

The Sixteenth International Conference on Civil, Structural & Environmental Engineering Computing

CIVIL-COMP 2019

16–19 September 2019

Riva del Garda, Ita

European Research Council Established by the European Commission

VR PLATFORM TO IMPROVE FIRE EVACUATION

<u>M. Domaneschi</u>, G.P. Cimellaro, M. De Iuliis

Department of Structural, Building and Geotechnical Engineering, Politecnico di Torino

September 17, 2019 – Riva del Garda TN

Acknowledgments

□ European Research Council under the Grant Agreement n° ERC_IDEAL RESCUE_637842 of the project IDEAL RESCUE-Integrated Design and Control of Sustainable Communities during Emergencies.

Prof. Andrea Bottino, Edoardo Battegazzorre and Francesco Strada from the **Dept. of Informatics of Politecnico di Torino** are gratefully acknowledged for their support to platform development

POLITECNICO DI TORINO - DISEG

Established by the European Commission

□ Training platform → to improve humans' abilities in emergency conditions for evacuation and SAR

Public buildings such as schools with a number of occupants, both users and operators

Large scale

□ To improve **community resilience**

SYSTEM ARCHITECTURE

European Research Council Established by the European Commission

 BIM → Unity & FDS;
FDS output → VR;
VR → KAT VR Platform;

4. VR and Emergency Simulation: training

□ FDS is a fluidynamic code from NIST to compute fire scenarios

□FDS forecasts flow velocities and

temperatures by dividing the space into **discrete volumes**

Mesh: creating a space that contains all the geometry of the system divided by cubic-shaped elements

Definition of material and thermal properties
Flow-type boundary conditions: free, none, ...
Wind direction and intensity

POLITECNICO

"Experimental investigations of the fire behavior of facades with EPS exposed to different fire loads" - Northe et al. 2016

Fire tests on a flat facade with an external insulation in polystyrene

 $\Box 6$ m wide x 8 m high wall, 300 mm thick

Ignition point on the ground is inside a steel pan (1.30m × 2.80m × 0.31 m) with a volume of 200 I (isopropanol fuel)

FDS evaluation: comparison with physical test

European Research Council Established by the European Commission

(FDS)		(Northe et al. 2016)	
	Simulation	Real test	
1 min	50 4		
5 min	ЭС ИВ		
10 min	600 Z		

> FDS evaluation: comparison with physical test

European Research Council Established by the European Commission

		(FDS)	(Northe et al.	2016)
		Simulation	Real test	
15 mi	n	2 LOCE		
20 mi	n	E CO24		
25 mi	n	500 5		
30 mi	n	199.9		

FDS evaluation: comparison with physical test

European Research Council

Established by the European Commission

□ Heat Release Rate (HRR - released energy)

Maximum value of HRR can be estimated using Eurocode 1-Annex E

$$HRR_{max} = 0,10mHA_v h_{eq}^{0.5}$$

FDS small scale tests : wind

European Research Council Established by the European Commission

DE.g. direction

□But also:

- Intensity
- Dynamic

FDS small scale tests : materials

$\Box Concrete \rightarrow no fire propagation$

\Box PVC, wood \rightarrow different propagation levels

POLITECNICO DI TORINO - DISEG

FIRE SCENARIO (FDS) → VR

European Research Council Established by the European Commission

FDS output data are integrated with the VR model in order to reproduce a **realistic** fire scenario

Established by the European Commission

 □ FDS results are imported into the Unity3D model and the VR platform
→ virtual reality simulation → C++ plugin script
□ VR Headset sensor allows the user to be immersed inside the virtual scenario
□ Navigation is controlled by shoe cover sensors

POLITECNICO

Marco Doman¹³schi

POLITECNICO

VR FIRE SIMULATION

European Research Council Established by the European Commission

 □ In Unity 3D fire and smoke are finished with the particles system → particle emitter-animator-renderer
□ Particle collider is added to walls → reflecting fire and smokes

Indoor volume is filled by smoke particles

Building scale School case study

Marco Doman¹⁵schi

"Mascagni" High School

BIM (Building Information Management)

Built in Melzo (MI) in '70s:

- Classrooms and Laboratories;
- Canteen and Auditorium;
- Gym.

Marco Doman¹⁶schi

UNITY for VR

European Research Council Established by the European Commission

Marco Doman¹⁸schi

UNITY for VR

European Research Council Established by the European Commission

WR platform implementation

Next step will include occupants

- Students

DI TORINO

- Victims _
- Rescuers e.g. firefighters -

□ To test a training procedure in multisteps

POLITECNICO

Trainig procedure

European Research Council Established by the European Commission

- Considering e.g. FFE on the first floor of the school
- In the computer room and spread to the nearby library because of a wall collapsing, causing injuries
- □ The procedure as follows:
- 1 Occupants start to evacuate by them self
- 2 Firefighter intervention
- 3 Using stairs instead of elevator
- 4 Rescue of injured people
- 4 Use of hydrants and extinguishers

Large scale "IdealCity" case study

POLITECNICO

SIMULATION OF FFE AT URBAN SCALE

DI TORINO SIMULATION OF FFE AT URBAN SCALE

European Research Council Established by the European Commission

Smoke and wind action

FDS → UNITY3D

ABM model of evacuation

(damages, debris road interruption)

European Research Council

Established by the European Commission

Test of AEM application

National Research Institute for Earth Science and Disaster Prevention (NIED-JP)

Marco Domaneschi

European Research Council Established by the European Commission

erc

Formula to assess debris extension for masonry

European Research Council

ABM model of evacuation & VR

European Research Council

Established by the European Commission

ABM model of evacuation (3rd person, injuried individuals)

Marco Doman³¹eschi

Belief-Desire-Intentions (BDI) paradigm implemented through DTF (decision field theory – Lee et al. 2008) Individual model:

 $P(t+h) = SP(t) + CM(t+h) \cdot W(t+h)$

Where :

- **DP** is the Probability Vector of **Preferences**;
- □S is the Stability Matrix: (the memory effect of previous preference) - Lee's studies: 90% of agent's desires is given by his memory.
- □M is the Value Matrix: perceptions of the individual
- □W is the Weight Vector: changes over time according to a stationary stochastic process

HB calibration

European Research Council Established by the European Commission

BDI is calibrated through a survey, powered by $GoogleForms \ensuremath{\mathbb{R}}$

POLITECNICO DI TORINO - DISEG

ITECNICO

□The VR platform can allow individuals to experience realistic FFE scenario \rightarrow to improve evacuation procedures and SAR

- It can help designer and decision makers to improve existing structures and release updated standards
- □It can **provide information on the human behaviors** under emergency conditions

Thank you for your attention

marco.domaneschi@polito.it

