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Abstract: Precision agriculture is considered to be a fundamental approach in pursuing a low-input, 
high-efficiency, and sustainable kind of agriculture when performing site-specific management 
practices. To achieve this objective, a reliable and updated description of the local status of crops is 
required. Remote sensing, and in particular satellite-based imagery, proved to be a valuable tool in 
crop mapping, monitoring, and diseases assessment. However, freely available satellite imagery 
with low or moderate resolutions showed some limits in specific agricultural applications, e.g., 
where crops are grown by rows. Indeed, in this framework, the satellite’s output could be biased by 
intra-row covering, giving inaccurate information about crop status. This paper presents a novel 
satellite imagery refinement framework, based on a deep learning technique which exploits 
information properly derived from high resolution images acquired by unmanned aerial vehicle 
(UAV) airborne multispectral sensors. To train the convolutional neural network, only a single 
UAV-driven dataset is required, making the proposed approach simple and cost-effective. A 
vineyard in Serralunga d’Alba (Northern Italy) was chosen as a case study for validation purposes. 
Refined satellite-driven normalized difference vegetation index (NDVI) maps, acquired in four 
different periods during the vine growing season, were shown to better describe crop status with 
respect to raw datasets by correlation analysis and ANOVA. In addition, using a K-means based 
classifier, 3-class vineyard vigor maps were profitably derived from the NDVI maps, which are a 
valuable tool for growers. 

Keywords: precision agriculture; remote sensing; moderate resolution satellite imagery; UAV; 
convolutional neural network 

 

1. Introduction 

Precision agriculture is considered to be a fundamental approach to pursue a low-input, high-
efficiency, and sustainable agriculture [1,2] which implements new technological solutions [3,4]. For 
precision agriculture to be effective, however, a reliable description of the local status of the crops is 
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essential to perform site-specific management practices when using automatic machinery and even 
robotics [5–7]. To this extend, the relevance of remote sensing has widely been demonstrated for the 
extension of in-field surveys to entire plots or even regions [8–11]. This is particularly true for satellite 
imagery, which has profitably been exploited for in-field mapping [12,13], crops status monitoring 
[14,15], and disease assessment [16], both spatially and temporally [17]. 

However, freely available satellite imagery with low or moderate resolution showed some limits 
in specific applications, resulting in it being not directly suitable for field monitoring purposes in 
some agricultural contexts [18,19], such as orchards and vineyards. Indeed, detailed crop information 
is usually required in these contexts [20], provided by computing crop status indexes, such as the 
normalized difference vegetation index (NDVI) [21], even at the plant scale [22]. The presence of 
different elements in these scenarios, such as crops and terrain (inter-row space, in the case of crops 
grown in rows), causes pixels with mixed natures in low resolution satellite imagery, which can lead 
to biased crop indices [18].  

A profitable approach to improve the performance of remote sensing by satellite data is the 
exploitation (and fusion) of information from additional data sources, such as agrometeorological 
data [23], in situ plot data [24], laser altimetry data [25], thermal imagery [26], or even the concurrent 
use of different satellite platforms [27]. Zhao et al. proposed the fusion of data acquired from Unmanned 
Aerial Vehicle (UAV) and satellite based sensors to improve crop classification [28]. Many efforts have 
also been made to increase the quality of moderate resolution platforms with advanced computing 
techniques, such as the super-resolution approach based on machine learning, with deep neural 
networks (DNN) and convolutional neural networks (CNN) being the most exploited ones [29–32]. For 
example, several convolutional network architectures were proposed to enhance the spatial details 
of drone-derived images [33]. Indeed, an intrinsic capability of deep learning is distributed learning, 
which distributes, among all the variables of the model, the knowledge of the dataset and the 
capability to extract such high-level, abstract features [34]. Altogether, it provides deep learning with 
the ability to learn more robust mapping functions with much more generalization power than 
traditional machine learning algorithms [35]. In addition, data augmentation techniques further 
increase their performance [36]. 

With this approach, new methods aimed at synergically exploiting freely available satellite 
imagery, refined by high-resolution UAV-based datasets, can be highly effective [37,38]. Few studies 
have been performed on satellite imagery improvements based on centimetric imagery acquired from 
UAVs, such as the estimation of canopy structures and biochemical parameters [39] and the 
estimation of macro-algal coverage in the yellow sea by refining satellite imagery using high 
resolution airborne based synthetic aperture radar (SAR) imagery [40]. The problem of the spatial 
dynamics of invasive alien plants was profitably solved by [41], merging single- and multi-date UAV 
and satellite imagery. In [42], a UAV-based inversion model was applied to the satellite’s imagery 
with reflectance normalization to monitor the salinity in coastal saline soil. 

However, new approaches should be conceived to refine low resolution satellite imagery, which 
should be freely available and with a short revisiting time, by means of the mapped spatial 
information of high-resolution imagery from sporadic, or even single, UAV flights. This approach 
could improve the reliability of remotely sensed satellite data in complex scenarios, such as 
vineyards, making it highly cost-effective. 

In this work, a novel approach to refine moderate resolution satellite imagery by exploiting 
information properly derived from UAV-driven high-resolution multispectral images is presented. 
The proposed method, based on deep learning techniques, is able to provide enhanced decametric 
NDVI maps of vineyards from frequent and freely available moderate resolution satellite imagery. 
To train the convolutional neural network, only a single UAV-driven dataset is required, making the 
proposed approach simple and cost-effective. In addition, by using a K-means-based classifier, 3-class 
vineyard vigor maps were profitably derived from the NDVI maps, which are a valuable tool for 
growers. For validation purposes, a vineyard in Serralunga d’Alba (Northern Italy) was chosen to 
perform this study, which involved three parcels and four different time periods, during the whole 
vine growing season. Refined satellite-based NDVI maps were shown to better describe crop status 
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with respect to the raw datasets. The manuscript is organized as follows: the proposed satellite NDVI 
refinement method is presented in Section 2, together with its architecture and supervised training 
phase; Section 3 presents the experimental case study, the performed validation approach and the 
obtained results; and finally, Section 4 reports the conclusions. 

2. Methods 

The refinement framework developed in this study is aimed at increasing the reliability of the 
decametric NDVI maps of vineyards derived from freely available satellite imagery. It is based on a 
convolutional-based neural network (CNN) architecture, hereafter called RarefyNet, which is 
capable of learning feature representations with a supervised approach, after a training phase. The 
RarefyNet, taking advantage of compositionality, is able to extract in a hierarchical manner features 
from its input data and exploit its internal knowledge to obtain a refined value of its input samples. 
To train the RarefyNet, a single UAV-driven dataset was used as reference. Indeed, NDVI maps from 
UAV airborne sensors were shown to be more reliable than raw moderate resolution satellites in 
describing actual crop status [18]. Once trained, the RarefyNet can refine the satellite-driven 
decametric NDVI maps of the vineyard acquired in any time period during the vine growing season. 
In addition, using a K-means based classifier, vineyard maps with three vigor classes (low, medium, 
and high vigor) were profitably derived from the NDVI maps, which are a valuable tool for growers. 
The mathematical notation adopted in the following is summarized in Table 1. 

Table 1. Adopted mathematical notation. 

Variable Definition 
a a vector 
A a matrix 
A a tensor 𝑎௜ i-th element of a vector a 𝐴௜,௝,௞ element i,j,k of a 3-D tensor A 𝐴:,:,௜ 2-D slice of a 3-D tensor A 𝑋 a set of elements/a map 𝑋(௜) i-th sample from a dataset 𝑦(௜) ground-truth associated with the i-th sample 

2.1. RarefyNet: Input, Output, and Architecture 

Considering a decametric NDVI map 𝑋௥௔௪  from a raw satellite dataset, constituted by pixels 𝑥௜ ∈𝑋௥௔௪ , the pixels 𝑦ො௜  of an enhanced NDVI map 𝑋෠  can be generated by the RarefyNet’s non-linear 
mapping function with parameters 𝛩 as: 𝑦ො௜ = 𝐹൫𝑋(௜),𝛩൯ (1) 

where 𝑋(௜) is an input tensor derived from 𝑋௥௔௪ . Input tensor 𝑋(௜) was defined to collect information, 
in terms of the NDVI digital value and position on the map, on pixel 𝑥௜ and on a subset of its 
neighbourhood. Indeed, the contribution of a map pixel is strictly related to its relative position with 
respect to its surrounding pixels. In more detail, input tensor 𝑋(௜)  was thus defined as a three-
dimensional tensor 𝑋 ∈  𝑅ଷ×ଷ×ଶ, where the first layer is a 3 × 3 map patch (formally 𝑋:,:,଴(௜) ), centered in 𝑥௜  (formally element 𝑋ଵ,ଵ,଴(௜) = 𝑥௜), and the second layer (𝑋:,:,ଵ(௜) ) is made of the set of unique location 
values of map pixels 𝑋:,:,଴(௜)  in the first layer, defined as the linear indexing of the raster matrix. Of 
course, in order to also consider boundary pixels, a zero-padding operation was performed on the 
overall maps to allow tensor extraction in boundary pixels. That does not influence the behavior of 
later feature maps of the network.  

A graphical representation of the overall RarefyNet architecture is illustrated in Figure 1. 
Inspired by [43,44], input tensor 𝑋(௜) feeds a stack of two inception blocks that gradually extract the 
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spatial correlation between the 8 neighborhood pixels and central target pixel 𝑋ଵ,ଵ,଴(௜) . The features of 
NDVI map 𝑋:,:,଴ are concurrently processed by an ensemble of parallel convolutional layers with the 
same number of filters 𝑛, but different filter sizes 𝑓 and dilatation rates 𝑘. Indeed, distinct kernel sizes 
extract different correlations from the data and, on the other hand, Atrous convolutions take 
advantage of non-local spatial correlations. Finally, batch normalization [45], as a regularization 
technique, is applied to each branch before an exponential linear unit (ELU) [46] activation and final 
concatenation along the feature dimension. Zero padding is applied before each module in order to 
preserve the first two dimensions of the input tensor. Starting with the first inception block, an input 
patch 𝑋(௜)  with shape (3, 3, 2) is concurrently processed by the ensemble of parallel convolutions 
producing an output tensor of shape (3, 3,𝑛ூ) where 𝑛ூ is the result of the feature map concatenation 
of the different convolutional branches. The second inception module builds on top of this feature 
tensor by constructing further high-level representations and generating a multi-dimensional array 
with 𝑛ூூ feature maps. 

 
Figure 1. Graphical representation of the proposed RarefyNet model. The overall residual 
architecture is depicted in the top part of the figure with a detailed overview of its inception modules. 
Input tensors are processed by two inception modules that build their representations on top of each 
other, concatenating outputs of their different branches. 

The output tensor produced by the cascade of inception blocks feeds a global average pooling 
(GAP) layer which reduces the rank of the input tensor producing a 1-D output array. The GAP 
operation reduces the spatial dimension of its input tensors, reinforcing the feature maps to be 
confidence maps of concepts. The GAP 1-D output array feeds a fully connected layer that terminates 
with a single unit with the ELU as an activation function. The ELU brings non linearity to the model, 
but still produces both positive and negative values. At this stage, a residual connection sums the 
output of the dense layer with the original NDVI pixel 𝑋ଵ,ଵ,଴(௜)  to be refined. The residual connection, 
inspired by super-resolution neural network architectures, covers a primary role inside the overall 
model; it largely simplifies the role of the first part of the network by moving its objective towards a 
mere refining operation of the satellite’s input pixel. Indeed, the model does not have to recreate the 
value of the input pixel after processing of the convolutional filters, but progressively learns from 
ground truths how to use the starting satellite input value with its eight neighbors to estimate the 
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inter-row radiometric contributions and refine the raw decametric NDVI value 𝑥௜. Finally, a second 
fully connected layer with rectified linear units (ReLU) with activation functions produces output 
prediction 𝑦ො(௜) by removing any off-set between the satellite and the UAV NDVI spaces.  

The complementary use of (1) a deep learning-based architecture, of (2) different regularization 
techniques to constrain the space parameter, and of (3) a 1 × 1 convolution to reduce the number of 
model parameters, produces a light-weight and efficient solution to construct a complex non-linear 
map between satellite and enhanced UAV pixel information. 

2.2. RarefyNet: Training Phase 

To identify an effective set of parameters 𝛩, the RarefyNet model (Equation (1)) has to be trained. 
The training phase is an iterative process during which parameters 𝛩 are adjusted to reduce the error 
defined as the difference between the desired refined NDVI values 𝑦ො and reference value 𝑦. In this 
application, the enhanced NDVI map 𝑌௎஺௏ = ሼ𝑦௜ሽ derived from the UAV flights was adopted as the 
reference dataset for the training phase. In particular, the UAV-driven 𝑌௎஺௏ dataset was derived by 
detecting vineyard canopies within the high resolution imagery and by a proper down-sampling 
procedure, described in detail in [18]. The defined training samples are thus made by the properly 
paired tensors 𝑋(௜) , from raw satellite-driven NDVI pixel 𝑥௜ , and a reference NDVI 𝑦௜ , from the 
accurate UAV-driven dataset. Moreover, in order to enlarge the number of available training 
examples and consequently reducing possible overfitting problems, a simple data augmentation 
technique was applied; considering the ith sample and maintaining the central satellite pixel 𝑋௜,ଵ,ଵ,: 
fixed, it is possible to produce (𝐾 − 2) new samples from each original training data point by rotating 
the other eight pixels around the central one. 

During the training phase, a loss function ℒ based on the norm-2 measure 

ℒ = ቌ1𝑚൭෍ห𝑦ො(௜) − 𝑦(௜)หଶ௠
௜ୀଵ ൱ቍଵଶ (2) 

of the difference between model output predictions 𝑦ො(௜) and reference 𝑦(௜) will be used together with 
a mini-batch gradient descent method and 𝑚 training instances to optimally identify the parameters 𝛩 
of the network. The loss function ℒ is a typical performance measure for regression problems and it 
estimates how much error the model typically makes in its predictions, with a higher weight for large 
errors. Model training is therefore performed iteratively by feeding the network with a batch of a 
certain dataset size and updating the parameters with small steps which are determined by learning 
rate 𝜂, by using the gradient of the selected loss function. 

2.3. RarefyNet: Structure Optimization 

The final architecture, shown in Figure 1, is thus the result of a careful design aimed at obtaining 
the best performance in terms of reliability and computational costs. The final model is a light-weight 
neural network architecture with 16,296 trainable parameters.  

Every inception block has four parallel branches with different filter sizes 𝑓 and dilatation rates 𝑘. In the first branch (bottom of Figure 1), the 1 × 1 convolution halves the number of feature maps in 
order to reduce the number of parameters and the computational requirements by the following 
convolutional layer. The first inception module produces eight feature maps for each branch, which 
are linked in a unique output tensor with 𝑛ூ channels after being separately pre-processed by a batch 
normalization layer and an ELU activation function. Equally, the second inception block produces 𝑛ூூ = 32 feature maps for each branch, which are linked in a final tensor that feeds the GAP layer. 
Subsequently, a fully connected layer reduces the 1-D output tensor first to 32 and then to 1 before 
feeding the residual connection. Moreover, a dropout layer, with 𝑝 = 0.2, is inserted between the two 
fully connected layers in order to regularize the network and produce a very robust and reliable 
model [47]. Finally, an output neuron, with an ReLU activation function, closes the head of the 
network in order to compensate and mitigate the presence of possible biases.  
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The technique proposed by Smith et al. in [48] was adopted to identify the maximum value of 
learning rate 𝜂 = 5 × 10ିସ to start with. Finally, beside batch normalization and dropout, the AdamW 
[49] updating rule 𝛩௧ାଵ =  𝛩௧ −  𝜂ඥ𝑣ො௧ +  𝜀 𝑚௧ − 𝜂𝛼𝛩௧ (3) 

was used, which is a modified version of the well-known Adam optimizer [50] with L2 regularization, 
where 𝑚௧ and 𝑣ො௧ are the exponential decay of the gradient and gradient squared, respectively, and 𝛼 
is a new regularization hyperparameter to be set for the learning process. This is a simple fix to the 
classic updating rule of the Adam optimizer, but it has repeatedly shown far better results than the 
L2 regularization for all experimentations. 

In order to find the best training hyperparameters for the optimizer and the network, we used 
10% of the training set to perform a random search evaluation, with few optimization iterations, in 
order to select the most promising parameters. Then, after this first preliminary phase, the analysis 
focused only on the most promising hyperparameter values, fine tuning them with a grid search 
strategy. 

2.4. Vigor Classifier 

Using an unsupervised clustering algorithm, satellite pixels 𝑥௜ ∈ 𝑋௥௔௪ , RarefyNet predictions 𝑥ො௜ ∈ 𝑋෠ and down-sampled UAV pixels 𝑦௜ ∈ 𝑌௎஺௏ were classified into three different vigor classes: low, 
medium, and high. In particular, a K-means clustering algorithm was separately fitted on the three 
NDVI maps by using Elkan’s algorithm and k-means++ to initialize the centroids. Each fitting was 
run 15 consecutive times with a maximum of 500 iterations and a tolerance of 10ିସ. The outputs with 
the lowest within cluster sum of squared (WCSS) distance were selected as the final clustered maps 
of the three NDVI sets. 

3. Experiments and Results 

The effectiveness of the proposed approach to refine moderate resolution imagery by using 
UAV-driven imagery was tested in the vineyard selected as the case study. The RarefyNet was 
implemented in the TensorFlow framework [47,51] and trained with satellite and UAV-based 
datasets acquired in May 2017 (time I). For validation purposes, the trained RarefyNet was used to 
enhance the NDVI map from the satellite platform acquired in three different time periods (June, July, 
and September: time II, III, and IV) and the results were compared with the more accurate UAV-driven 
NDVI maps.  

In more detail, the study was conducted in a vineyard located in Serralunga d’Alba, Piedmont, 
in the northwest of Italy, shown in Figure 2. The selected area includes three parcels, with a total 
surface of about 2.5 hectares. The area is located at approximately 44°62′4″ latitude and 7°99′9″ 
longitude in the World Geodetic System 1984. The test site elevation is within the range of 330 to 420 m 
above sea level, with steep slope areas (about 20%). Parcels are cultivated with the cultivar Nebbiolo 
grapevine. The vineyard soil is predominantly loamy. The irregularity of the terrain’s morphology, 
in terms of altitude, slope, and soil exposure to the sun, affects microclimatic conditions and water 
availability within and between parcels [20]. 

3.1. Satellite and UAV-Based Time Series Imagery 

In this study, cloud-free level-2A Sentinel-2 bottom of atmosphere (BOA) reflectance images 
were used as moderate resolution satellite imagery. Sentinel-2 data products were downloaded from 
the Copernicus open access hub and imported into a processing platform SNAP toolbox (6.0) 
provided by European Space Agency (ESA). By using subset command in SNAP, pixels of the 
Sentinel-2 images were extracted in accordance with the study cite. Geometric, atmospheric, and 
Bidirectional Reflectance Distribution Function (BDRF) corrections were performed by using a 
Sen2cor processor, which is a plugin for SNAP [52–54]. More details about Sentinel-2 products can 
be found in [55]. The selected satellite tiles were acquired on four dates during the 2017 growing 
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season (Table 2) in order to consider different vegetative vine statuses. Only red and near infrared 
bands (bands 4 and 8, respectively), that match with the spectral channels of UAV airborne sensors, 
were used in this study (with ranges 650–680 nm and 785–900 nm, respectively) to produce the NDVI 
maps [4,5,8], widely used for vegetation monitoring and health assessment of crops. The pixels that 
were completely included within the boundaries of the three considered “Parcel A”, “Parcel B” and 
“Parcel C” were selected, as shown in Figure 2a. 

 
Figure 2. (a) Selected test field located in Serralunga d’Alba (Piedmont, northwest of Italy). The 
boundaries of the three considered parcels, named “Parcel-A”, ”Parcel-B”, and “Parcel-C”, are 
marked with solid green polygons. The concurrent illustration of low resolution and high-resolution 
maps derived from satellite and UAV respectively is represented in false colors (near infrared, red, 
and green channels). (b) Enlargement of UAV imagery highlighted by the yellow square in Figure 1a. 

Table 2. Dataset acquisition details from the Sentinel-2 (𝑋௥௔௪ ) and UAV (𝑌௎஺௏ ) platforms. 

Time Period Dataset Name Acquisition Date Source 

I 
𝑋௥௔௪ூ  30 April 2017 Sentinel-2 𝑌௎஺௏ூ  5 May 2017 UAV 

II 
𝑋௥௔௪ூூ  6 July 2017 Sentinel-2 𝑌௎஺௏ூூ  29 June 2017 UAV 

III 
𝑋௥௔௪ூூூ  5 August 2017 Sentinel-2 𝑌௎஺௏ூூூ  1 August 2017 UAV 

IV 
𝑋௥௔௪ூ௏  17 September 2017 Sentinel-2 𝑌௎஺௏ூ௏  13 September 2017 UAV 

The decametric UAV-based NDVI maps, used as accurate references, were derived from red and 
near infrared bands (with ranges 640–680 nm and 770–810 nm, respectively) of high-resolution 
multispectral imagery acquired by a UAV airborne Parrot Sequoia® multispectral camera. The UAV 
path was planned to maintain flight height close to 35 m with respect to the terrain by properly 
defining waypoint sets for each mission block on the drone guidance platform based on the GIS 
cropland map. With this specification, the aerial images ground sample distance (GSD) turned out to 
be 5 cm (Figure 2b). The UAV flights were performed on four different dates over the 2017 crop 
season (Table 2), according to the satellite’s visiting dates. The high-resolution multispectral imagery 
was then processed to select only the pixels representing vine canopies and was down-sampled to be 
in accordance with the satellite’s spatial resolution (as described in [18]), obtaining UAV-driven 
decametric NDVI map 𝑌௎஺௏ . 
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3.2. Experimental Settings 

The RarefyNet used in this experimentation was trained with training tensors derived from raw 
dataset 𝑋௥௔௪ூ  and decametric NDVI map 𝑌௎஺௏ூ , which were acquired in May (time I). In more detail, 
after the sample extraction procedure and the data augmentation process were applied to the training 
samples (Section 2.1), a set of 1379 and 591 tensors were obtained for the training and test procedures, 
respectively. The proposed architecture was trained for 300 epochs with a batch size of 64. No learning 
rate strategies were applied, but the value of the learning rate was kept constant for all the training 
epochs of the optimization procedure. All tests were carried out with the TensorFlow framework on a 
workstation with 64 GB of RAM, an Intel Core i7-9700K CPU and an Nvidia 2080 Ti GPU. 

Since, at the agronomical scale, maps of classes with different vigor levels can be derived by an 
expert in-field survey, the validation of the NDVI map refinement was performed by assessing their 
conformity to a three-level vigor map. Thus, a preliminary validation was performed by feeding the 
trained RarefyNet model with satellite-driven raw map 𝑋௥௔௪ூூ  (time II) and the obtained output, in the 
form of refined map 𝑋෠ூூ, was compared with reference map 𝑉௙௜௘௟ௗூூ  produced by the in-field survey [18]. 
For completeness, the effectiveness of satellite-driven raw map 𝑋௥௔௪ூூ  and UAV-driven NDVI map 𝑌௎஺௏ூ  in discriminating vigor levels described in 𝑉௙௜௘௟ௗூூ  was also investigated. 

To extend validation to other time periods (time I, III and IV), three-level vigor maps 𝑌௎஺௏  were 
derived by applying the K-means algorithm to UAV-driven dataset 𝑌௎஺௏ , to be used as the ground 
truth reference. Indeed, the soundness of this approach was confirmed by validating the selected 
classifier with the dataset of time II, clustering 𝑌௎஺௏ூூ , and comparing it with ground truth vigor map 𝑉௙௜௘௟ௗூூ  (Figure 3). 

 
Figure 3. Three-level vigor maps (a) 𝑋௥௔௪ூூ , (b) 𝑋෠ூூ, and (c) 𝑌௎஺௏ூூ  of parcel B, derived from raw Sentinel-2 
NDVI map 𝑋௥௔௪ூூ , refined satellite NDVI map 𝑋෠ூூ  and UAV-driven NDVI map 𝑌௎஺௏ூூ , respectively. 
Vigor map (d) of parcel B from the expert’s in-field survey 𝑉௙௜௘௟ௗூூ . Maps 𝑋௥௔௪ூூ , 𝑋෠ூூ  and 𝑌௎஺௏ூூ  were 
obtained by the selected K-means based classifier. 
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With this approach, the validation of the temporal effectiveness of the proposed satellite-driven 
dataset refinement framework was performed by refining datasets 𝑋௥௔௪ூ , 𝑋௥௔௪ூூூ , and 𝑋௥௔௪ூ௏  and 
assessing the accordance between the obtained refined NDVI maps (𝑋෠ூ, 𝑋෠ூூூ, and 𝑋෠ூ௏) and the UAV-
driven reference ones (𝑌௎஺௏ூ , 𝑌௎஺௏ூூூ , 𝑌௎஺௏ூ௏ ). 

3.3. Results and Discussion 

NDVI maps derived from onboard UAV sensors are used in many agricultural applications due 
to their effectiveness in providing high spatial resolution imagery and control over the data 
acquisitions [20–22]. However, there are constraints such as limited flight time of UAVs, labor 
extensiveness, and lower coverage that make it less affordable than satellite imagery. In contrast, NDVI 
maps derived from the satellite-based sensors have been widely used for the past four decades [56]. 
The latest developments in the satellite-based sensors provide frequent imagery with fine spectral 
information and moderate spatial details. However, satellite based remote sensing for vegetation 
monitoring becomes more challenging when considering crops with discontinuous layouts, such as 
vineyards and orchards [57]. The primary reason behind this is the presence of inter-row paths and 
weed vegetation within the cropland, which may deeply affect the overall spectral indices 
computation, leading to a biased crop status assessment. Therefore, refinement of the satellite driven 
vegetation index is performed in this study. 

The effectiveness of the refined NDVI map 𝑋෠ூூ, generated by the trained RarefyNet model, in 
describing the actual vigor status of the vineyard selected as the case study was investigated by 
performing ANOVA between map pixels properly grouped based on the vigor classes expressed in 𝑉௙௜௘௟ௗூூ , selected as the ground truth (Figure 3d). In order to demonstrate the obtained improvement, 
the coherence of raw satellite-driven map 𝑋௥௔௪ூூ  and of UAV-driven NDVI map 𝑌௎஺௏ூ  with the ground 
truth was performed. The ANOVA results, organized in Table 3, showed how NDVI raw map 𝑋௥௔௪ூூ , 
derived from the satellite imagery, has no accordance with the map generated from in-field 
measurement 𝑉௙௜௘௟ௗூூ . The difference between the means of the pixel groups (Figure 4), obtained by 
clustering NDVI map 𝑋௥௔௪ூூ  by using the spatial information provided by in-field survey 𝑉௙௜௘௟ௗூூ , was 
found not to be significant, with obtained p-values ranging from 0.04 to 0.26 for all three considered 
parcels A, B, and C (Table 3). This confirms the limitations of 𝑋௥௔௪ூூ  in directly providing reliable 
information regarding the status of the vineyards in this scenario, where the radiometric information 
reflected from the crop field could be affected by other sources (e.g., inter-row paths) that, in the case 
of crops grown by rows, could be predominant and could negatively affect the overall NDVI 
assessment. On the contrary, by using the same assessment approach, the effectiveness of the NDVI 
map derived from UAV imagery 𝑌௎஺௏ூூ  proved to be statistically significant, with different group 
means in all the considered parcels and showing a favourable coherence with in-field ground truth 𝑉௙௜௘௟ௗூூ . This preliminary analysis was propedeutic to the quality assessment of the proposed new 
framework to refine the satellite-driven NDVI map with the RarefyNet model. The ANOVA results 
demonstrated how refined NDVI map 𝑋෠ூூ  correlates with reference 𝑉௙௜௘௟ௗூூ , with small p-values 
ranging from 0.0015 to 3.17 × 10ି଼ (Table 3), drastically improving the performance of raw satellite-
driven dataset 𝑋௥௔௪ூூ . The results presented so far prove that the proposed RarefyNet is capable of 
refining the raw Sentinel-2 driven map 𝑋෠ூூ of time period II by extracting the features from UAV-driven 
map 𝑌௎஺௏ூ .  
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Table 3. ANOVA results for the June (time 𝐼𝐼) datasets 𝑋௥௔௪ூூ , 𝑋෠ூூ , and 𝑌௎஺௏ூூ  grouped according to 
ground truth vigor map 𝑉௙௜௘௟ௗூூ : raw Sentinel-2 𝑋௥௔௪ூூ  does not show significant differences among the 
vigor group means defined by the field expert with in-field measurement 𝑉௙௜௘௟ௗூூ , whilst enhanced UAV 
map 𝑌௎஺௏ூூ  and the refined version of Sentinel-2 map 𝑋෠ூூ show significant differences among the group 
means. 

Datasets 
(Grouped 

by) 
Parcel Source DF 1 SS 1 MS 1 F-Value p-Value 

𝑋௥௔௪ூூ (𝑉௙௜௘௟ௗூூ ) 

Parcel-A 
Classes 2 0.3084 0.1541 3.4582 0.044081 
Error 31 1.3821 0.0445   
Total 33 1.6905    

Parcel-B 
Classes 2 0.3938 0.1969 4.8928 0.010587 
Error 63 2.5353 0.0402   
Total 65 2.9291    

Parcel-C 
Classes 2 0.1985 0.0992 1.4555 0.264401 
Error 15 1.0228 0.0681   
Total 17 1.2213    

𝑋෠ூூ(𝑉௙௜௘௟ௗூூ ) 

Parcel-A 
Classes 2 0.4749 0.2374 8.0112 0.001568 
Error 31 0.9189 0.0296   
Total 33 1.3938    

Parcel-B 
Classes 2 1.3735 0.6867 22.9984 3.17 × 10−8 
Error 63 1.8812 0.0298   
Total 65 3.2547    

Parcel-C 
Classes 2 0.7071 0.3535 11.7444 0.000852 
Error 15 0.4515 0.0301   
Total 17 1.1586    

𝑌௎஺௏ூூ (𝑉௙௜௘௟ௗூூ ) 

Parcel-A 
Classes 2 1.3608 0.6804 30.0925 5.46×10−8 
Error 31 0.7009 0.0226   
Total 33 2.0617    

Parcel-B 
Classes 2 2.7135 1.3567 71.1664 6.87× 10 −17 
Error 63 1.2010 0.0190   
Total 65 3.9145    

Parcel-C 
Classes 2 0.9447 0.4723 8.7803 0.002988 
Error 15 0.8069 0.0537   
Total 17 1.7516    

1 DF: degree of freedom, SS: sum of squares, MS: mean square 
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Figure 4. Pixel groups boxplots from raw satellite-driven map 𝑋௥௔௪ூூ , refined satellite-driven map 𝑋෠ூூ, 
and UAV-driven map 𝑌௎஺௏ூூ , clustered according to the three vigor classes “L”, “M”, and “H” defined 
in map 𝑉௙௜௘௟ௗூூ . The boxplots are individually computed for each parcel (A, B, and C). 

To extend the performed analysis to other time datasets, all the maps produced from the UAV 
imagery (𝑌௎஺௏ூ ,𝑌௎஺௏ூூ ,𝑌௎஺௏ூூூ ,𝑌௎஺௏ூ௏ ) were clustered into three vigor classes by using a K-means algorithm, 
obtaining a set of clustered maps 𝑌௎஺௏ூ ,𝑌௎஺௏ூூ ,𝑌௎஺௏ூூூ , and 𝑌௎஺௏ூ௏ . The soundness of the proposed clustering 
approach was demonstrated by comparing, parcel by parcel, map 𝑌௎஺௏ூூ  to in-field vigor map 𝑉௙௜௘௟ௗூூ  by 
evaluating the Pearson correlation coefficients (Figure 3). The obtained positive values, ranging from 
0.68 to 0.84, showed that the produced clustered map 𝑌௎஺௏ூூ  is well correlated with 𝑉௙௜௘௟ௗூூ . This result, 
together with the extremely favourable ANOVA results of 𝑌௎஺௏ூூ  in Table 3, makes it possible to 
consider the UAV-driven dataset as a robust and reliable reference in the following analysis. 

The performance of the proposed RarefyNet in extending the refinement task also to other 
imagery from a time series, even if trained only with one single UAV-driven dataset, was thus further 
assessed by refining other temporal raw Sentinel-2 maps. The effectiveness of refined maps 𝑋෠ூூூ and 𝑋෠ூ௏ (obtained by refining maps 𝑋௥௔௪ூூூ  and 𝑋௥௔௪ூ௏ ) in describing the vigor level of the vineyard expressed 
in reference UAV-driven maps 𝑌௎஺௏ூூூ  and 𝑌௎஺௏ூ௏  was investigated with ANOVA. The results of this 
analysis, together with the ones performed on 𝑋෠ூ and 𝑋෠ூூ for completeness, are organised in Table 4. 
The boxplots of the groups of pixels from the refined satellite maps (𝑋෠ூ,𝑋෠ூூ ,𝑋෠ூூூ and 𝑋෠ூ௏), clustered 
according to the three vigor classes “L”, “M”, and “H” defined in the UAV-driven clustered maps 𝑌௎஺௏ூ , 𝑌௎஺௏ூூ , 𝑌௎஺௏ூூூ  and 𝑌௎஺௏ூ௏ respectively, are shown in Figure 5. The ANOVA results reported in Table 4 
confirmed the good coherence of all four refined Sentinel-2 maps with their respective reference 
maps, with p-values showing the significance of the differences among group means. The results 
achieved by the performed analysis provide an opportunity to use the freely, frequently available, 
low resolution satellite imagery to describe the variability of vineyards by refining the satellite driven 
vegetation index. Refinement is done by adopting a proposed machine learning framework, which is 
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trained with the valuable information extracted from high resolution UAV imagery and the spatial 
information of the satellite neighborhood pixels. 

Table 4. ANOVA results of refined datasets 𝑋෠ூ , 𝑋෡ ூூ,𝑋෠ூூூ , and 𝑋෠ூ௏ , grouped according to reference 
UAV-drive vigor maps 𝑌௎஺௏ூ ,  𝑌௎஺௏ூூ ,𝑌௎஺௏ூூூ , and 𝑌௎஺௏ூ௏ . 

Datasets 
(Grouped 

by) 
Parcel Source DF 1 SS 1 MS 1 F-Value p-Value 

𝑋෠ூ(𝑌௎஺௏ூ ) 

Parcel-A 
Classes 2 0.7907 0.7907 32.4702 2.60 × 10−6 
Error 31 0.7792 0.0243   
Total 33 1.5699    

Parcel-B 
Classes 2 1.39025 1.3902 78.7860 9.31 × 10−13 
Error 63 1.1293 0.0176   
Total 65 2.5196    

Parcel-C 
Classes 2 1.1914 1.1917 113.4301 1.14 × 10−8 
Error 15 0.1681 0.0105   
Total 17 1.3596    

𝑋෠ூூ(𝑌௎஺௏ூூ ) 

Parcel-A 
Classes 2 0.6968 0.6968 31.9907 2.94 × 10 −6 
Error 31 0.6970 0.0218   
Total 33 1.3939    

Parcel-B 
Classes 2 1.5536 1.5536 58.4472 1.36 × 10 −10 
Error 63 1.7012 0.0266   
Total 65 3.2548    

Parcel-C 
Classes 2 0.7978 0.7978 35.3635 2.05 × 10 −5 
Error 15 0.3609 0.0225   
Total 17 1.1587    

𝑋෠ூூூ(𝑌௎஺௏ூூூ ) 

Parcel-A 
Classes 2 0.4195 0.4194 13.4022 0.000898 
Error 31 1.0015 0.0313   
Total 33 1.4210    

Parcel-B 
Classes 2 0.6561 0.6560 29.8767 8.10 × 10−7 
Error 63 1.4054 0.0219   
Total 65 2.0614    

Parcel-C 
Classes 2 0.1808 0.1808 2.1895 0.158372 
Error 15 1.3218 0.0826   
Total 17 1.5026    

𝑋෠ூ௏(𝑌௎஺௏ூ௏ ) 

Parcel-A 
Classes 2 0.2441 0.2441 4.6372 0.038924 
Error 31 1.6846 0.0526   
Total 33 1.9287    

Parcel-B 
Classes 2 0.6649 0.6649 20.8288 2.33 × 10−5 
Error 63 2.0431 0.0319   
Total 65 2.7081    

Parcel-C 
Classes 2 0.8174 0.8173 25.5642 0.000117 
Error 15 0.5116 0.0319   
Total 17 1.3289    

1 DF: degree of freedom, SS: sum of squares, MS: mean square 
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Figure 5. Pixel groups boxplots from refined satellite maps (𝑋෠ூ, 𝑋෡ ூூ,  𝑋෡ ூூூ, and 𝑋෠ூ௏), clustered according 
to the three vigor classes “L”, “M”, and “H” defined in the UAV-driven clustered maps 𝑌௎஺௏ூ ,  𝑌௎஺௏ூூ ,𝑌௎஺௏ூூூ , and 𝑌௎஺௏ூ௏ , respectively. The boxplots are computed individually for each parcel (A, B, 
and C). 

4. Conclusions 

Freely available satellite imagery with low or moderate resolutions shows some limitations in 
specific agricultural applications, e.g., where crops are grown by rows causing biased radiometric 
reflectance that does not reliably describe the vegetative status. The proposed novel satellite imagery 
refinement framework, based on deep learning techniques, exploits information properly derived 
from high resolution images acquired by UAV airborne multispectral sensors. To train the 
convolutional neural network, only a single UAV-driven dataset is required, making the proposed 
approach simple and cost-effective. A vineyard in Serralunga d’Alba (Northern Italy) was chosen as 
a case study for validation purposes. Refined satellite-driven NDVI maps, acquired in four different 
periods during the vine growing season, were shown to better describe crop status with respect to 
raw datasets by correlation analysis and ANOVA. In addition, using a K-means based classifier, 
three-level vineyard vigor maps were profitably derived from the NDVI maps, which are a valuable 
tool for growers. 



Sensors 2020, 20, 2530 14 of 17 

 

Authors Contribution: Conceptualization, M.C. and P.G.; methodology, V.M., L.C., and A.K.; software, V.M. 
and A.K.; validation, V.M. and A.K.; data curation, V.M. and A.K.; writing—original draft preparation, V.M., 
L.C., and A.K.; writing—review and editing, P.G. and M.C.; project administration, P.G. and M.C.; funding 
acquisition, P.G. and M.C. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was partially funded by the project “New technical and operative solutions for the use 
of drones in Agriculture 4.0” (PRIN 2017, Prot. 2017S559BB). 

Acknowledgments: The authors would like to acknowledge Germano Ettore, owner of the winery, for hosting 
the experimental campaign and Iway S.r.l. for conducting the UAV flights for multispectral imaging. This work 
was developed with the contribution of the Politecnico di Torino Interdepartmental Centre for Service Robotics 
PIC4SeR (https://pic4ser.polito.it) and SmartData@Polito (https://smartdata.polito.it). 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Pierce, F.J.; Nowak, P. Aspects of Precision Agriculture. In Advances in Agronomy; Elsevier: Amsterdam, The 
Netherlands, 1999; Volume 67, pp. 1–85, doi:10.1016/S0065-2113(08)60513-1. 

2. Pathak, H.S.; Brown, P.; Best, T. A Systematic literature review of the factors affecting the precision 
agriculture adoption process. Precis. Agric. 2019, 20, 1292–1316, doi:10.1007/s11119-019-09653-x. 

3. Stafford, J.V. The role of the technology in the emergence and current status of precision agriculture. In 
Handbook of Precision Agriculture: Principles and Applications; Srinivasan, A., Ed.; Food Products Press: New 
York, NY, USA, 2006; pp. 19–56. 

4. Comba, L.; Gay, P.; Ricauda, A.D. Robot ensembles for grafting herbaceous crops. Biosyst. Eng. 2016, 146, 
227–239, doi:10.1016/j.biosystemseng.2016.02.012. 

5. Arnó, J.; Martínez Casasnovas, J.A.; Ribes, D.M.; Rosell, J.R. Review. Precision viticulture. Research topics, 
challenges and opportunities in site-specific vineyard management. Span. J. Agric. Res. 2009, 7, 779–790, 
doi:10.5424/sjar/2009074-1092. 

6. Ferrer, M.; Echeverría, G.; Pereyra, G.; Gonzalez-Neves, G.; Pan, D.; Mirás-Avalos, J.M. Mapping vineyard 
vigour using airborne remote sensing: Relations with yield, berry composition and sanitary status under 
humid climate conditions. Precis. Agric. 2020, 21, 178–197, doi:10.1007/s11119-019-09663-9. 

7. Zaman, S.; Comba, L.; Biglia, A.; Ricauda, A.D.; Barge, P.; Gay, P. Cost-effective visual odometry system 
for vehicle motion control in agricultural environments. Comput. Electron. Agric. 2019, 162, 82–94, 
doi:10.1016/j.compag.2019.03.037. 

8. Pádua, L.; Marques, P.; Adão, T.; Guimarães, N.; Sousa, A.; Peres, E.; Sousa, J.J. Vineyard Variability 
Analysis through UAV-Based Vigour Maps to Assess Climate Change Impacts. Agronomy 2019, 9, 581, 
doi:10.3390/agronomy9100581. 

9. Pichon, L.; Leroux, C.; Macombe, C.; Taylor, J.; Tisseyre, B. What relevant information can be identified by 
experts on unmanned aerial vehicles’ visible images for precision viticulture? Precis. Agric. 2019, 20, 278–294, 
doi:10.1007/s11119-019-09634-0. 

10. Jenal, A.; Bareth, G.; Bolten, A.; Kneer, C.; Weber, I.; Bongartz, J. Development of a VNIR/SWIR 
Multispectral Imaging System for Vegetation Monitoring with Unmanned Aerial Vehicles. Sensors 2019, 19, 
5507, doi:10.3390/s19245507. 

11. Fanigliulo, R.; Antonucci, F.; Figorilli, S.; Pochi, D.; Pallottino, F.; Fornaciari, L.; Grilli, R.; Costa, C. Light 
Drone-Based Application to Assess Soil Tillage Quality Parameters. Sensors 2020, 20, 728, 
doi:10.3390/s20030728. 

12. Vieira, M.A.; Formaggio, A.R.; Rennó, C.D.; Atzberger, C.; Aguiar, D.A.; Mello, M.P. Object Based Image 
Analysis and Data Mining applied to a remotely sensed Landsat time-series to map sugarcane over large 
areas. Remote Sens. Environ. 2012, 123, 553–562, doi:10.1016/j.rse.2012.04.011. 

13. Da Silva Junior, C.A.; Leonel-Junior, A.H.S.; Saragosa Rossi, F.; Correia Filho, W.L.F.; de Barros Santiago, D.; 
de Oliveira-Júnior, J.F.; Teodoro, P.E.; Lima, M.; Capristo-Silva, G.F. Mapping soybean planting area in 
midwest Brazil with remotely sensed T images and phenology-based algorithm using the Google Earth 
Engine platform. Comput. Electron. Agric. 2020, 169, 105194, doi:10.1016/j.compag.2019.105194. 

14. Maponya, M.G.; van Niekerk, A.; Mashimbye, Z.E. Pre-harvest classification of crop types using a Sentinel-2 
time-series and machine learning. Comput. Electron. Agric. 2020, 169, 105164, 
doi:10.1016/j.compag.2019.105164. 

15. Rembold, F.; Atzberger, C.; Savin, I.; Rojas, O. Using Low Resolution Satellite Imagery for Yield Prediction 
and Yield Anomaly Detection. Remote Sens. 2013, 5, 1704–1733, doi:10.3390/rs5041704. 



Sensors 2020, 20, 2530 15 of 17 

 

16. Bhattacharya, B.K.; Chattopadhyay, C. A multi-stage tracking for mustard rot disease combining surface 
meteorology and satellite remote sensing. Comput. Electron. Agric. 2013, 90, 35–44, 
doi:10.1016/j.compag.2012.10.001. 

17. Castillejo-González, I.L.; López-Granados, F.; García-Ferrer, A.; Pen ̃a-Barragán, J.M.; Jurado-Expósito, M.; 
de la Orden, M.S.; González-Audicana, M. Object- and pixel-based analysis for mapping crops and their 
agro-environmental associated measures using QuickBird imagery. Comput. Electron. Agric. 2009, 68, 207–215, 
doi:10.1016/j.compag.2009.06.004. 

18. Khaliq, A.; Comba, L.; Biglia, A.; Ricauda Aimonino, D.; Chiaberge, M.; Gay, P. Comparison of satellite and 
UAV-based multispectral imagery for vineyard variability assessment. Remote Sens. 2019, 11, 436, 
doi:10.3390/rs11040436. 

19. Padró, J.C.; Muñoz, F.J.; Planas, J.; Pons, X. Comparison of four UAV georeferencing methods for 
environmental monitoring purposes focusing on the combined use with airborne and satellite remote 
sensing platforms. Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 130–140, doi:10.1016/j.jag.2018.10.018. 

20. Comba, L.; Biglia, A.; Ricauda Aimonino, D.; Tortia, C.; Mania, E.; Guidoni, S.; Gay, P. Leaf Area Index 
evaluation in vineyards using 3D point clouds from UAV imagery. Precis. Agric. 2019, doi:10.1007/s11119-
019-09699-x. 

21. Primicerio, J.; Gay, P.; Ricauda Aimonino, D.; Comba, L.; Matese, A.; Di Gennaro, S.F. NDVI-based vigour 
maps production using automatic detection of vine rows in ultra-high resolution aerial images. In Precision 
Agriculture; Wageningen Academic Publishers: Wageningen, The Netherlands 2015; pp. 465–470, 
doi:10.3920/978-90-8686-814-8_57. 

22. Primicerio, J.; Caruso, G.; Comba, L.; Crisci, A.; Gay, P.; Guidoni, S.; Genesio, L.; Ricauda Aimonino, D.; 
Vaccari, F.P. Individual plant definition and missing plant characterization in vineyards from high-resolution 
UAV imagery. Eur. J. Remote Sens. 2017, 50, 179–186, doi:10.1080/22797254.2017.1308234. 

23. Diouf, A.A.; Hiernaux, P.; Brandt, M.; Faye, G.; Djaby, B.; Diop, M.B.; Ndione, J.A.; Tychon, B. Do 
Agrometeorological Data Improve Optical Satellite-Based Estimations of the Herbaceous Yield in Sahelian 
Semi-Arid Ecosystems? Remote Sens. 2016, 8, 668, doi:10.3390/rs8080668. 

24. Hu, Y.; Xu, X.; Wu, F.; Sun, Z.; Xia, H.; Meng, Q.; Huang, W.; Zhou, H.; Gao, J.; Li, W.; et al. Estimating 
Forest Stock Volume in Hunan Province, China, by Integrating In Situ Plot Data, Sentinel-2 Images, and 
Linear and Machine Learning Regression Models. Remote Sens. 2020, 12, 186, doi:10.3390/rs12010186. 

25. Liu, S.; Lv, Y.; Tong, X.; Xie, H.; Liu, J.; Chen, L. An Alternative Approach for Registration of  
High-Resolution Satellite Optical Imagery and ICESat Laser Altimetry Data. Sensors 2016, 16, 2008, 
doi:10.3390/s16122008. 

26. Comba, L.; Biglia, A.; Ricauda Aimonino, D.; Barge, P.; Tortia, C.; Gay, P. 2D and 3D data fusion for crop 
monitoring in precision agriculture. In Proceedings of the 2019 IEEE International Workshop on Metrology 
for Agriculture and Forestry, Portici, Italy, 24–26 October 2019; pp. 62–67, 
doi:10.1109/MetroAgriFor.2019.8909219. 

27. Zheng, Y.; Wu, B.; Zhang, M.; Zeng, H. Crop Phenology Detection Using High Spatio-Temporal Resolution 
Data Fused from SPOT5 and MODIS Products. Sensors 2016, 16, 2099, doi:10.3390/s16122099. 

28. Zhao, L.; Shi, Y.; Liu, B.; Hovis, C.; Duan, Y.; Shi, Z. Finer Classification of Crops by Fusing UAV Images 
and Sentinel-2A Data. Remote Sens. 2019, 11, 3012, doi:10.3390/rs11243012. 

29. Xiao, A.; Wang, Z.; Wang, L.; Ren, Y. Super-Resolution for “Jilin-1” Satellite Video Imagery via a 
Convolutional Network. Sensors 2018, 18, 1194, doi:10.3390/s18041194. 

30. Lu, T.; Wang, J.; Zhang, Y.; Wang, Z.; Jiang, J. Satellite Image Super-Resolution via Multi-Scale Residual 
Deep Neural Network. Remote Sens. 2019, 11, 1588, doi:10.3390/rs11131588. 

31. Tang, X.; Zhang, X.; Liu, F.; Jiao, L. Unsupervised Deep Feature Learning for Remote Sensing Image 
Retrieval. Remote Sens. 2018, 10, 1243. doi:10.3390/rs10081243. 

32. Cai, D.; Chen, K.; Qian, Y.; Kämäräinen, J.K. Convolutional low-resolution fine-grained classification. 
Pattern Recognit. Lett. 2019, 119, 166–171, doi:10.1016/j.patrec.2017.10.020. 

33. Arun, P.V.; Herrmann, I.; Budhiraju, K.M.; Karnieli, A. Convolutional network architectures for  
super-resolution/sub-pixel mapping of drone-derived images. Pattern Recognit. 2019, 88, 431–446, 
doi:10.1016/j.patcog.2018.11.033. 

34. Tai, Y.; Yang, J.; Liu, X. Image super-resolution via deep recursive residual network. In Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 
2017; pp. 3147–3155, doi:10.1109/CVPR.2017.298. 

35. Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced deep residual networks for single image  
super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 
Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 136–144, doi:10.1109/CVPRW.2017.151. 



Sensors 2020, 20, 2530 16 of 17 

 

36. Douarre, C.; Crispim-Junior, C.F.; Gelibert, A.; Tougne, L.; Rousseau, D. Novel data augmentation 
strategies to boost supervised segmentation of plant disease. Comput. Electron. Agric. 2019, 165, 104967, 
doi:10.1016/j.compag.2019.104967. 

37. Popescu, D.; Stoican, F.; Stamatescu, G.; Ichim, L.; Dragana, C. Advanced UAV–WSN System for Intelligent 
Monitoring in Precision Agriculture. Sensors 2020, 20, 817, doi:10.3390/s20030817. 

38. Sankaran, S.; Quirós, J.J.; Miklas, P.N. Unmanned aerial system and satellite-based high resolution imagery 
for high-throughput phenotyping in dry bean. Comput. Electron. Agric. 2019, 165, 104965, 
doi:10.1016/j.compag.2019.104965. 

39. Jay, S.; Baret, F.; Dutartre, D.; Malatesta, G.; Héno, S.; Comarc, A.; Weissb, M.; Maupasa, F. Exploiting the 
centimeter resolution of UAV multispectral imagery to improve remote-sensing estimates of canopy 
structure and biochemistry in sugar beet crops. Remote Sens. Environ. 2019, 231, 110898, 
doi:10.1016/j.rse.2018.09.011. 

40. Cui, T.W.; Liang, X.J.; Gong, J.L.; Tong, C.; Xiao, Y.F.; Liu, R.J.; Zhang, X.; Zhang, J. Assessing and refining 
the satellite-derived massive green macro-algal coverage in the Yellow Sea with high resolution images. 
ISPRS J. Photogram. Remote Sens. 2018, 144, 315–324, doi:10.1016/j.isprsjprs.2018.08.001. 

41. Martin, F.-M.; Müllerová, J.; Borgniet, L.; Dommanget, F.; Breton, V.; Evette, A. Using Single- and  
Multi-Date UAV and Satellite Imagery to Accurately Monitor Invasive Knotweed Species. Remote Sens. 
2018, 10, 1662, doi:10.3390/rs10101662. 

42. Zhang, S.; Zhao, G. A Harmonious Satellite-Unmanned Aerial Vehicle-Ground Measurement Inversion 
Method for Monitoring Salinity in Coastal Saline Soil. Remote Sens. 2019, 11, 1700, doi:10.3390/rs11141700. 

43. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. 
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9, doi:10.1109/CVPR.2015.7298594. 

44. Khaliq, A.; Mazzia, V.; Chiaberge, M. Refining satellite imagery by using UAV imagery for vineyard 
environment: A CNN Based approach. In Proceedings of the IEEE International Workshop on Metrology 
for Agriculture and Forestry (MetroAgriFor), Portici, Italy, 24–26 October 2019; pp. 25–29. 
doi:10.1109/MetroAgriFor.2019.8909276. 

45. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal 
covariate shift. arXiv 2015, arXiv: 1502.03167. 

46. Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear 
units (elus). arXiv 2015, arXiv:1511.07289. 

47. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to 
prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958, 
doi:10.5555/2627435.2670313. 

48. Smith, L.N. Cyclical learning rates for training neural networks. In Proceedings of the 2017 IEEE Winter 
Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017;  
pp. 464–472, doi:10.1109/WACV.2017.58. 

49. Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv: 1711.05101. 
50. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv: 1412.6980. 
51. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.;  

Isard, M.; et al. Tensorflow: A system for large-scale machine learning. In Proceedings of 12th USENIX 
Symposium on Operating Systems Design and Implementation; Savannah, GA, USA, 2-4 November 2016; 
pp. 265–283. 

52. Richter, R.; Wang, X.; Bachmann, M.; Schläpfer, D. Correction of cirrus effects in Sentinel-2 type of imagery. 
Int. J. Remote Sens. 2011, 32, 2931–2941, doi:10.1080/01431161.2010.520346. 

53. Louis, J.; Charantonis, A.; Berthelot, B. Cloud Detection for Sentinel-2. In Proceedings of the ESA Living 
Planet Symposium, Bergen, Norway, 28 June–2 July 2010. 

54. Kaufman, Y.; Sendra, C. Algorithm for automatic atmospheric corrections to visibleand near-IR satellite 
imagery. Int. J. Remote Sens. 1988, 9, 1357–1381, doi:10.1080/01431168808954942. 

55. EESA. Sentinel-2 User Handbook. Available online: https://earth.esa.int/documents/247904/685211/Sentinel-
2_User_Handbook (accessed on 25 November 2017). 

  



Sensors 2020, 20, 2530 17 of 17 

 

56. Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining 
knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. 

57. Borgogno-Mondino, E.; Lessio, A.; Tarricone, L.; Novello, V.; de Palma, L. A comparison between 
multispectral aerial and satellite imagery in precision viticulture. Precis. Agric. 2018, 19, 195. 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons 
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


