POLITECNICO DI TORINO

Repository ISTITUZIONALE

p -adic denseness of members of partitions of N and their ratio sets

Original
p -adic denseness of members of partitions of N and their ratio sets / Miska, Piotr; Sanna, Carlo. - In: BULLETIN OF THE
MALAYSIAN MATHEMATICAL SOCIETY. - ISSN 0126-6705. - STAMPA. - 43:(2020), pp. 1127-1133. [10.1007/s40840-
019-00728-6]

Availability:
This version is available at: 11583/2818867 since: 2020-05-03T10:47:57Z
Publisher:
Springer

Published
DOI:10.1007/s40840-019-00728-6

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
(Article begins on next page)

p-ADIC DENSENESS OF MEMBERS OF PARTITIONS OF \mathbb{N} AND THEIR RATIO SETS

PIOTR MISKA AND CARLO SANNA

Abstract

The ratio set of a set of positive integers A is defined as $R(A):=\{a / b: a, b \in A\}$. The study of the denseness of $R(A)$ in the set of positive real numbers is a classical topic and, more recently, the denseness in the set of p-adic numbers \mathbb{Q}_{p} has also been investigated. Let A_{1}, \ldots, A_{k} be a partition of \mathbb{N} into k sets. We prove that for all prime numbers p but at most $\left\lfloor\log _{2} k\right\rfloor$ exceptions at least one of $R\left(A_{1}\right), \ldots, R\left(A_{k}\right)$ is dense in \mathbb{Q}_{p}. Moreover, we show that for all prime numbers p but at most $k-1$ exceptions at least one of A_{1}, \ldots, A_{k} is dense in \mathbb{Z}_{p}. Both these results are optimal in the sense that there exist partitions A_{1}, \ldots, A_{k} having exactly $\left\lfloor\log _{2} k\right\rfloor$, respectively $k-1$, exceptional prime numbers; and we give explicit constructions for them. Furthermore, as a corollary, we answer negatively a question raised by Garcia, Hong, et al.

1. Introduction

The ratio set (or quotient set) of a set of positive integers A is defined as

$$
R(A):=\{a / b: a, b \in A\} .
$$

The study of the denseness of $R(A)$ in the set of positive real numbers \mathbb{R}_{+}is a classical topic. For example, Strauch and Tóth [10] (see also [11]) showed that $R(A)$ is dense in \mathbb{R}_{+}whenever A has lower asymptotic density at least equal to $1 / 2$. Furthermore, Bukor, Šalát, and Tóth [3] proved that if $\mathbb{N}=A \cup B$ for two disjoint sets A and B, then at least one of $R(A)$ or $R(B)$ is dense in \mathbb{R}_{+}. On the other hand, Brown, Dairyko, Garcia, Lutz, and Someck [1] showed that there exist pairwise disjoint sets $A, B, C \subseteq \mathbb{N}$ such that $\mathbb{N}=A \cup B \cup C$ and none of $R(A)$, $R(B), R(C)$ is dense in \mathbb{R}_{+}. See also $[2,4,7,8]$ for other related results.

More recently, the study of when $R(A)$ is dense in the p-adic numbers \mathbb{Q}_{p}, for some prime number p, has been initiated. Garcia and Luca [6] proved that the ratio set of the set of Fibonacci numbers is dense in \mathbb{Q}_{p}, for all prime numbers p. Their result has been generalized by Sanna [9], who proved that the ratio set of the k-generalized Fibonacci numbers is dense in \mathbb{Q}_{p}, for all integers $k \geq 2$ and prime numbers p. Furthermore, Garcia, Hong, Luca, Pinsker, Sanna, Schechter, and Starr [5] gave several results on the denseness of $R(A)$ in \mathbb{Q}_{p}. In particular, they studied $R(A)$ when A is the set of values of a Lucas sequences, the set of positive integers which are sum of k squares, respectively k cubes, or the union of two geometric progressions.

In this paper, we continued the study of the denseness of $R(A)$ in \mathbb{Q}_{p}.

2. Denseness of members of partitions of \mathbb{N}

Motivated by the results on partitions of \mathbb{N} mentioned in the introduction, the authors of [5] showed that for each prime number p there exists a partition of \mathbb{N} into two sets A and B such that neither $R(A)$ nor $R(B)$ are dense in \mathbb{Q}_{p} [5, Example 3.6]. Then, they asked the following question [5, Problem 3.7]:

Question 2.1. Is there a partition of \mathbb{N} into two sets A and B such that $R(A)$ and $R(B)$ are dense in no \mathbb{Q}_{p} ? ${ }^{1}$

[^0]We show that the answer to Question 2.1 is negative. In fact, we will prove even more. Our first result is the following:

Theorem 2.1. Let A_{1}, \ldots, A_{k} be a partition of \mathbb{N} into k sets. Then, for all prime numbers p but at most $k-1$ exceptions, at least one of A_{1}, \ldots, A_{k} is dense in \mathbb{Z}_{p}.

Then, from Theorem 2.1 it follows the next corollary, which gives a strong negative answer to Question 2.1.

Corollary 2.1. Let A_{1}, \ldots, A_{k} be a partition of \mathbb{N} into k sets. Then, for all prime numbers p but at most $k-1$ exceptions, at least one of $R\left(A_{1}\right), \ldots, R\left(A_{k}\right)$ is dense in \mathbb{Q}_{p}.

Proof. It is easy to prove that if A_{j} is dense in \mathbb{Z}_{p} then $R\left(A_{j}\right)$ is dense in \mathbb{Q}_{p}. Hence, the claim follows from Theorem 2.1.

The proof of Theorem 2.1 requires just a couple of easy preliminary lemmas. For positive integers a and b, define $a+b \mathbb{N}:=\{a+b k: k \in \mathbb{N}\}$.

Lemma 2.2. Suppose that $(a+b \mathbb{N}) \subseteq A \cup B$ for some positive integers a, b and some disjoint sets $A, B \subseteq \mathbb{N}$. If p is a prime number such that $p \nmid b$ and A is not dense in \mathbb{Z}_{p}, then there exist positive integers c and j such that $\left(c+b p^{j} \mathbb{N}\right) \subseteq B$.

Proof. Since A is not dense in \mathbb{Z}_{p}, there exist positive integers d, j such that $\left(d+p^{j} \mathbb{N}\right) \cap A=\varnothing$. Hence, $(a+b \mathbb{N}) \cap\left(d+p^{j} \mathbb{N}\right) \subseteq B$. The claim follows by the Chinese Remainder Theorem, which implies that $(a+b \mathbb{N}) \cap\left(d+p^{j} \mathbb{N}\right)=c+b p^{j} \mathbb{N}$, for some positive integer c.

Lemma 2.3. Let a and b be positive integers. Then, $a+b \mathbb{N}$ is dense in \mathbb{Z}_{p} for all prime numbers p such that $p \nmid b$.

Proof. It is follows from the Chinese Remainder Theorem and the fact that \mathbb{N} is dense in \mathbb{Z}_{p}.
We are now ready for the proof of Theorem 2.1.
Proof of Theorem 2.1. For the sake of contradiction, suppose that p_{1}, \ldots, p_{k} are k pairwise distinct prime numbers such that none of A_{1}, \ldots, A_{k} is dense in $\mathbb{Z}_{p_{i}}$ for $i=1, \ldots, k$. Since A_{1} is not dense in $\mathbb{Z}_{p_{1}}$, there exist positive integers c_{1} and j_{1} such that $\left(c_{1}+p_{1}^{j_{1}} \mathbb{N}\right) \cap A_{1}=\varnothing$. Hence, $\left(c_{1}+p_{1}^{j_{1}} \mathbb{N}\right) \subseteq A_{2} \cup \cdots \cup A_{k}$ and, thanks to Lemma 2.2, there exist positive integers c_{2} and j_{2} such that $\left(c_{2}+p_{1}^{j_{1}} p_{2}^{j_{2}} \mathbb{N}\right) \subseteq A_{3} \cup \cdots \cup A_{k}$. Continuing this process, we get that $\left(c_{k-1}+p_{1}^{j_{1}} \cdots p_{k-1}^{j_{k-1}} \mathbb{N}\right) \subseteq A_{k}$, for some positive integers $c_{k-1}, j_{1}, \ldots, j_{k-1}$. By Lemma 2.3, this last inclusion implies that A_{k} is dense in $\mathbb{Z}_{p_{k}}$, but this contradicts the hypotheses.

Remark 2.1. In fact, Theorem 2.1 can be strengthen in the following way: For each partition A_{1}, \ldots, A_{k} of \mathbb{N} there exists a member A_{j} of this partition which is dense in \mathbb{Z}_{p} for all but at most $k-1$ prime numbers p.

Indeed, for the sake of contradiction, suppose that each member A_{j} of the partition A_{1}, \ldots, A_{k} of \mathbb{N} has at least k prime numbers p such that A_{j} is not dense in \mathbb{Z}_{p}. Then we can choose prime numbers p_{1}, \ldots, p_{k} such that for each $j \in\{1, \ldots, k\}$ the set A_{j} is not dense in $\mathbb{Z}_{p_{j}}$. Next, we provide the reasoning from the proof of Theorem 2.1 to reach a contradiction.

The next result shows that the quantity $k-1$ in Theorem 2.1 cannot be improved.
Theorem 2.4. Let $k \geq 2$ be an integer and let p_{1}, \ldots, p_{k-1} be pairwise distinct prime numbers. Then, there exists a partition A_{1}, \ldots, A_{k} of \mathbb{N} such that none of A_{1}, \ldots, A_{k} is dense in $\mathbb{Z}_{p_{i}}$ for $i=1, \ldots, k-1$.

Proof. Let e_{1}, \ldots, e_{k-1} be positive integers such that $p_{i}^{e_{i}} \geq k$ for $i=1, \ldots, k-1$, and put

$$
V:=\left\{0, \ldots, p_{1}^{e_{1}}-1\right\} \times \cdots \times\left\{0, \ldots, p_{k-1}^{e_{k-1}}-1\right\} .
$$

We shall construct a partition R_{0}, \ldots, R_{k-1} of V (note that the indices of R_{i} start from 0) such that if $\left(r_{1}, \ldots, r_{k-1}\right) \in R_{j}$ then none of the components r_{1}, \ldots, r_{k-1} is equal to j. Then, we define

$$
A_{j}:=\left\{n \in \mathbb{N}: \exists\left(r_{1}, \ldots, r_{k-1}\right) \in R_{j-1}, \forall i=1, \ldots, k-1, \quad n \equiv r_{i} \quad\left(\bmod p_{i}^{e_{i}}\right)\right\}
$$

for $j=1, \ldots, k$. At this point, it follows easily that A_{1}, \ldots, A_{k} is a partition of \mathbb{N}, and that none of A_{1}, \ldots, A_{k} is dense in $\mathbb{Z}_{p_{i}}$, since A_{j+1} misses the residue class $j\left(\bmod p_{i}^{e_{i}}\right)$.

The construction of R_{0}, \ldots, R_{k-1} is algorithmic. We start with R_{0}, \ldots, R_{k-1} all empty. Then, we pick a vector $\mathbf{x} \in V$ which is not already in $R_{0} \cup \cdots \cup R_{k-1}$. It is easy to see that there exists some $j \in\{0, \ldots, k-1\}$ such that j does not appear as a component of \mathbf{x}. We thus throw \mathbf{x} into R_{j}. We continue this process until all the vectors in V have been picked.

Now, by the construction it is clear that R_{0}, \ldots, R_{k-1} is a partition of V satisfying the desired property.

3. Denseness of ratio sets of members of partitions of \mathbb{N}

The result in Corollary 2.1 is not optimal. Let $\lfloor x\rfloor$ denote the greatest integer not exceeding x, and write $\log _{2}$ for the base 2 logarithm. Our next result is the following:

Theorem 3.1. Let A_{1}, \ldots, A_{k} be a partition of \mathbb{N} into k sets. Then, for all prime numbers p but at most $\left\lfloor\log _{2} k\right\rfloor$ exceptions, at least one of $R\left(A_{1}\right), \ldots, R\left(A_{k}\right)$ is dense in \mathbb{Q}_{p}.

Before proving Theorem 3.1, we need to introduce some notation. For a prime number p and a positive integer w, we identify the group $\left(\mathbb{Z} / p^{w} \mathbb{Z}\right)^{*}$ with $\left\{a \in\left\{1, \ldots, p^{w}\right\}: p \nmid a\right\}$. Moreover, for each $a \in\left(\mathbb{Z} / p^{w} \mathbb{Z}\right)^{*}$ we define

$$
(a)_{p^{w}}:=\left\{x \in \mathbb{Q}_{p}^{*}: x / p^{\nu_{p}(x)} \equiv a \bmod p^{w}\right\},
$$

where, as usual, ν_{p} denotes the p-adic valuation. Note that the family of sets

$$
(a)_{p^{w}} \cap \nu_{p}^{-1}(s)=\left\{\left(a+r p^{w}\right) p^{s}: r \in \mathbb{Z}_{p}\right\}
$$

where w is a positive integer, $a \in\left(\mathbb{Z} / p^{w} \mathbb{Z}\right)^{*}$, and $s \in \mathbb{Z}$, is a basis of the topology of \mathbb{Q}_{p}^{*}. Finally, for all integers $t \leq m$ and for each set $X \subseteq \mathbb{N}$, we define

$$
V_{p^{w}, t, m}:=\left\{(a)_{p^{w}} \cap \nu_{p}^{-1}(s): a \in\left(\mathbb{Z} / p^{w} \mathbb{Z}\right)^{*}, s \in \mathbb{Z} \cap[t, m-1]\right\}
$$

and

$$
V_{p^{w}, t, m}(X):=\left\{I \in V_{p^{w}, t, m}: X \cap I \neq \varnothing\right\} .
$$

Note that the following trivial upper bound holds

$$
\# V_{p^{w}, t, m}(X) \leq \# V_{p^{w}, t, m}=(m-t) \varphi\left(p^{w}\right),
$$

where φ is the Euler's totient function.
Now we are ready to state a lemma that will be crucial in the proof of Theorem 3.1.
Lemma 3.2. Fix a prime number p, two positive integers w, t, a real number $c>1 / 2$, and a set $X \subseteq \mathbb{N}$. Suppose that $\# V_{p^{w}, 0, m}(X) \geq c m \varphi\left(p^{w}\right)$ for some positive integer $m>t /(2 c-1)$. Then the ratio set $R(X)$ intersects nontrivially with each set in $V_{p^{w}, 0, t}$.

Proof. Given $\left(a_{0}\right)_{p^{w}} \cap \nu_{p}^{-1}\left(s_{0}\right) \in V_{p^{w}, 0, t}$ we have to prove that $R(X) \cap\left(a_{0}\right)_{p^{w}} \cap \nu_{p}^{-1}\left(s_{0}\right) \neq \varnothing$. For the sake of convenience, define $A:=V_{p^{w}, t, m}(X)$ and

$$
B:=\left\{\left(a_{0} a\right)_{p^{w}} \cap \nu_{p}^{-1}\left(s_{0}+s\right):(a)_{p^{w}} \cap \nu_{p}^{-1}(s) \in V_{p^{w}, t-s_{0}, m-s_{0}}(X)\right\} .
$$

We have

$$
\begin{equation*}
\# A=\# V_{p^{w}, 0, m}(X)-\# V_{p^{w}, 0, t}(X) \geq(c m-t) \varphi\left(p^{w}\right)>\frac{1}{2}(m-t) \varphi\left(p^{w}\right) \tag{1}
\end{equation*}
$$

where we used the inequality $m>t /(2 c-1)$. Similarly,

$$
\begin{align*}
\# B & =\# V_{p^{w}, 0, m}(X)-\# V_{p^{w}, 0, t-s_{0}}(X)-\# V_{p^{w}, m-s_{0}, m}(X) \\
& \geq\left(c m-\left(t-s_{0}\right)-s_{0}\right) \varphi\left(p^{w}\right)>\frac{1}{2}(m-t) \varphi\left(p^{w}\right) \tag{2}
\end{align*}
$$

Now A and B are both subsets of $V_{p^{w}, t, m}$, while $\# V_{p^{w}, t, m}=(m-t) \varphi\left(p^{w}\right)$. Therefore, (1) and (2) imply that $A \cap B \neq \varnothing$. That is, there exist $\left(a_{1}\right)_{p^{w}} \cap \nu_{p}^{-1}\left(s_{1}\right) \in A$ and $\left(a_{2}\right)_{p^{w}} \cap \nu_{p}^{-1}\left(s_{2}\right) \in$ $V_{p^{w}, t-s_{0}, m-s_{0}}(X)$ such that $a_{1} / a_{2} \equiv a_{0}\left(\bmod p^{w}\right)$ and $s_{1}-s_{2}=s_{0}$, so that $R(X) \cap\left(a_{0}\right)_{p^{w}} \cap$ $\nu_{p}^{-1}\left(s_{0}\right) \neq \varnothing$, as claimed.
Proof of Theorem 3.1. For the sake of contradiction, put $\ell:=\left\lfloor\log _{2} k\right\rfloor+1$ and suppose that p_{1}, \ldots, p_{ℓ} are ℓ pairwise distinct prime numbers such that none of $R\left(A_{1}\right), \ldots, R\left(A_{k}\right)$ is dense in $\mathbb{Q}_{p_{i}}$ for $i=1, \ldots, \ell$. Hence, there exist positive integers w and t such that for each $i \in\{1, \ldots, k\}$ and each $j \in\{1, \ldots, \ell\}$ we have $R\left(A_{i}\right) \cap\left(a_{i, j}\right)_{p_{j}^{w}} \cap \nu_{p_{j}}^{-1}\left(s_{i, j}\right)=\varnothing$, for some $a_{i, j} \in\left(\mathbb{Z} / p_{j}^{w} \mathbb{Z}\right)^{*}$ and some $s_{i, j} \in\{-(t-1), \ldots, t-1\}$. Clearly, since ratio sets are closed under taking reciprocals, we can assume $s_{i, j} \geq 0$. Put $c:=1 / \sqrt[\ell]{k}$, so that $c>1 / 2$, and pick a positive integer $m>t /(2 c-1)$. There are

$$
N:=m^{\ell} \prod_{j=1}^{\ell} \varphi\left(p_{j}^{w}\right)
$$

sets of the form

$$
\begin{equation*}
\bigcap_{j=1}^{\ell}\left(\left(a_{j}\right)_{p_{j}^{w}} \cap \nu_{p_{j}}^{-1}\left(s_{j}\right)\right), \tag{3}
\end{equation*}
$$

where $a_{j} \in\left(\mathbb{Z} / p_{j}^{w} \mathbb{Z}\right)^{*}$ and $s_{j} \in\{0, \ldots, m-1\}$. Therefore, there exists $i_{0} \in\{1, \ldots, k\}$ such that $A_{i_{0}}$ intersects nontrivially with at least N / k of the sets of form (3). Consequently, there exists $j_{0} \in\{1, \ldots, \ell\}$ such that $A_{i_{0}}$ intersects nontrivially with at least $\operatorname{cm\varphi }\left(p_{j_{0}}^{w}\right)$ sets of the form $(a)_{p_{j_{0}}^{w}} \cap \nu_{p_{j_{0}}}^{-1}(s)$, where $a \in\left(\mathbb{Z} / p_{j_{0}}^{w} \mathbb{Z}\right)^{*}$ and $s \in\{0, \ldots, m-1\}$. In other words, $\# V_{p_{j_{0}}, 0, m}\left(A_{i_{0}}\right) \geq$ $\operatorname{cm\varphi }\left(p_{j_{0}}^{w}\right)$. Hence, by Lemma 3.2, the set $R\left(A_{i_{0}}\right)$ intersects notrivially with all the sets of the form $(a)_{p_{j_{0}}^{w}} \cap \nu_{p_{j_{0}}}^{-1}(s)$, where $a \in\left(\mathbb{Z} / p_{j_{0}}^{w} \mathbb{Z}\right)^{*}$ and $s \in\{0, \ldots, t-1\}$, but this is in contradiction with the fact that $R\left(A_{i_{0}}\right) \cap\left(a_{i_{0}, j_{0}}\right)_{p_{j_{0}}^{w}} \cap \nu_{p_{j_{0}}}^{-1}\left(s_{i_{0}, j_{0}}\right)=\varnothing$.

The bound $\left\lfloor\log _{2} k\right\rfloor$ in Theorem 3.1 is sharp in the following sense:
Theorem 3.3. Let $k \geq 2$ be an integer and let $p_{1}<\ldots<p_{\ell}$ be $\ell:=\left\lfloor\log _{2} k\right\rfloor$ pairwise distinct prime numbers. Then, there exists a partition of \mathbb{N} into k sets A_{1}, \ldots, A_{k} such that none of $R\left(A_{1}\right), \ldots, R\left(A_{k}\right)$ is dense in $\mathbb{Q}_{p_{i}}$ for $i=1, \ldots, \ell$.

Proof. We give two different constructions. Put $h:=2^{\ell}$ and let S_{1}, \ldots, S_{h} be all the subsets of $\{1, \ldots, \ell\}$. For $j=1, \ldots, h$, define

$$
B_{j}:=\left\{n \in \mathbb{N}: \forall i=1, \ldots, \ell \quad \nu_{p_{i}}(n) \equiv \chi_{S_{j}}(i) \quad(\bmod 2)\right\}
$$

where $\chi_{S_{j}}$ denotes the characteristic function of S_{j}. It follows easily that B_{1}, \ldots, B_{h} is a partition of \mathbb{N}, and that none of $R\left(B_{1}\right), \ldots, R\left(B_{h}\right)$ is dense in $\mathbb{Q}_{p_{i}}$, for $i=1, \ldots, \ell$, since each $R\left(B_{j}\right)$ contains only rational numbers with even p_{i}-adic valuations. Finally, since $h \leq k$, the partition B_{1}, \ldots, B_{h} can be refined to obtain a partition A_{1}, \ldots, A_{k} satisfying the desired property.

The second costruction is similar. For $j=1, \ldots, h$, define

$$
C_{j}=\left\{n \in \mathbb{N}:\left(\frac{n / p_{i}^{v_{p_{i}}(n)}}{p_{i}}\right)=(-1)^{\chi_{S_{j}}(i)} \text { for each } i \in\{1, \ldots, \ell\}\right\}
$$

where $\left(\frac{a}{p}\right)$ means the Legendre symbol and in case of $p_{1}=2$ we put $\left(\frac{a}{2}\right)=a(\bmod 4)$. It follows easily that C_{1}, \ldots, C_{h} is a partition of \mathbb{N}, and that none of $R\left(C_{1}\right), \ldots, R\left(C_{h}\right)$ is dense
in $\mathbb{Q}_{p_{i}}$, for $i=1, \ldots, \ell$, since each $R\left(C_{j}\right)$ contains only products of powers of p_{i} and quadratic residues modulo p_{i} (in case of $p_{1}=2$ we have only products of powers of 2 and numbers congruent to 1 modulo 4). Finally, since $h \leq k$, the partition C_{1}, \ldots, C_{h} can be refined to obtain a partition A_{1}, \ldots, A_{k} satisfying the desired property.

In the light of Remark 2.1 it is worth to ask a the following question.
Question 3.1. Let us fix a positive integer k. What then is the least number $m=m(k)$ such that for each partition A_{1}, \ldots, A_{k} of \mathbb{N} there exists a member A_{j} of this partition such that $R\left(A_{j}\right)$ is dense in \mathbb{Q}_{p} for all but at most m prime numbers p ?

In virtue of Remark 2.1 we know that $m(k)$ exists and $m(k) \leq k-1$. On the other hand, by Theorem 3.3 the value $m(k)$ is not less than $\left\lfloor\log _{2} k\right\rfloor$.
Acknowledgements. C. Sanna is a member of the INdAM group GNSAGA.

References

[1] B. Brown, M. Dairyko, S. R. Garcia, B. Lutz, and M. Someck, Four quotient set gems, Amer. Math. Monthly 121 (2014), no. 7, 590-599.
[2] J. Bukor, P. Erdős, T. Šalát, and J. T. Tóth, Remarks on the (R)-density of sets of numbers. II, Math. Slovaca 47 (1997), no. 5, 517-526.
[3] J. Bukor, T. Šalát, and J. T. Tóth, Remarks on R-density of sets of numbers, Tatra Mt. Math. Publ. 11 (1997), 159-165, Number theory (Liptovský Ján, 1995).
[4] J. Bukor and J. T. Tóth, On accumulation points of ratio sets of positive integers, Amer. Math. Monthly 103 (1996), no. 6, 502-504.
[5] S. R. Garcia, Y. X. Hong, F. Luca, E. Pinsker, C. Sanna, E. Schechter, and A. Starr, p-adic quotient sets, Acta Arith. 179 (2017), no. 2, 163-184.
[6] S. R. Garcia and F. Luca, Quotients of Fibonacci numbers, Amer. Math. Monthly 123 (2016), no. 10, 1039-1044.
[7] T. Salat, On ratio sets of sets of natural numbers, Acta Arith. 15 (1968/1969), 273-278.
[8] T. Salat, Corrigendum to the paper "On ratio sets of sets of natural numbers", Acta Arith. 16 (1969/1970), 103.
[9] C. Sanna, The quotient set of k-generalised Fibonacci numbers is dense in \mathbb{Q}_{p}, Bull. Aust. Math. Soc. 96 (2017), no. 1, 24-29.
[10] O. Strauch and J. T. Tóth, Asymptotic density of $A \subset \mathbf{N}$ and density of the ratio set $R(A)$, Acta Arith. 87 (1998), no. 1, 67-78.
[11] O. Strauch and J. T. Tóth, Corrigendum to Theorem 5 of the paper: "Asymptotic density of $A \subset \mathbb{N}$ and density of the ratio set $R(A) "$, Acta Arith. 103 (2002), no. 2, 191-200.

Institute of Mathematics, Jagiellonian University in Kraków, Kraków, Poland
E-mail address: piotrmiska91@gmail.com
Department of Mathematics, Università degli Studi di Torino, Torino, Italy
E-mail address: carlo.sanna.dev@gmail.com

[^0]: 2010 Mathematics Subject Classification. 11A07, 11B05.
 Key words and phrases. denseness, p-adic topology, partition, quotient set, ratio set.
 ${ }^{1}$ Actually, in [5, Problem 3.7] it is erroneously written "such that A and B are dense in no \mathbb{Q}_{p} ", so that the answer is obviously: "Yes, pick any partion into two sets!". Question 2.1 is the intended question.

