the training stage are



extracted layer-wise using kernel convolutions; Classification,
where the extracted features get classified.
Within the feature extraction block, the most commonly
adopted layers are: convolutional layers (CONV), which per-
form multidimensional convolutions between the output tensor
generated by the previous layer (also called feature map)
and local filter tensors; pooling layers (POOL), e.g. max
pooling or average pooling, which reduce the dimension of
feature maps; normalization layers (Norm), that normalize the
distribution (mean and standard deviation) of the activation
maps; activation function (ACT), e.g. ReLU or tanh, which
introduces non-linearity. The classification block is built upon
fully-connected layers (FC), which implement a geometric
separation of the extracted features, and softmax, that produces
a probability distribution over the available classes.

B. Fixed-Point Quantization
While a CNN training is usually run using a 32-bits floating-
point representation, recent studies, e.g. [4], [8], demonstrate
that fixed-point integers with lower arithmetic precision are
enough for inference. Fixed-point quantization is becoming a
consolidated standard when the target hardware are low-power
cores with small memory footprint and reduced instruction set
(8/16-bit integer). A detailed review of all the quantization
schemes in literature is out of the scope of this work and
interested readers may refer to [4], [8], [9]. This work adopts
the q-bit fixed-point quantization proposed in [8]. The convo-
lution run in a CONV layer between the input feature map
x ∈ Rc×win×hin and the local weights w ∈ Rc×kw×kh is as
follows:

x ∗ w = 2−2(q−1)
∑
i∈C

Xi ·Wi (1)

with C as the number of channels. We set q = 8 for both
weights and activations, and q = 16 for intermediate results
accumulation.

C. Binarized Neural Networks
Several works proposed CNNs with binary weights and/or
activations. BinaryConnect [5] represents the ancestor: weights
are binarized using hard sigmoid function, while activations
remain in full-precision to avoid accuracy drop. The Binarized
Neural Networks proposed in [6] are the first example of
fully binary CNN: both weights and activations are binarized
via sign function. The CONV layers are simplified through
bit-wise XNOR and bit-count. This allows to achieve the
highest compression (∼ 32×), yet with substantial accuracy
loss (up to 28.7%). The authors of XNOR-Net [7] addressed
this drawback introducing a new topology where the binary
output of each CONV layer is first re-scaled through a full-
precision Norm layer. Fig. 1-b gives a pictorial description of
the basic block deployed in the XNOR-Net, where the suffix
Bin highlights binarized layers.
The mathematical description of a binary convolution is as
follows. Given x ∈ Rc×win×hin as the input feature and
w ∈ Rc×kw×kh as the weight tensor, their convolution is
approximated as follows:

x ∗ w ≈ popcount (X xnor W) ·K · α (2)

where K and α are scaling factors. While weights (W) are
binarized with the sign function only, the activations are first
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Figure 2. CoopNet concept and abstract architecture.

normalized and then binarized. These stages can be fused into
a single layer that includes all batch normalization parameters:
variance σ2, mean µ, scale γ, shift factor β, and ε for
numerical stability. A feature map x is binarized as follows:

X = BinACT0,1(x) =

{
1 x ≥ c
0 x < c

(3)

where c = µ − β/γ
√
σ2 + ε is constant at inference time.

We do not use K, that is the activations scaling factor, for
computational efficiency reasons. We represent c and α with
8-bit integers.
An efficient processing of XNOR-Net requires data-paths
capable of performing bit-wise xnor, bit-counter and compar-
ison. These operators can be implemented with specialized
units in case of custom hardware [10], or through software
routines compiled using the instruction-set available on the
target general purpose core [11].

III. COOPNET

A. Concept and Architecture
The CoopNet inference concept is intuitive, yet very efficient.
As graphically depicted in Fig. 2, it is based on the cooperation
of two convolutional models: a binary net BNN, fast and small
but less accurate, an integer net INT8, slower and larger but
more accurate. The BNN processes the input data first. Then,
if the prediction satisfies a certain criterion of confidence it is
forwarded to the output as the outcome, otherwise the input is
re-processed by the INT8 to produce a more confident output
score. The criterion used to control the execution flow is called
Confidence Score (CS) and it is defined as follows:

CS = PBNN (yi|x)− PBNN (yj |x) (4)

where PBNN (yn|x) is the probability produced by the BNN
that a given input x belongs to a given class n ∈ 1, 2 . . . N ;
i and j refer to the indexes of the first and second highest
scored classes. Intuitively, a high CS means the BNN was
able to classify the given input with enough confidence, on
the contrary, a low CS means the topmost scored classes
get very close to each other, which reveals a certain level
of uncertainty, as the BNN was not able to make a clear
distinction among the available classes. For the latter case,
the INT8 model is activated for aid. The thresholding policy is
controlled through a Confidence Threshold (CT) which might
be changed dynamically for run-time adjustments.



For a given task and application, the pre-trained 32-bit Floating
Point model is used as basis to generate the INT8 model,
obtained with the quantization method introduced in [8] using
q=8-bit. The BNN model is built using the XNOR-Net method
presented in [7]. It is worth emphasizing that, according to [7],
the first and last layers of the BNN model are kept to 8-bit.
A key design aspect concerns the setting of the threshold CT
as it affects the accuracy-latency trade-off. The parametric
analysis reported in the experimental section provides a proper
understanding of this important relationship.

B. Extra-functional Metrics
Latency. Given a generic CoopNet, its latency is modeled
through the following equation:

LCoopNet(CT ) =

{
LBNN + LCS CS ≥ CT
LBNN + LCS + LINT8 CS < CT

(5)
LBNN and LINT8 are the latency of the BNN and INT8
models respectively, while LCS is the contribution due to CS
computation and comparison with CT . To notice that LCS

is the latency of a single integer subtraction and comparison,
hence its contribution is negligible w.r.t. the latency of BNN
and INT. Both LBNN and LINT8 can be simply estimated
as the sum of the latency of each internal layer collected
from on-board measurements. The layers characterization has
been implemented using an extended version of the CMSIS-
NN library by ARM [12] which supports binary convolutions
[11]. When considering batch inference, Equation 5 can be
generalized as:

LCoopNet(BS,CT ) =

BS∑
i=1

Li(CT ) (6)

where BS is the cardinality of the batch and Li(CT ) is the
latency of the i-th batch sample.
On-chip Memory. The hardware cores targeted by this work
are the smallest low-power MCUs equipped of the Cortex-
M family by ARM. These MCUs are usually equipped with
limited RAM (≤ 1 MByte). The memory footprint of CoopNet
is the sum of the RAM taken by the BNN model (Mbnn)
and INT8 model (Mint). The two contributions include the
RAM taken by the weights buffer, the activations buffer and
im2col buffer as the model provided by ARM in [12]. The
CT parameter is one Byte, therefore negligible.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup
CoopNet has been evaluated on the following three tasks:
CIFAR-10 - Image classification task; it consists of 60k
32× 32 RGB images classified with 10 labels.
Google Speech Command (GSC) - Keyword spotting from
speech; the data set [13] collects 65k one-second long samples
classified with 30 classes.
Facial Expression Recognition (FER13) - Emotion recog-
nition from facial expression; the data set [14] is made up of
36k 48× 48 grayscale facial images classified by 7 labels.
Different lightweight CNNs suited for tiny cores are deployed
for the three tasks. An overview is reported in Table I; for sake
of space, the table reports the CONV and FC layers together

Dataset CIFAR-10 GSC FER13
Model CaffeNet2 GscNet [13] FerNet

FP32 Accuracy (%) 80.25 90.30 65.16
Mem. Size (kB) 550 1060 2345

INT8 Accuracy (%) 80.20 89.50 64.70
Mem. Size (kB) 120 250 577

BNN Accuracy (%) 76.52 87.60 62.86
Mem. Size (kB) 94 90 118

input 3x32x32 1x32x32 1x44x44
CONV 32x5x5 CONV 32x5x5 3× CONV 32x3x3

32x5x5 32x5x5 3× CONV 64x3x3
64x5x5 64x5x5 3× CONV 128x3x3

FC 1024x10 64x5x5 FC 128x7
FC 1024x31

Table I
BENCHMARKS: DATASETS AND CNNS

with their size, although there are activation, pooling and
regularization (normalization and dropout) layers. Moreover,
Table I shows the top-1 accuracy (%) and the memory footprint
(kB) for full-precision (FP32), 8-bit fixed-point (INT8) and
binary (BNN) models.

B. Performance Assessment
The conducted experiments aimed at assessing the latency-
accuracy trade-off. With this purpose, we first provide a
parametric analysis that leverages the confidential threshold
CT as main knob. The line plot in Fig. 3 shows the delta
accuracy achieved by CoopNet using as ground the accuracy
of the baseline model INT8. The three tasks show the same
trend: the CoopNet gets more accurate (positive delta) for
larger values of CT . The break-even point CTbe (for which
delta is 0) may change depending on the complexity of the
data-set and the classification capability of the CNN adopted:
CTbe = 0.2 for FER and GSC, CTbe = 0.4 for CIFAR-10.
To notice that the use of a confidential threshold CT > CTbe
guarantees substantial accuracy improvement. This suggests
that CoopNet does not just improve over standard binarized
CNNs, but it can also go beyond 8-bit quantization.
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Figure 3. Normalized Accuracy (%) w.r.t the INT8 baseline vs Confidence
Threshold (CT)

Even more interesting is the gain in terms of latency. Fig. 4
shows the delta accuracy w.r.t. the baseline (INT8) as function
of the average speed-up measured over the test set. The colored
bullets drawn over the lines correspond to the actual value of
CT ∈ [0, 1); to notice that bullets size is inversely proportional
to the CT value adopted: the smaller the CT , the larger the

2Inspired by https://code.google.com/archive/p/cuda-convnet/
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INT8 on test-set

speed-up. Indeed, a large CT implies that the BNN results
get accepted as gold even if highly uncertain, hence the INT8
computation is skipped for speed-up. At the break-even, i.e.
CT = CTbe, CoopNet shows impressive performance boost:
47.90% for FER, 51.58% for CIFAR-10, 80.16% for GSC.
Table II gives a summary of some key results achieved by
CoopNet. More specifically, it shows the evaluated extra-
functional metrics (Speed-up and RAM footprint) under three
accuracy level scenarios: (i) CoopNet meets the accuracy of
FP32, (ii) CoopNet meets the accuracy of INT8 (the ground,
i.e. ∆ = 0), (iii) CoopNet with the highest accuracy. As one
can see, CoopNet guarantees substantial gains even under very
high accuracy constraints. For instance, for GSC it achieves
the same accuracy of the FP32 model with an average speed-
up of 69.53%; more interesting CoopNet can even overtake
the FP32 model (+1.47%). We observed that the joint action
of BNN and INT8 helps to recognize inputs for which the
FP32 model fails.

V. RELATED WORKS

Fixed-point quantization [4], as well as binarization [6], [5],
[7], represent a valuable solution to deploy CNN on ultra-low-
power commercial MCUs. While 8-bit are almost sufficient to
guarantee the same accuracy of floating-point models, lower
bit-widths lead to inaccurate inference. Recent works investi-
gated on arbitrary bit-widths (i.e. 2 ≤ bit < 8). More specif-
ically, they aim at finding the optimal balance between accu-
racy, resource utilization and performances assigning different
bit-widths to different layers [9]. Unfortunately, commercial
low-power MCUs do not have programmable data-paths and
memory interfaces to support arbitrary bit-width arithmetic
efficiently [11]. Amiri et al. in [15] proposed a system level
mixed-precision solution which exploits heterogeneous CPU
and FPGA accelerators. The overhead, both on-line (due to
a tuning procedure) and off-line (during training), and the
resources required make this approach less suitable for low-
end MCUs. Combining multiple CNN models into ensemble
results in a winning solution for many tasks [16]. However, the
resources required to host several models and execute them in
parallel make this approach practically not scalable on a low-
end device. On the contrary, CoopNet enables an efficient and
accurate solution for off-the-shelf MCUs proposing a flexible
architecture adaptable to the user-defined constraint.

Dataset
(Net)

Accuracy
Level

∆
(%)

Mem. Size
(kB)

Speed-up
(%) ST

CIFAR-10
(CaffeNet)

FP32 +0.05 51.20 0.42
INT8 0 214 51.58 0.4

Max-accuracy +0.53 18.40 0.9

GSC
(GscNet)

FP32 +0.8 69.53 0.4
INT8 0 360 80.16 0.2

Max-accuracy +1.47 54.31 0.7

FER13
(FerNet)

FP32 +0.46 36.20 0.3
INT8 0 695 47.90 0.2

Max-accuracy +0.93 22.34 0.5

Table II
COOPNET: MAIN ACHIEVEMENTS AND FINAL RESULTS

VI. CONCLUSIONS

CoopNet is a novel network architecture that integrates a
fast and unreliable model with a slower but accurate one to
improve the processing efficiency of inference models. The
joint cooperation of binary and 8-bit quantized models guar-
antees higher accuracy and substantial speed-up, also offering
a valuable option for adaptive energy-accuracy inference on
the edge.

REFERENCES

[1] J. Gu et al., “Recent advances in convolutional neural networks,” CoRR,
vol. abs/1512.07108, 2015.

[2] W. Shi et al., “Edge computing: Vision and challenges,” IEEE Internet
of Things Journal, vol. 3, no. 5, pp. 637–646, 2016.

[3] M. Fayaz and D. Kim, “A prediction methodology of energy consump-
tion based on deep extreme learning machine and comparative analysis
in residential buildings,” Electronics, vol. 7, no. 10, 2018.

[4] D. D. Lin et al., “Fixed point quantization of deep convolutional
networks,” in Proceedings of the 33rd International Conference on Inter-
national Conference on Machine Learning - Volume 48, ser. ICML’16,
2016, pp. 2849–2858.

[5] M. Courbariaux et al., “Binaryconnect: Training deep neural networks
with binary weights during propagations,” in Advances in neural infor-
mation processing systems, 2015, pp. 3123–3131.

[6] M. Courbariaux et al., “Binarized neural networks: Training deep neural
networks with weights and activations constrained to+ 1 or-1,” arXiv
preprint arXiv:1602.02830, 2016.

[7] M. Rastegari et al., “Xnor-net: Imagenet classification using binary
convolutional neural networks,” in European Conference on Computer
Vision. Springer, 2016, pp. 525–542.

[8] I. Hubara et al., “Quantized neural networks: Training neural networks
with low precision weights and activations,” The Journal of Machine
Learning Research, vol. 18, pp. 6869–6898, 2017.

[9] A. Zhou et al., “Incremental network quantization: Towards lossless cnns
with low-precision weights,” CoRR, vol. abs/1702.03044, 2017.

[10] Y. Umuroglu et al., “FINN: A framework for fast, scalable binarized
neural network inference,” CoRR, vol. abs/1612.07119, 2016.

[11] M. Rusci et al., “Work-in-progress: Quantized nns as the definitive
solution for inference on low-power arm mcus?” in 2018 Interna-
tional Conference on Hardware/Software Codesign and System Synthesis
(CODES+ ISSS). IEEE, 2018, pp. 1–2.

[12] L. Lai et al., “CMSIS-NN: efficient neural network kernels for arm
cortex-m cpus,” CoRR, vol. abs/1801.06601, 2018.

[13] T. N. Sainath et al., “Convolutional neural networks for small-footprint
keyword spotting,” in Interspeech, 2015.

[14] I. Goodfellow et al., “Challenges in representation learning: A report on
three machine learning contests,” 2013.

[15] S. Amiri et al., “Multi-precision convolutional neural networks on
heterogeneous hardware,” in 2018 Design, Automation Test in Europe
Conference Exhibition (DATE), 2018, pp. 419–424.

[16] R. Minetto et al., “Hydra: an ensemble of convolutional neural networks
for geospatial land classification,” ArXiv, vol. abs/1802.03518, 2018.


