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TENTACLENET: A PSEUDO-ENSEMBLE TEMPLATE FOR
ACCURATE BINARY CONVOLUTIONAL NEURAL NETWORKS

Luca Mocerino, Andrea Calimera
Politecnico di Torino, 10129 Torino, Italy

ABSTRACT
Binarization is an attractive strategy for implementing lightweight Deep Convolutional Neural
Networks (CNNs). Despite the unquestionable savings offered, memory footprint above all, it may
induce an excessive accuracy loss that prevents a widespread use. This work elaborates on this
aspect introducing TentacleNet, a new template designed to improve the predictive performance of
binarized CNNs via parallelization. Inspired by the ensemble learning theory, it consists of a compact
topology that is end-to-end trainable and organized to minimize memory utilization. Experimental
results collected over three realistic benchmarks show TentacleNet fills the gap left by classical binary
models, ensuring substantial memory savings w.r.t. state-of-the-art binary ensemble methods.

Keywords Deep Learning ·Machine Learning · Binary Neural Network · Optimization

1 Introduction
Convolutional Neural Networks (CNNs) are known to be
highly redundant, a positive characteristic for the training
because it helps to achieve higher accuracy, but highly
undesired during inference, when extra-functional met-
rics, like latency, energy and memory footprint, are just as
important. No matter if the target is a cloud application
hosted on a server queried by millions of users, or a mobile
application run on low-power cores with limited resources,
an efficient use of CNNs calls for effective optimization
strategies.

There is plenty of compression or approximation tech-
niques that serve this purpose operating at different levels
of abstraction which leverage different knobs [1–3]. At
the bit-level, binarization is a very attractive option. The
pioneering idea, firstly introduced in [4] and then elabo-
rated in [5] and [6], is to project weights and/or activations
into a binary space. Moving from multi-bit representations
(either floating-point or fixed-point) to single-bit has clear
advantages, such as the lowering of the memory footprint
and a better use of the available bandwidth since operands
can be packed in a single line and accessed in parallel.
Moreover, it allows the replacement of real and integer
arithmetic with bit-wise operators, e.g. parallel Boolean
XNOR and pop-counting [6], which are faster and less
resource demanding. This latter aspect is however influ-
enced by the type of hardware available. General purpose
architectures grew to support mainstream applications op-
erating on single-precision floating-point, therefore, less
frequent instructions and unusual data representations, like
those deployed in binary CNNs, have been dropped for the

sake of area efficiency. To fill this gap, software macros
can be used to unpack data and properly feed the execu-
tion units. This may introduce substantial performance
overhead [7]. Dedicated hardware accelerators, like those
introduced in [8–11], may be a better option as they can
push binary CNNs toward impressive speed-up.

In spite of the potential savings brought, the use of binary
CNNs is still quite limited, sometimes prohibitive, because
of the poor predictive quality. For instance, compared to
full-precision (32-bit floating-point), the accuracy drop
may range from 2% to 10%, but even more depending
on the complexity of the task [6]. The objective of this
work is to address this limitation introducing a new model
template named TentacleNet. The basic working principle
is inspired by the ensemble learning theory, well known
in machine and deep learning [12], that is, the assembly
of many weak classifiers enables a strong predictor with
higher accuracy. However, TentacleNet shows distinctive
features that have been specifically designed to leverage
the power of binary BNNs and to optimize resource usage.
Moreover, it is end-to-end trainable and can be applied
to any generic CNN model using the training procedures
available in common deep learning frameworks. Due to its
parallel topology, TentacleNet is ready for the forthcoming
generation of parallel architectures with heterogeneous
accelerators [13].

Experimental results collected over three computer vision
tasks, i.e. image classification on CIFAR-10 and CIFAR-
100 [14] and facial expression recognition on the FER13
data-set [15], reveal TentacleNet can reach the accuracy
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of full-precision models, yet ensuring much lower mem-
ory footprint compared to state-of-the-art binary ensemble
methods [16].

2 Background and Previous Works

2.1 Binarized Neural Networks

The recent literature shows several binarization methods
for CNNs. In [4], Courbariaux et al. introduced the concept
of CNNs with binary weights in the range {-1, 1}, leav-
ing the activations in full-precision (floating-point 32-bit).
In [5], the same authors presented a full-binary CNN where
also the activations get projected in a binary space using
a sign activation function. That is the first example of a
full-binary CNNs processed with bit-wise XNOR and pop-
counting, with no floating-point arithmetic. As side effect,
the prediction accuracy suffered substantial degradation
(≥ 10%). Later, M. Rastegari et. al. presented XNOR-
Net [6], an alternative architecture to mitigate the accuracy
drop by re-scaling the binary output of each convolutional
layer through a full-precision normalization layer. The
improvement over [5] was remarkable: up to 16.3% on
ImageNet [17]. The XNOR-Net represents still today the
state-of-the-art for binary CNNs and therefore we bor-
rowed the same architecture in this work (simply referred
as BNN hereafter). However, our strategy can be extended
to any type of binarized network.

2.2 Feature Extraction in a BNN

Given x ∈ Rch×win×hin as the input feature and w ∈
Rch×kw×kh as the weight tensor, their convolution is ap-
proximated as follows:

x ∗ w ≈ popcount (X xnor W) ·K · α (1)

where K and α are the scaling factors. While weights
(W) are binarized off-line, the binary activation function
is fused with the batch normalization and hence run on-
line. Given the parameters of the batch normalization, i.e.
variance σ2, mean µ, scale γ, shift factor β, ε a coefficient
for numerical stability, a generic feature map x is binarized
as follows:

X = BinACT0,1(x) =

{
1 x ≥ c
0 x < c

(2)

with c = µ − β/γ
√
σ2 + ε. As additional details, we do

not use K, that is the activations scaling factor, in order
to speed-up the training stage; c and α are represented as
32-bit floating point numbers.

It is worth to notice that within a BNN, the first and the last
layers are kept and processed to full-precision (floating-
point 32-bit) in order to mitigate the accuracy drop induced
by the binarization of the inner layers. This is a relevant
characteristic exploited by TentacleNet.

The efficient processing of a BNN requires an effective
implementation of parallel bit-wise XNOR, pop-counting,
and bit-2-word packing/unpacking (e.g. from 1 to 32-bit

and vice-versa). While new specialized cores have an ex-
tended instruction-set coupled with dedicated hardware
units, e.g. [8], for many general-purpose cores the only
viable option is to make custom software macros. The
performance gap between hardware acceleration and soft-
ware implementation is large, with the latter being much
slower [7]. For instance, in [18] Moss et al. showed that
a custom FPGA-based inference engine gets 8.5× faster
and 20× more energy efficient. TentacleNet is orthogonal
to the kind of hardware, but it would benefit most from
custom accelerators.

2.3 Ensembles Learning

Ensemble methods are well-known tools in statistics and
machine learning; they are commonly used to improve
resilience against under-/over-fitting [12]. The basic prin-
ciple is simple, yet effective: use multiple weak estimators
to build up with a single strong classifier. Random forests
are practical examples, where the weak classifiers consist
of decision trees [19].

Existing ensemble strategies mainly differ on (i) the train-
ing procedure adopted and (ii) how the outcome of the
weak estimators are grouped and evaluated. The taxonomy
is as follows:
Bagging [20]. The training dataset D is randomly parti-
tioned into N sub-sets di (i ∈ [1, N ]), with N the number
of weak estimators. Each weak estimator is trained using
di as the training set. During inference, the outputs of
the N estimators are averaged or evaluated with a voting
mechanism.
Boosting [21, 22]. Each weak estimator is trained (sep-
arately) over the full dataset D. The outputs of the N
estimators are then fused using a linear transformation
whose coefficients are learned at training time, for instance
using AdaBoost algorithm [23].
Stacking [24, 25]. The N weak estimators are trained
on the original data D. Then, their outputs are used as
training-set for an additional meta-estimator, which is run
in sequence during inference. The key feature is that the
stack is built upon heterogeneous estimators.

There exist different works that proposed the use of ensem-
ble methods for deep neural networks. Remarkable results
are reported in [26], where the authors adopted a boosting
strategy on image classification, but also in CoopNet [27]
which combines multiple precision models to improve ac-
curacy and inference latency. Even more interesting, the
concept of ensemble learning can be found in the internal
architecture of the most recent CNN models. For instance
ResNet [28], DenseNet [29] and Inception series [30] have
layers which combine branches produced by the previous
layers to improve performance. This resembles an ensem-
ble learning structure indeed.

All the above methods were thought to improve accuracy,
with no particular attention to the complexity of the weak
classifiers. The result is a dramatic increase in the model
size. When extra-functional metrics (e.g. memory and la-
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tency) enter the cost function, the selection of the weak es-
timators should be resource-oriented and not just accuracy-
driven. In this regard, binary CNNs are good candidates:
they are weak, fast and small. Some recent works explored
this option. For instance, in [16] the authors adapted the
classical ensemble methods to binary CNNs, bagging and
boosting in particular. The collected results revealed that
a large number of BNNs is needed to get close to the ac-
curacy of the full-precision model, thus resulting in large
memory space. TentacleNet takes a step forward, showing
that binary ensembles can reach high accuracy with fewer
resources.

3 TentacleNet

3.1 Architecture

TentacleNet is a parallel template embedding lightweights
BNNs in a pseudo-ensemble structure. It serves any kind
of feed-forward CNN, namely, any full-precision CNN
can be translated following the TentacleNet template and
exploit the binary computation.

A high-level view is depicted in Fig. 1. The inner core
consists of n parallel branches, the tentacles, which play as
the weak estimators. Each tentacle (labeled as BNNi) is a
replica of the binarized floating-point model, except for the
first and last layer which are shared among all the tentacles,
these are the Convolutional Block and the Fully-Connected
Block in Fig. 1. The former (grey box) is in charge of
producing a common activation map fed as input to all
the tentacles. It contains three sub-layers, convolution
(CONV), normalization (Norm) and activation (ACT). The
latter (blue box) implements the actual classification of
the binary features extracted along the tentacles. It is
worth emphasizing that all the tentacles operate full binary
operations [-1,1], while the Convolutional Block and the
Fully-Connected Block are taken to full-precision [FP],
i.e. floating-point 32-bit. This design choice is inherited
from state-of-the-art BNN models [4–6], which suggest
leaving the first and last layer to full-precision gets higher
accuracy. Another important aspect is that the sharing of
the two blocks, the most memory demanding due to high
arithmetic precision, contributes to save memory space.

The shape of the shared Fully-Connected Block differs
depending on the topology of the original full-precision
model. If the original model does produce the C logits
through global pooling (where C is the number of classes),
namely, without any fully-connected layer (Fig. 2-a), the
logits are simply concatenated as a 1-D vector of cardinal-
ity N × C and then fed as input to the Fully-Connected
Block, which is a dense layer of shape N × C inputs and
N × C2 weights. Otherwise, if the original model has
its own fully-connected layer to produce the logits (Fig.
2-b), we drop it out and concatenate the feature maps as
a 1-D vector of cardinality N × K, with K the number
of features of each weak estimator; in such case the Fully-
Connected Block is a dense layer of shape N ×K inputs
and N ×K × C weights.
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Convolutional Block
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Figure 1: TentacleNet architecture. CONV refers to con-
volutional layers, Norm to normalization layer, ACT to
activation layers. The prefix Bin stands for binary.
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Figure 2: Composition of the Fully-Connected Block

3.2 Building and Training Methodology

TentacleNet can be seen as a pseudo-ensemble that imple-
ments some mixed features belonging to the stacking and
boosting methods, in particular: the stack is composed of
heterogeneous learners with different data-representation;
the outputs of the weak estimators are evaluated through
a linear transformation; all the layers, including the first
and last block, are trained within a single procedure using
the same data-set. The result is an end-to-end trainable
model whose parameters can be learned through classical
back-propagation.

The assembling of TentacleNet encompasses few stages.
The entry level is a pre-trained floating-point CNN model
binarized following the topology described in [6], namely,
first and last layers as floating-point and the inner m− 2
layers as binary. The sequence of such m−2 binary layers
(from BinCONV2 to BinCONVm−1 as reported in the left
diagram of Fig.1) builds a tentacle. n replicas of the same
tentacle are placed in parallel (from BNN1 to BNNn in
Fig. 1) and then tied to the top and the bottom with the
first convolutional block and the last fully connected block
as described in the section 3.1. Once the TentacleNet
is assembled, the training procedure described in [6] is
deployed to learn the weights of the binary tentacles and
the weights of the shared layers.

3
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In order to guarantee enough expressive power and reduce
the risk of under-/over-fitting, the tentacles are initialized
with different seeds. Saxe et al. [31] demonstrated that
weights initialized with orthonormal or orthogonal bases
achieve better performance. In the binary domain, the ma-
trices that satisfy these conditions are called Hadamard
matrices. They are square matrices of order 1, 2, or 4n,
with n ∈ N; the entries are -1 and 1 and can be generated
using Sylvester’s method. In order to adapt the Hadamard
matrices to the dimensions of the binary kernels within
the tentacles, the rows are randomly removed (to reduce
the rank) or replicated (to increase the rank). The result-
ing pseudo-Hadamard matrices are sub-optimal but still a
favorable initialization [5].

4 Experimental results

4.1 Benchmarks and Data-sets

TentacleNet has been evaluated on the following tasks.
Image Classification (CIFAR-10/100) - the standard im-
age classification problem; the data-set contains 60k 32x32
RGB labeled images and can be configured for 10- or 100-
class recognition [14].
Facial Expression Recognition (FER13) - emotion
recognition from facial expression; the data-set collects
36k 48x48 gray-scale facial images labeled with seven
different facial expressions [15].

Each of the above tasks is implemented through a special-
ized CNN model as reported in Table 1; the same models
work as baseline to build the TentacleNet. The table col-
lects the classification accuracy (%) and the model size
(kB) of the three networks trained in full-precision 32-
bit (row FP32) and after binarization (row BNN); here
the BNN models refer to XNOR-Net [6]. As expected,
BNNs reach remarkable memory reduction (e.g. 24.2× for
ResNet9 on CIFAR-100) at the cost of significant accuracy
loss (8.05% as the worst-case).

4.2 Training and Inference Set-Up

For each task a dedicated TentacleNet is built starting from
the BNN model. The training of TentacleNet iterates for
300 epochs using an adaptive learning rate (lr) schedule: lr
updated with step 0.1 every 15 consecutive epochs in which
the validation loss does not change. Both training and
inference stages are implemented using PyTorch (version
1.1.0) and made run on a server powered with 40-core Intel
Xeon CPUs and accelerated with the NVIDIA Titan Xp
GPU (CUDA v10.0).

Since the focus of this paper is on the accuracy-vs-memory
tradeoff of binary ensembles, the assessment of hardware-
dependent extra-functional metrics, like latency and energy,
is left aside as part of future works.

Dataset CIFAR-10 CIFAR-100 FER13
Baseline Model NiN [32] ResNet9 [28] FerNet

FP32 Accuracy (%) 88.11 68.25 65.16
Model Size (kB) 3778 19984 1880

BNN Accuracy (%) 85.20 60.20 62.86
Model Size (kB) 181 826 64

Table 1: Benchmarks: Datasets and CNNs
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Figure 3: Delta Accuracy (%) w.r.t. the FP32 model as
function of the number of Tentacles.

4.3 Performance assessment

The objective of this section is twofold: (i) prove that
TentacleNet can push binary CNNs towards full-precision
accuracy; (ii) show that TentacleNet outperforms existing
binary-ensemble methods, both in terms of accuracy and
memory.

Concerning the first issue, Fig. 3 reports a parametric anal-
ysis of the classification accuracy achieved by TentacleNet
on the three benchmarks. The line plot shows the delta
accuracy, which is the difference between TentacleNet and
the FP32 model; the break-even point is centered on zero
(horizontal dotted line). Deploying just one tentacle, Ten-
tacleNet collapses to the original BNN model, namely,
the accuracy drop is the same reported in Table 1. As a
general trend, the distance to FP32 gets smaller with the
number of tentacles. For NiN over CIFAR-10 and FerNet
over FER13 TentacleNet reaches the break-even with 3 and
5 tentacles respectively, and it goes even above towards
positive values, +1.00% with 13 tentacles for CIFAR-10
and +1.31% with 12 tentacles for FER13, meaning that it
outperforms FP32 models with much less weight memory:
645kB vs 3778kB for CIFAR-10 (83% savings), 188kB
vs 1880kB for FER13 (90% savings). The behavior for
ResNet over the more complex CIFAR-100 data-set is less
performing compared to the other two benchmarks, yet re-
markable. With 14 tentacles, the delta accuracy improves
from -8.05% to -1.15%, very close to FP32, still ensur-
ing low memory footprint, 11465 kB vs 19984 (42.6%
less). For all the three benchmarks, additional experiments
revealed the accuracy of TentacleNet saturates, namely,
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there is no further improvement by increasing the num-
ber of tentacles; the top right points of the three lines in
the plot of Fig. 3 show the highest accuracy that can be
reached. For what concerns the second issue, we provide

Benchmark Template ∆ (%)
#Ensemble/

Tentacle
M. Size

(kB)

CIFAR-10
(NiN)

[16] Bagging 0 12 2167
Boosting 0 8 1445

TentacleNet 0 5 645 (55.3%)

CIFAR-100
(ResNet9)

[16] Bagging -4.82 30 24755
Boosting -4.77 25 20629

TentacleNet -1.15 14 11465 (44.4%)

FER13
(FerNet)

[16] Bagging -0.35 11 697
Boosting -0.67 26 1648

TentacleNet 0 3 188 (73.0%)

Table 2: TentacleNet vs BENN [16]

a quantitative comparison against BENN [16], which is
state-of-the-art for binary ensembles. The BENN strategy
is to apply standard ensemble methods to BNNs, bagging
and boosting in particular. To ensure a fair comparison we
implemented and applied the two BENN methods on the
benchmarks under analysis. The main results are collected
in Table 2, which reports the delta accuracy w.r.t. the FP32
model (as in Fig.3), the number of ensembles (for BENN)
or tentacles (for TentacleNet), and the memory footprint
(the percentage reported in brackets refers to the memory
savings of TentacleNet w.r.t. the smallest BENN model).
When possible, the comparison is done at the break-even
point with the FP32 model (i.e. ∆=0), otherwise at the
highest achievable accuracy. TentacleNet is more accurate
and more compact than BENN over the three benchmarks.
For instance, considering the NiN model over CIFAR-10,
both BENN and TentacleNet achieve the accuracy of the
FP32 model, but TentacleNet needs less memory to store
the weights (55.3% less w.r.t. boosting). Larger savings
have been observed for FerNet over the FER13 bench-
mark, where BENN and TentacleNet are almost equivalent
in terms of accuracy (TentacleNet +0.35% more accurate
than BENN bagging), but with a large memory spread (Ten-
tacleNet is 73% smaller than BENN bagging). Also for the
most complex network, namely ResNet over CIFAR-100,
TentacleNet reaches higher accuracy (+3.62% w.r.t. BENN
boosting) with large memory savings (44.4%). To be noted
that the memory footprint of the smallest BENN (20629
kB) gets bigger than the original FP32 model (19984 kB).
Overall, TentacleNet is more accurate and much smaller
than other binary ensemble methods.

5 Conclusions
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