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Abstract

Rolling element bearings are the critical parts of every rotating machinery and

their failure is one of the main reason of the machine downtime and even break-

down. For this reason, various methods have been proposed in the past for

their early diagnosis. Among them, envelope analysis and cyclic spectral analy-

sis (CSA) are the most effective and widely used approaches, working according

to the principle of linear filtering process of signals to remove undesirable com-

ponents. However, in many cases machine structures are excited in different

frequency ranges by impacts generated when defects are engaged, hence, the

signal should be filtered for multiple frequency bands to completely extract the

defect signals. Also, finding the proper frequency bands for demodulation is not

always a simple task. To overcome these challenges, in this paper an empirical

and automated nonlinear filtering process will be proposed in which different

components of a signal are decomposed based on their powers. Then, their

squared envelope spectra are computed to seek the presence of bearings char-

acteristic frequencies. Therefore, this method can be seen as complementary

to the narrowband amplitude demodulation techniques. The phase of each fil-

tered component is similar to the phase of the original signal but the magnitude

is transformed. The idea is that reconstruction of a signal only by its phase

preserves many useful features. A similar approach is employed by cepstrum
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pre-whitening for bearings diagnosis to reduce the effect of powerful exogenous

sources which mask the bearings signals and, despite its simplicity, has achieved

noteworthy outcomes. Finally, the performance of the proposed method is val-

idated on real case data recorded from two test rigs. Also, its effectiveness is

investigated under constant and variable speed regimes and in presence of vari-

ous level of Gaussian and non-Gaussian (highly impulsive) background noise.

Keywords: Rolling Element Bearing, Spectral Amplitude Modulation (SAM),

Cepstrum Pre-Whitening (CPW), Diagnosis, Defect Frequency, Nonlinear

Filtering, Magnitude Order

1. Introduction

Diagnosis of Rolling Elements Bearings (REBs) as a crucial component of

every rotation machinery is an important task. Since, detection of faults prior

to any catastrophic failure can save time and money.

Diagnostic information related to REBs faults are often masked by inter-

ferences from more powerful sources. Envelope analysis [1] is the best-known

method to extract the bearings signals from raw signals and it has become

the benchmark technique for their diagnostics. It was first proposed in [2] and

named High-frequency resonance technique (HFRT) but now it is mainly known

with the former name. But the main challenge has been finding the effective

frequency band for demodulation. Various methods such as fast Kurtogram [3],

Protrugram [4] and Autogram [5, 6] have been developed since then to overcome

this challenge and valuable results have been achieved. These approaches select

frequency bands in which the filtered time signal, Squared Envelope Spectrum

(SES) of the filtered signal and autocorrelation of the filtered time signal’s en-

velope have the highest kurtosis respectively. The main disadvantage of these

techniques is related to selecting a single frequency band for demodulation. This

is problematic especially when the signatures of multiple defects are present in

different frequency bands because in this case only one defect is detected and
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Nomenclature

A Analytic Signal

H Hilbert Transform

frot Shaft Frequency

Orot Shaft Order

xm Modified Signals

ACEP Automated Cepstrum Editing Procedure

BPFI Ball Pass Frequency Inner race

BPFO Ball Pass Frequency Outer race

BPOI Ball Pass Order Inner race

BSF Ball Spin Frequency

CPW Cepstrum Pre-Whitening

CSA Cyclic Spectral Analysis

CSES Combined Squared Envelope Spectrum

CWRU Case Western Reserve University

EES Enhanced Envelope Spectrum

EMI Electro-Magnetic Interference

FT Fourier Transform

FTF Fundamental Train Frequency

IFT Inverse Fourier Transform

LES Log-Envelope Spectrum

LSES Log Squared Envelope Spectrum

MO Magnitude Order

MSES Maximum Squared Envelope Spectrum

PWM Pulse-Width Modulated

REB Rolling Element Bearing

SAM Spectral Amplitude Modulation

SC Spectral Correlation

SES Squared Envelope Spectrum

SNR Signal to Noise Ratio

TSA Time Synchronous Averaging

VFD Variable Frequency Drives3



the others are overlooked. The combined squared envelope spectrum (CSES)

has been proposed by [5] as an attempt to solve this problem.

Another family of approaches for condition monitoring of rotary machinery

is Cyclic Spectral Analysis (CSA) [7]. This is a powerful method which sep-

arates and describes different 2nd order cyclostationary components in terms

of the spectral (carrier) frequency and the cyclic (modulation) frequency vari-

ables. Spectral Correlation (SC) is one of the main tool for the CSA of machine

signals which is defined as the two-dimensional Fourier Transform (FT) of the

instantaneous autocovariance function. Ref. [8] discusses the various proposed

methods to estimate the SC. High computational cost is the main drawback

of these methods which hindered their application for condition monitoring of

rotary machinery. Ref. [9] gives a new approach to include Cyclic Modulation

Spectrum (CMS), a fast alternative to SC which is a cascade of envelope spectra

in all possible frequency bands [10], in the unified form of cyclostationary esti-

mators as an estimator of the SC. However, CMS suffers from a major drawback

because cyclic frequencies larger than the frequency resolution of the STFT can-

not be detected. Recently, a fast algorithm was introduced to compute the SC

which substantially increases the computational efficiency [11]. Also, it does not

suffer from the CMS limitation.

All the above-mentioned techniques could be considered as linear transfor-

mations. Cepstral analysis, as an alternative nonlinear transformation, has been

proposed by Ref. [12] and it has been used for several purposes since then such

as speech analysis, modal analysis, gears and REBs diagnosis [13]. This method

is advantageous in detecting periodicities in the spectrum of a signal by reduc-

ing a whole family of harmonics into a single cepstral line. Randall and Swahili

[14] and Borghesani et al. [15] took advantage of cepstral analysis features and

proposed cepstrum editing and cepstrum pre-whitening approaches to separate

periodic and random components and pre-whitening of a signal, respectively.

In the following section 2 the theoretical background, advantages and dis-

advantages of cepstral analysis, cepstrum editing and cepstrum pre-whitening

will be explained. Afterwards, based on the idea behind these techniques a new
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empirical method will be proposed in section 3. It includes a nonlinear filtering

process, and in this respect, this is completely different from existing REBs di-

agnosis approaches. In section 4 the method is implemented on six cases from

two different experiments. Each data is selected based on some unique charac-

teristics such as presence of high Gaussian\non-Gaussian background noise or

variable speed regimes. The detail explanation of these aspects in addition to

the performance of the proposed method under these circumstances will also be

discussed. Finally, the conclusion is drawn in section 5.

2. Theoretical background

2.1. Cepstral analysis

Cepstrum can be considered as the “spectrum of a spectrum”. The word cep-

strum is generated by manipulating the word spectrum and, in similar manner,

quefrency, rahmonics and lifter are also warped versions of the corresponding

spectrum terms of frequency, harmonics and filter.

Time signals are transformed to the frequency domain by Fourier Transform

(FT) in terms of magnitude A(f) and phase φ(f) as follows:

X(f) = FT{x(t)} = A(f) ejφ(f) (1)

where j is the imaginary unit.

The definition of the complex cepstrum is given by

Cc ≈ IFT{log(FT{x(t)})} = IFT{log(A(f) + ε) + jφ(f)} (2)

where IFT refers to Inverse Fourier Transform and an arbitrary small positive

quantity of ε is added to A(f) because log(A(f)) has non-numeric value when

A(f) = 0. It is worth noting that, in contrast to spectrum, the x-axis of cepstrum

has the unity of time.

The real cepstrum is calculated by setting the phase to zero and using only

the magnitude as follows:

Cr = IFT{log(A(f) + ε)} (3)
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The major distinction between cepstrum and spectrum roots in the logarith-

mic conversion of the former, which leads to a couple of important characteris-

tics. First, the level of periodic components, such as families of harmonics and

sidebands, is boosted by the logarithm in comparison to the linear spectrum.

Therefore, the IFT of log-spectrum will effectively manifest the presence of the

periodic components in the spectrum. Second, multiplicative effect, e.g. effect

of transmission path on bearing defect signals, is changed into an additive one;

therefore, the two parts can be separated effectively [16].

It should be mentioned that cepstral analysis, despite some interesting fea-

tures, is not a popular approach in diagnostic of REBs. One reason might

be that its computation and interpretation are not as straightforward as the

envelope analysis which is a well-known and widely used tool in condition mon-

itoring of rotating machinery. Another reason is related to the non-periodic

and cyclostationary nature of bearings defect signals, because their signatures

in the spectra are likely to be masked by the background noise due to their

weak energy [17]. Also, as the slippage increases the signals deviate from cyclo-

stationarity and the peaks will be smeared in the magnitude spectra [18]. As a

result, cepstral analysis will not be able to detect the presence of faults when

the slippage rate and/or level of noise is high.

2.2. Cepstrum editing and pre-whitening

Cepstrum editing approach is based on editing the real cepstrum, presented

in Eq. 3. Manually selected discrete quefrencies in the real cepstrum, corre-

sponding to the families of harmonics and sidebands in the magnitude spectrum,

are removed and then the time signal, related to the residual part, is generated

by using the edited log magnitude and the actual phase. For limited speed

fluctuation, this process does not necessarily need order tracking, and is able

to remove selected discrete frequency components just in one operation while

other desired parts are preserved.

Motivated by this methodology, a simpler and slightly different approach

is proposed in [15]. The Fourier transform of a signal is divided by its norm
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and subsequently is transformed into time domain by means of inverse Fourier

transform:

xcpw(t) = IFT

⎧⎪⎪⎨⎪⎪⎩

FT{x(t)}
∣FT{x(t)} ∣ + ε

⎫⎪⎪⎬⎪⎪⎭
(4)

where xcpw is the pre-whitened signal, ∣∎∣ denotes the mathematical norm. This

operation, called cepstrum pre-whitening (CPW) [15], is equivalent to setting

amplitudes of all quefrencies in the real cepstrum to zero. Also, it is shown in

[15] that using CPW after Time Synchronous Averaging (TSA) is beneficial in

cases with variable speeds as the application of TSA is not able to completely

remove the effect of deterministic components, such as gear coupling and mis-

alignments. Since this approach is fast, easy to implement and can be performed

without any additional input parameters, it is suited for practical and automatic

applications.

It is worth noting that this technique has been well-known for long time as

the “phase-only reconstruction” technique [19, 20] but Borghesani et al. [15],

for the first time, used this approach for REBs diagnosis.

Oppenheim and Lim [20] thoroughly investigated, both empirically and ana-

lytically, and illustrated the importance of phase and its superiority over spectral

magnitude in numerous cases, e.g. images, audios and crystallography signals.

They also explained conditions under which a signal could be recreated com-

pletely or partially just by its phase. One possible explanation could be the fact

that the information about the location of events are retained in the phase.

As an example, reconstruction of images by either their magnitude or phase

is helpful to illustrate this statement. Fig. 1(a) shows the original images (com-

bination of magnitude and phase). Moreover, Fig. 1(b) and (c) display the

magnitude-only (phase = 0) and the phase-only (magnitude = 1) reconstructed

images. By comparing Fig. 1(b) and (c), it can be inferred that significant fea-

tures of the original images are preserved in the phase-only images. In contrast,

there is no resemblance between the original and the magnitude-only images.

In general, the high frequency components of images have lower magnitude

than their low frequency components; therefore, reconstruction of signals by
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Figure 1: (a) Original images (b) Magnitude-only reconstructed images (c) Phase-only re-

constructed images

using only their phases accentuates the effect of their high frequencies. As a

result, pre-whitening highlights lines, edges and other narrow events. Addition-

ally, the location of events which have crucial influence on visibility of images

are preserved [20] (see also Fig. 1).

Another technique based on the manipulation of cepstral lines was proposed

in [21]. Automated Cepstrum Editing Procedure (ACEP) sets to zero certain

automatically selected peaks in the real cepstrum, contrary to CPW where the

whole real cepstrum is eliminated. The consequent comparison of the perfor-

mance of ACEP and CPW assesses the potential advantages/disadvantages of

each method.

3. Proposed method

This section shows how the concept of cepstrum editing and CPW can be

extended to introduce a more comprehensive approach for REBs diagnosis. The

method is first explained intuitively and then it is investigated from a theoretical
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point of view.

3.1. Spectral Amplitude Modulation (SAM)

A generalized version of CPW is developed in this section. CPW is an

effective approach and has achieved valuable results for diagnosis of REBs [22]

but suffers from two major drawbacks.

First, as the entire real cepstrum is set to zero or in other words, the mag-

nitude of a signal in whole frequency domain is set to one, the Signal-to-Noise

Ratio (SNR) for the reconstructed signal is decreased and the frequency compo-

nents of noise have the same magnitude as the frequencies linked to the defect

signals (carrier frequencies).

Second, assuming bearings defect signals only as 2nd order cyclostationary

leads to the conclusion that the peaks related to damages have not considerable

amplitude in the real cepstrum [15]. This assumption is not precise and always

acceptable, since in many cases the random slippage is not high and the discrete

components related to defects can be detected in both frequency and quefrency

domains.

Moreover, even by assuming second order cyclostationarity of bearings defect

signals, or pseudo-cyclostationarity as a more realistic process [18], for a typical

percentage of slippage in REBs, peaks (discrete frequencies) are generated in

the magnitude spectra. When the level of background noise is increased, it

will likely mask the peaks completely. It is nonetheless worth mentioning that

certain peaks are amplified in resonance frequencies ranges of structures and,

even under this circumstance, they are detectable in the spectrum.

The two mentioned disadvantages are actually responsible for the false neg-

ative diagnosis of some cases in the benchmark study of Case Western Reserve

University (CWRU) bearing data set [22] in which the defect frequencies are

present in the SES of the raw signals but they are eliminated by CPW.

As it was mentioned, in the CPW method the whole real cepstrum is set to

zero to reduce the effect of deterministic parts. In addition, by using Eq. 4 this

approach is directly applicable in the frequency domain; therefore, there is no
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need for transformation to cepstral domain. This equation can be rewritten in

the following form:

xcpw(t) = IFT{A(f)0ejφ(f)} (5)

This method introduces some disturbance as the edited amplitude is in-

consistent with the original amplitude but this drawback is often insignificant

[14]. In fact the phase relatively contains more information of a signal than

the magnitude and to completely reconstruct a signal, within a scale factor,

the information preserved in phase is adequate [20]. Consequently, many of the

significant features of a signal, in this case valuable diagnostic information, are

preserved after this process.

As the assumption of unity magnitude in CPW (phase-only reconstruction)

is rather arbitrary, a better approach could be manipulation of the original

magnitude so that it can represent the overall behavior of the spectrum. Giving

different weights to different frequency components may lead to a nonlinear

filtering process where the signals from different sources are separated. For this

purpose, a novel method is proposed to generalize Eq. 5:

xm(t, n) = IFT{A(f)n ejφ(f)} (6)

where xm will be called modified signals and are constructed by the “represen-

tative” magnitudes and the original phase of the signal. In fact, power of zero

of the magnitude in Eq. 5 is replaced by n, while a ⩽ n ⩽ b, a and b are two

arbitrary numbers. Hereafter, the variable n will be referred to as Magnitude

Order (MO). It is worth mentioning that raw signals and signals after CPW

happen to be two particular cases of the modified signals xm, with MO equal to

1 and 0 respectively. Also, log (A(f)) is approached by a small positive value

of MO.

The flowchart of the proposed method is shown in Fig. 2. Similarly to

cepstrum editing and CPW, disturbance of signal is inevitable as the magnitude

spectrum is altered. Nonetheless, the main interest for diagnosis of REBs is

the repetition rate of the impulses generated by defects; therefore, if MO is
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Figure 2: Flowchart of the proposed method

selected appropriately, the effects of these disturbances are not problematic as

the repetition rate of the impulses will remain unaffected.

After the modified signals are obtained for a range of MO (-0.5 to 1.5 is

recommended in this paper), the SES of each modified signal is calculated.

Analytic signal (A) and SES for the modified signal xm(t, n) by using Hilbert

transform (H) can be calculated as follows:

A{xm(t, n)} = xm(t, n) + j ∗H{xm(t, n)} (7a)

SES{xm(t, n)} = ∣FT{∣A{xm(t, n)}∣
2

}∣ (7b)

In addition, a new envelope spectrum, namely Log-Envelope Spectrum (LES),

has been proposed by [23] to investigate 2nd order cyclostationary signals con-

taminated by highly non-Gaussian and impulsive background noise:

LES{x(t)} = ∣FT{log(x(t)2)}∣ (8)

In presence of sizable and non-periodic impulses, LES can be employed as a

more robust alternative to SES for computation of modified signals’ envelopes

spectra. The only drawback of LES is related to the lower SNR of log (x(t)2)
in comparison to ∣A{x(t)}∣2. Therefore, it is recommended to use this indicator

whenever impulsive noise exists in the signals.
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In this paper, rather than LES, the Fourier transform of logarithm of squared

envelope signal is computed and it is called “LSES” (Eq. 9).

LSES{x(t)} = ∣FT{log(∣A{x(t)}∣2)}∣ (9)

The two approaches in Eq. 8 and Eq. 9 provide almost comparable results.

Due to aliasing, there is a possibility that desired information are masked in

LES as the sampling frequency is not doubled prior to squaring. In addition,

squaring operation in Eq. 8, which doubles the frequency content of signals, is

not followed by a low-pass filtering process.

Moreover, to counterbalance the effect of increased noise for MO values

lower than 1, the spectra of the modified signals envelopes/log-envelopes are

computed by Fourier transforming the autocorrelation functions, which are ef-

fectively equal to SES2 or LSES2 (hereafter for the sake of simplicity they will

be referred as SES and LSES).

Next, these spectra (SES or LSES) are normalized between 0 and 1, which is

essential to equalize the results for different MO values and thus provide explicit

and comparable results. In addition, to avoid large peaks at the beginning

of the SES/LSES the first few Hertz are not considered for the purpose of

normalization.

Finally, the outcome is demonstrated by a 3-dimensional plot, where x, y, z

axes represent the modulation (cyclic) frequency, MO and normalized ampli-

tude respectively. Similarly, results can be presented in a more straightforward

form with a 2-dimensional colormap where the color is proportional to the nor-

malized amplitude. Since this approach investigates the signature of amplitude

modulation of signals in frequency domain, it will be called “Spectral Amplitude

Modulation” or “SAM” in an abbreviated form. This term is substituted by

“log-SAM” when LSES is exploited instead of SES.

Implementation of the proposed method is simple, fast and no prior knowl-

edge of signals is needed. Moreover, it is not required to set any parameter in

advance or find a frequency band for demodulation. In fact, the procedure works

as a nonlinear filtering process and automatically decomposes a signal for differ-
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ent resonance and discrete frequencies based on their amplitudes. Consequently,

this approach could be seen as a complementary to CSA, i.e. CSA/SAM maps

signals in terms of carrier frequency/power and modulation frequency.

3.2. Physical interpretation of SAM and the effect of MO

Based on the values of MO, the effect of the proposed method on the modified

time signal xm(t, n) could be grouped in three categories:

First, for n > 1 the effects of frequencies with higher magnitude are am-

plified. Also, as the value of n increases, part of the time signal represented

by frequencies with lower magnitude will be gradually masked by other parts

containing frequencies with higher level of energy. These values of MO may also

have denoising effects as the distinction between resonance frequencies of the

structure excited by defect impacts and other frequencies associated with the

noise will be better highlighted.

Second, for 0 ⩽ n ⩽ 1 the dominancy of frequencies with larger amplitude

will gradually reduce in comparison to frequencies with lower amplitude as the

value of n varies from 1 to 0. In contrast to CPW, all frequency components

are not set to the same magnitude. As a result, the effect of both high and

low energy parts, as well as cyclostationary and periodic components will be

preserved to some extent. This is mostly important because in real cases the

acquired signals are combination of several heterogeneous vibration components

and the bearing defect signal is not often the dominant part. For instance, when

the bearing defect signal is weak and masked by signals from other sources such

as gears meshing, the impact of this “discrete frequency noise” will be lessened,

meanwhile the role of bearing defect signal will be improved and the defect

signal will be more effectively detected.

Third, for n < 0 this process has a different and unique outcome as the

effect of magnitude will be reversed. Amplitudes of more dominant frequency

components now become negligible which is analogous to filtering out these

frequencies. On the contrary, the influence of previously insignificant frequencies

will be boosted. Negative values of n are advantageous especially for diagnosis

13



of bearings with multiple defects and/or when a rotating machinery has more

than one faulty bearing and there is a considerable difference among their energy

levels. When the level of noise is not so significant to dominate the modified

signal, the information associated to the defect with very low level of energy,

which was previously masked by the high level of energy of other defect signals,

can be extracted more effectively.

3.3. Mathematical interpretation of SAM

The Fourier series of a periodic signal x(t) with zero mean value can be

written as follows:

x(t) =
q

∑
i=1

Di sin(ωit + φi) (10)

where D is known as Fourier coefficient and q is length of x.

The Hilbert transform of x(t) is defined by an integral transform:

H{x(t)} = π−1 ∫
∞

−∞

x(τ)
τ − t dτ (11)

which shifts the phase of each element of the Fourier series in Eq. 10 by -90°,

therefore

H{x(t)} =
q

∑
i=1

Di cos(ωit + φi) (12)

As a result, the squared envelope or the norm of the analytic signal is cal-

culated as follows:

x(t)2 +H{x(t)}2 =
q

∑
i=1

q

∑
j=1

DiDj cos ((ωi − ωj)t + φi − φj) (13)

which can be rewritten in the equivalent form:

x(t)2 +H{x(t)}2 =
q

∑
i=1

q

∑
j=1

DiDj cos (φi − φj) cos ((ωi − ωj)t)

−
q

∑
i=1

q

∑
j=1

DiDj sin (φi − φj) sin ((ωi − ωj)t)
(14)

As the modified signal xm, given by Eq. 6, is constructed by the original

phase and the modified magnitude of the signal x(t), similarly to Eq. 10 it can

be represented by

xm(t, n) =
q

∑
i=1

Dn
i sin(ωit + φi) (15)

14



So its analytic signal can be also computed by

xm(t, n)2 +H{xm(t, n)}2 =
q

∑
i=1

q

∑
j=1

Dn
i D

n
j cos (φi − φj) cos ((ωi − ωj)t)

−
q

∑
i=1

q

∑
j=1

Dn
i D

n
j sin (φi − φj) sin ((ωi − ωj)t)

(16)

Consequently, SESs of modified signals are calculated as

SES(fk, n) = (2−δ(k))((
q−k

∑
r=1

Dn
rD

n
r+k cos(φk−φk+r))

2

+(
q−k

∑
r=1

Dn
rD

n
r+k sin(φk−φk+r))

2

)
1
2

(17)

where fk = ωk/2π, k = 0, ..., q − 1 and δ is defined as

δ(k) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if k = 0

0 if k ≠ 0

Assuming a (carrier) wave c(t) = C cos(ωct + φc) is modulated by a (mod-

ulation) wave m(t) = M cos(ωmt + φm). The spectrum of the resultant signal

contains a peak at ωc with two sidebands at ωc +ωm and ωc −ωm. In addition,

the phases at ωc, ωc +ωm and ωc −ωm are φc, φc +φm and φc −φm respectively.

Whenever in Eq. 14 (or Eq. 16) ωi or ωj is equal to ωc and ωi −ωj = ωm, the

value of φi − φj is equal to φm and DiDj (or Dn
i D

n
j ) is non-zero and positive.

On the other hand, when ωi − ωj ≠ ωm the product DiDj (or Dn
i D

n
j ), when

there is no noise, is equal to zero. Even in presence of noise in which the value

DiDj (or Dn
i D

n
j ) is not equal to zero, the phase difference φi − φj is not equal

to φm any more and will change randomly from sample to sample. As a result,

for each specific component of the SES of the raw or modified signals in Eq. 17

(fk = ωi−ωj

2π
), the summation of corresponding Fourier series coefficient which

are also equivalent to the amplitude of each frequency element in the SES, will

generally approach zero by utilizing a sufficient number of samples and a suitable

range for n.

To conclude, Eq. 17 shows that the mathematical background is the same

for the classical SES and the proposed SESs of modified signals in this paper.

Another point about SES which is worth mentioning here is that, based on

Eq. 17 and the above explanation, two parts are responsible for the amplitude
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of each frequency component of the SES. Magnitude of spectral lines of the

signal D, has the first contribution by DiDj as the sidebands are spaced at ωm

around each ωc. The second contribution is by phase in terms of modulation

frequency (cos(φm) and sin(φm)). From this point of view, CPW only takes

advantage of the signature of modulation in the phase of a signal. On the other

hand, the influence of magnitude and phase are considered in the SES of a raw

signal simultaneously. Similarly, the proposed method uses the effect of both

parts but manipulates the magnitude spectrum while keeping the signature of

modulation in the phase unchanged. This is advantageous since the positive role

of magnitude spectra is not discarded like in CPW. On the other hand, contrary

to the SES of raw signals, its negative role, i.e. large peaks in the magnitude

spectra from exogenous sources, is moderated.

3.4. Practical consideration for selecting the limits of MO

To implement SAM, the last step is to select the limits of MO. For MO ⩾ 0

no modulation source which already does not exist in x(t) will be added into

xm(t, n). In other words, no undesirable and false peak will be generated in

the SESs because the signals have similar phases and also no new peak is added

to magnitude spectra of modified signals, only existing peaks in the magnitude

spectrum of raw signal are given different weights (see Eq. 17). Thus, there is no

theoretical restriction for choosing upper limit of MO. However, it is reasonable

to avoid very high values of b, since only a few large peaks, mostly not linked

to REBs signals, will then dominate the magnitude spectrum and masks other

components of the signal.

On the other hand, new false components will be added to SESs of modified

signals for very low and negative values of MOs. Because very low amplitude

components in the magnitude spectrum of raw signal now dominate the mag-

nitude spectra of modified signals and at one point the adverse effect of these

newly generated peaks (Dn
i D

n
j ) cannot be removed even by the randomness of

φi − φj (see Eq. 17); therefore, new false components begin to emerge in the

SESs of modified signals.
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For practical reason and in order to keep the approach as general as possible

for REBs diagnosis, the values of -0.5 and 1.5 for a and b are suggested. These

quantities are recommended intuitively, and their validity will be examined in

the following section.

Additionally, a simple yet effective approach is proposed to find the lowest

acceptable value of MO. This point will be called critical point since false peaks

in the SESs of modified signals begin to appear for lower values than this point.

As all the SESs are normalized between 0 and 1 it can be deduced that the

mean value of normalized SES of a signal related to noise will be very high.

The reason is that many components in the normalized SES of noise are equal

to one or have very high values. In contrast, presence of peaks in a normalized

SES will reduce its mean value. As the value of MO decreases the effect of noise

will gradually growth and at the critical point the modified signal is completely

noisy and therefore has the highest mean. For lower MO than critical point,

false peaks start to emerge in the SESs and the mean value of normalized SESs

decreases subsequently. This characteristic of normalized SESs could be used to

find the minimum acceptable value of negative MOs. In fact, the critical point

is revealed as a maximum in a mean-MO plot.

4. Results and discussion

This section exemplifies SAM for diagnostics of rolling element bearings on

six real case data. The first five experimens are selected from CWRU bearings

data set [24]. The last application referes to the data recorded under variable

operating conditions, available as supplementary material of Ref. [25].

The effect of various ranges of MO was discussed in subsection 3.2 and

practical consideration for their selection has been given in subsection 3.4. The

recommended values of -0.5 and 1.5 for lower (a) and upper (b) limits of MOs

will be employed for all cases and the effectiveness of these suggestions will also

be discussed.

Each test case is presented with a particular purpose: in case 1, the capa-
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bility of the method in presence of multiple defects is shown. Also, a detailed

explanation is given regarding its performance. The effect of Electro Magnetic

Interference (EMI) is studied in case 2, where the SES of the raw signal and

CPW provide negative and positive diagnostic outcome respectively. In con-

trast to case 2, in case 3 the SES of the raw signal contains the defect signature

but CPW erases the defect signal. In case 4, neither SES of the raw signal nor

CPW include valuable diagnostic information. Case 5 shows that SAM can be

also used to deal with signal contaminated with highly impulsive noise. Case

6 presents the performance of SAM while signals are acquired under variable

regime.

As it was mentioned the proposed method includes the SES of raw and

CPW signals; therefore, its results are automatically compared with these two

approaches. Furthermore, the first five cases are chosen from CWRU data set

which has been widely examined in various papers. For instance, a benchmark

study by Smith and Randall [22] investigated all the signals in this data set

and CPW, as a subcase of the proposed technique, was shown to be the most

successful method for diagnosis. Case 1 is also investigated in Ref. [5] by using

the Autogram. The result of the spectral correlation for case 6 and an identical

data to case 1 is given in Ref. [11]. As a result, a comparison with other

techniques is only provided for case 4 which is also the most difficult case.

4.1. Case 1

For this example, record 275 DE of CWRU is utilized. The defected bearing

with seeded inner race fault is located on the fan-end of the test rig. The

transducer acquires the accelerations from the drive-end so that the transmitted

signal attenuates through the apparatus, which makes it difficult to investigate

the defect signature. Moreover, the unexpected ball pass frequency of inner race

(BPFI) for drive-end in addition to its sidebands are also present in the SES,

which might be related to the misalignment of the drive-end bearing and not to

a defected bearing [11].

All things considered, this record is an interesting and challenging case to
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Figure 3: Case 1: 275 DE, Spectral Amplitude Modulation (SAM) (a) 3D plot (b) Above

view (c) View along the MO-axis (MSES)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Case 1: Spectral coherence
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evaluate the performance of each novel bearing diagnostic technique, such as

the proposed SAM.

The outcome of the proposed method, is illustrated with a three-dimensional

graph in Fig. 3(a) where the x, y and z axis represent cyclic frequency, MO and

normalized amplitude respectively, i.e. cascades of normalized SES for modified

signals generated by varying n. As already stated, the values of MO ranges

from -0.5 to 1.5 and the increment of 0.1 is utilized in this paper. Furthermore,

before normalization of SES/LSES the first 3 Hertz which mainly includes large

peaks are dismissed to avoid their adverse effect.

Fig. 3(b) displays the 2D view of Fig. 3(a) , where the colors are propor-

tional to the normalized amplitude values. The variation of each cyclic fre-

quency intensity based on the MO values can be followed more clearly in this

figure. Moreover, the MO value in which a specific cyclic frequency reaches its

maximum could be considered as an indicator of energy of carrier frequencies

associated to that cyclic frequency.

Fig. 3(c) depicts the view along the y-axis (MO) of Fig. 3(a). In fact, this

plot shows the maximum normalized amplitude value of each cyclic frequency,

which will be called “Maximum Squared Envelope Spectrum (MSES)”. MSES

could be considered as a useful diagnostic tool since one cyclic frequency might

be the largest peak in the SES for a certain MO, conversely does not exist for

some other MO but this plot displays the entire cyclic frequencies of a signal

just in a single figure.

For this case, the shaft frequency (frot), BPFI of fan-end (BPFI-F) and

BPFI of drive-end (BPFI-D) bearings are equal to 29.5 Hz, 146.1 Hz and 159.9

Hz respectively. Both damage frequencies in addition to the shaft frequency and

its harmonics can be noticed in Fig. 3(a-c) and in fact, all the cyclic frequencies

related to the signal are revealed. This is a great advantage of this method

over other approaches which try to find a single effective frequency band for

demodulation.

Based on the result presented in Fig. 3, the BPFI-F has high values for MO

from -0.5 to 0, with a maximum at -0.4. On the other hand, the BPFI-D is
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the dominant frequency in the SES for MO of 0.5 and 0.6; also, it has high

values throughout -0.5 to 1.1. As the maximum value of BPFI-F is achieved

for lower MO compared to the BPFI-D, it indicates that the signal from the

fan-end bearing has lower energy level than the drive-end bearing signal. This

deduction is in good agreement with the fact that the transducer is positioned

near the drive-end bearing and far from the fan-end bearing.

In Fig. 3(a) and (b) the normalized amplitude will not change in some range

against different MO. This phenomenon happens because for different ranges of

MO different frequency bands will become the main contributor to the corre-

sponding modified signal. Therefore, the cyclic frequency related to that specific

frequency band will become the most dominant peak in SAM.

In order to have a better understanding of carrier frequencies related to each

cyclic frequency, particularly the BPFI-F and BPFI-D, the spectral coherence

(normalized version of Spectral Correlation (SC)) computed by using Fast-SC

algorithm [11] is visible in Fig. 4. Several carrier frequencies are responsible

for the BPFI-F (with nominal value of 146.1 Hz) which makes it difficult to

extract all parts of this defect signal. Even knowing the exact carrier frequencies,

they correspond to a series of filtering processes for multiple frequency bands

and central frequencies. The carrier frequencies related to the BPFI-D are

mainly concentrated in the mid-range. Although, this band is not completely

continuous and in this range some carrier frequencies are still linked to the

BPFI-F.

To investigate in more details the performance of the method and its diag-

nostic capabilities, the SES of the modified signals for MO equal to 1, 0, -0.4,

0.5 and 1.5 are depicted in Fig. 5(a-e) respectively. In addition, the magnitude

spectra of the modified signals are illustrated in Fig. 6(a-e).

The SES of the raw signal and its magnitude spectrum (MO = 1) are shown

in Fig. 5(a) and Fig. 6(a). The BPFI-F and BPFI-D and their harmonics are

present in the SES but they are not the most dominant frequencies and the

maximum amplitude in the SES corresponds to the shaft frequency. It was

discussed that the resonance frequencies of BPFI-D have a high level of energy,
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Figure 5: Case 1: SES of the modified signals for (a) MO = 1 (raw signal) (b) MO = 0

(CPW) (c) MO = −0.4 (d) MO = 0.5 (e) MO = 1.5
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which can be spotted around 3200 Hz in Fig. 6(a). Two resonance frequency

bands around 500 Hz and 1100 Hz have also sizable magnitudes but amplitudes

of other frequencies are very small and negligible. Another observation is that

the discrete frequencies which are amplified by the resonances are present in the

magnitude spectrum.

The SES and spectrum of the acceleration signal after CPW are depicted

in Fig. 5(b) and Fig. 6(b) respectively. As expected, the magnitude of whole

frequency range is one. Consequently, the dominance of the shaft frequency is

reduced and the two ball pass frequencies as well as their sidebands are now

more noticeable, compared to the SES of the raw signal.

It should be noted that sidebands related to the BPFI-F are spaced at the

shaft frequency. But the signal related to the drive-end defect is modulated at

twice the rotation speed, thus sidebands of BPFI-D are spaced at this frequency.

This might be the reason behind the large magnitude of the second harmonic

of the shaft frequency in the SES.

The SES and magnitude spectra for MO equal to -0.4 and 0.5 are shown in

Fig. 5(c-d) and Fig. 6(c-d). As it was discussed, for these two values the BPFI-F

and BPFI-D are the most dominant frequencies in the SES of the corresponding

modified signals.

Fig. 5(c) clearly reveals three harmonics of the BPFI-F as well as the shaft

frequency and the resultant sidebands. Since MO is negative, the dominant

resonance frequencies which are related to the BPFI-D and shaft frequency

are canceled (see Fig. 6(a) and (c)). As a result, amplitude of the BPFI-D is

decreased in the SES (see Fig. 5(a) and (c)). Moreover, the influence of other

carrier frequencies with negligible amplitude, mainly including the signature of

the fan-end bearing defect signal (see Fig. 4 and Fig. 6(c)), are enhanced.

For MO equal to 0.5, the SES is displayed in Fig. 5(d). Three harmonics of

BPFI-D, accompanied by their sidebands which are clearly spaced at twice and

forth of the shaft frequency, are highlighted. As the value of MO is positive,

the overall behavior of the magnitude spectrum (Fig. 6(d)) is comparable to the

magnitude spectrum of the raw signal (Fig. 6(a)). Furthermore, the value of
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MO is lower than one; hence, the effect of the frequencies with lower amplitude,

which in this case also include the resonance frequencies around 3200 Hz and

linked to the BPFI-D (see Fig. 4), is improved and dominates the time signal.

Furthermore, the effect of large discrete frequencies in the same range is weak-

ened, which reduces the amplitudes of the shaft frequency and BPFI-F in the

SES.

It can be noticed that in Fig. 3(a) and (b), in addition to the absolute

maximum of the BPFI-F for MO = −0.4, the value of BPFI-F has another

relative maximum at 1.5, i.e. it starts to increase again for MO greater than

1. The SES of the modified signal for this value of MO is shown in Fig. 5(e).

Although the shaft frequency has the largest amplitude, presence of the defect

frequency BPFI-F in addition to its harmonics provides valuable diagnostic

information. The corresponding time signal is highly modulated by the rotation

of the shaft; therefore, the shaft frequency and the subsequent sidebands around

BPFI-F and its harmonics can be identified evidently.

The magnitude spectrum of the modified signal for MO = 1.5 is displayed

in Fig. 6(e). Since MO > 1, frequencies with large amplitude dominate the

spectrum. These frequencies mainly consist of discrete frequencies enhanced by

the two resonance frequency bands adjacent to 500 Hz and 3200 Hz. As it was

explained, these discrete frequencies are mostly related to the shaft frequency

but also contain symptoms of BPFI-D (see Fig. 4).

Comparison of SES depicted in Fig. 5(c) and (e) discloses two dissimilar

patterns for the shaft frequency and the defect frequency BPFI-F. This is at-

tributed to the contribution of two phenomena with different characteristics in

the defect signal. The signal associated with the fan-end bearing defect includes

two main parts, one cyclostationary and the other periodic. The cyclostation-

ary part, presented by multiple flows of energy with very low magnitude in the

spectrum (see Fig. 4 and Fig. 6(c)), has been extracted by setting the value of

MO to -0.4. On the other hand, the periodic part, with multiple discrete fre-

quencies in the spectrum, has been obtained by setting the value of MO to 1.5.

This is also the reason why BPFI-F and the shaft frequency have two relative
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maxima in the SAM.

As it was mentioned, there is an overlap between carrier frequencies related

to BPFI-D and BPFI-F around 3200 Hz. However, this frequency band is still

selected for MO = 1.5 but there is no sign of BPFI-D and only BPFI-F exists

in the SES. It is due to the fact that the proposed method mostly separate

components of the signal based on the energy levels of their carrier frequencies;

therefore, the spectral lines linked to the BPFI-F which have greater amplitudes

are effectively separated from carrier frequencies related to the BPFI-D in this

frequency range.

4.2. Case 2

The second case will investigate data 318 BA with an outer race defect on

the fan-end bearing. The acceleration signal, and a zoomed portion are depicted

in Fig. 7(a). The signal is not impulsive and the defect signature neither can

be spotted in the time signal nor in the SES of the raw signal (Fig. 7(b)), since

the BPFO (88.2 Hz) is not present in the SES. The most dominant frequency

is associated to the cyclic frequency 114.1 Hz and the shaft frequency (frot =
28.8 Hz) is also detectable in the SES. The magnitude spectrum of the raw

signal is illustrated in Fig. 8(a). The spectrum is contaminated with some

discrete frequency “noise” which has very high amplitudes. The source of this

noise is not completely evident; however, it might be a result of strong Electro-

Magnetic Interference (EMI) from Variable Frequency Drive (VFD). EMI could

be explained as “any unwanted signal that is either radiated or conducted to

electronic equipment and negatively affects the performance of the equipment”

[26].

To investigate this assumption, a zoomed portion of Fig. 8(a) around the

resonance frequency 3644 Hz and in logarithmic scale is depicted in Fig. 8(b).

In detail, Ref. [26] explains the frequency representation of EMI interferences

from a VFD with Pulse-Width Modulated (PWM) output. PWM waveforms

contain switching frequency of the VFD and its harmonics, modulation fre-

quency which are also called “pseudo line frequency” and sidebands around the
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carrier harmonics spaced at pseudo line frequency [26]. In Fig. 8(b) the carrier

(switching) frequency of the VFD (3644 Hz, denoted by a orange arrow) and

sidebands spaced at pseudo line frequency of 114.1 Hz (fEMI, denoted by the

red arrows) around the carrier frequency can be spotted distinctly.

This carrier frequency is the absolute maximum of the spectrum and has

considerable amplitude comparing to other spectral lines. As a result, all the

other frequencies of the signal, in particular the frequency band comprising the

bearing defect signal, are masked by this interference.

The 3D and 2D presentations of the proposed method (SAM) result are

shown in Fig. 9(a) and (b) and MSES is depicted in Fig. 9(c). It can be noticed

from Fig. 9(a) and (b) that throughout the −0.5 to 0.4 values of MO the BPFI is

the dominant cyclic frequency. The SES of the modified signal and its magnitude

spectrum for MO equal to 0.4 are displayed in Fig. 10(a) and (b) respectively.

Since the value of MO is smaller than 1, the effect of frequencies related to the

EMI are lessened. In contrast, other carrier frequencies containing the defect

signal are enhanced (see the difference between Fig. 8(a) and Fig. 10(b)) and

now the presence of BPFO and its harmonic combined with the shaft frequency

provide a successful diagnosis of the bearing, though the frequency band linked

to the EMI is still part of the spectrum. It should be noted that the BPFO

is the largest peak in the SES for MO from -0.5 to 0.4; therefore, CPW as a

specific case of the proposed method for MO = 0 will also detect the presence

of the defect. Although, the result is presented for MO = 0.4 to attain a higher

SNR.

For MO > 0.5 the EMI signal will completely mask the bearing defect signal.

As a consequence, the pseudo line frequency (modulation frequency) of 114.1 Hz

which is produced by the VFD will dominate the SES and absolutely eradicate

the signature of the defect frequency.

4.3. Case 3

The data 202 DE will be examined as the third case. The outer race of the

drive-end bearing is reported to be defected with nominal BPFO = 106.9 Hz.
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Figure 9: Case 2: SAM (a) 3D plot (b) Above view (c) View along the MO-axis (MSES)
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Figure 10: Case 2 (a) SES and (b) Magnitude spectrum of the modified signal for MO = 0.4

The bearing is partially diagnoseable by using the raw signal’s SES and fast

Kurtogram but CPW is not able to extract the defect signal [22].

The SAM is depicted in Fig. 11(a) where the BPFO is present for MO from

0.4 to 1.5. For MO < 0, the SES are almost flat and none of the cyclic frequencies

has considerable magnitude. It can be concluded that, first, frequencies with

very low magnitudes, which are magnified by the negative values of MO, are

related to noise and not to the carrier frequencies of the bearing defect; therefore,

noise has overwhelmed the modified signals. Second, the time signal contains

some non-Gaussian and impulsive noise which dominates the modified time

signals.

Fig. 11(b) shows the MSES which does not provide valuable diagnostic in-

formation like SAM. Since the SES for MO lower than 0 do not contain large

peaks, when the SES are normalized between 0 and 1, most of the cyclic fre-

quencies will have high values close to 1. As a result, SES for lower values of

MO will mask other SES which may includes valuable diagnostic information.

Thus, in this case, the SES for MO < 0.5 could be neglected. The MSES for
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Figure 11: Case 3: 202 DE (a) SAM (b) MSES for −0.5 ⩽ MO ⩽ 1.5 (c) MSES for 0.5 ⩽ MO ⩽
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0.5 ⩽ MO ⩽ 1.5 is depicted in Fig. 11(c) and enhancement of the result, in

comparison to Fig. 11(b), can be noticed evidently.

The SES of modified signals for different MO are shown in Fig. 12. SES

of the raw signal in Fig. 12(a) reveals the defect frequency. For MO = 0, the

SES is exhibited in Fig. 12(b). Since the value of MO is decreased, the SNR

is increased and now the defect frequency is completely eliminated. As it was

mentioned in section 3, this is one of the main problems related to CPW. The

highest density of BPFO in the SAM (Fig. 11(a)) is achieved for MO = 0.6 and

the corresponding SES can be seen in Fig. 12(c). Moreover, for this case the

BPFI and Fundamental Train Frequency (FTF) are also present for MO from

0.5 to 1.5 and their highest values are achieved for MO = 1.3 (Fig. 12(d)).

4.4. Case 4

In what follows, record 199 BA with defected outer race with nominal BPFO

= 105.2 Hz, will be studied. Based on the study in Ref. [22], the bearing is

not diagnoseable by calculating SES of the raw and signal after CPW but fast

Kurtogram is partially successful to reveal the defect frequency.

SAM is depicted in Fig. 13(a) where the BPFO and its second harmonic

is visible for 0.1 ⩽ MO ⩽ 0.5, with the highest value assigned to MO = 0.3.

MSES is presented in Fig. 13(b) and the BPFO is also detectable in this figure.

However, the shaft frequency and its second harmonics, which are present for

MO > 0 in Fig. 13(a), are masked by high spectral lines in the low frequency

range. Similar to previous case, this problem can be solved by considering only

SESs with MO > 0. The SAM obtained by replacing SES by LSES is shown in

Fig. 13(c). The aforementioned problem in the low frequency range is solved

but the log-envelope has worsened the SNR of the modified signals and now the

BPFI is barely detectable in the SAM. Therefore, as it was discussed in section 3,

it is advantageous to employ LSES only when a signal contains non-periodic and

highly impulsive contents.

The SES of signals for MO equal to 1, 0 and 0.3 are displayed in Fig. 14.

The SES of raw signal in Fig. 14(a) does not provide a positive diagnosis as
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Figure 13: Case 4: 199 BA (a) SAM (b) MSES (c) log-SAM
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the amplitude of BPFO is insignificant and the shaft frequency and its second

harmonics are the largest peaks in the SES. Fig. 14(b) demonstrates the SES

of the signal after CPW. Small peaks can be detected at BPFO and 2×BPFO.

This result is inconsistent with the diagnosis outcome of Ref. [22]. This is as a

consequence of using SES2 instead of SES in this paper.

For MO = 0.3, the SES of modified signal is presented in Fig. 14(c) where the

BPFO is the dominant frequency. Consequently, the defect on the outer race is

effectively detected by using the proposed method while two other approaches

(SES of the raw and CPW signals) fail to highlight the bearing characteristic

frequency.

For the sake of comparison, the fast Kurtogram and Autogram for this dif-

ficult case are depicted in Fig. 15(a) and (b). SESs of frequency bands selected

by these methods are also presented in Fig. 15(c) and (d). The results show

that both methods fail to diagnose the fault as the defect signal is weak (fast

Kurtogrma failure is in contrast to the diagnosis report in Ref. [22]).

Upper Autogram is a more sensitive version of Autogram to repetitive tran-

sients in presence of noise. Combined Squared Envelope Spectrum (CSES) is

also proposed in Ref. [5] to extract all the modulation sources in a signal.

Combination of CSES and upper Autogram was found to be more effective for

diagnosis of REBs [6]. The CSES by using upper Autogram is depicted in

Fig. 16 and the BPFO can be hardly spotted for levels 3 to 5. Additionally, fast

spectral correlation [11] is applied on this data. Fig. 17 displays the spectral

coherence and Enhanced Envelope Spectrum (EES). The BPFO (105.2 Hz) is

present in the EES but its amplitude is low. To enhance the result the signal

should be filtered for the frequency band linked to the defect frequency and

highlighted by spectral coherence. But this is challenging as the frequency band

should be selected manually and, for this case, this range is hardly noticeable

(see Fig. 17(a)).
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Figure 15: Case 4 (a) Fast Kurtogram (b) Autogram; squared envelope spectrum (SES) of

the signal related to node with highest kurtosis in (c) Fast Kurtogram (d) Autogram
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Figure 16: Case 4: Combined Squared Envelope Spectrum (CSES)
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Figure 17: Case 4 (a) Fast Spectral Coherence (b) Enhanced Envelope Spectrum (EES)

 
 

 

 

 

 

 

 

 

 

Figure 18: Case 5: The acceleration signal of record 229 DE

4.5. Case 5

In this part, data 229 DE related to a bearing with a reported defected ball

is examined (BSF = 65 Hz). The depicted time signal in Fig. 18 is highly non-

stationary and includes sizeable impulsive and random amplitude modulated

contents. All the three approaches in Ref. [22] were not able to highlight the

defect frequency and the bearing diagnosis was categorized as negative.

The SAM, by using SES, is presented in Fig. 19(a). A high density of the

defect frequency and its continuity for a range of MO can be noticed, but the

considerable values of normalized amplitudes for adjacent frequencies make the
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Figure 19: Case 5: 229 DE (a) SAM (b) log-SAM (c) log-MSES
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Figure 20: Case 6: Shaft rotational speed

diagnosis unreliable. The large pulses in the signal are responsible for the SES

deterioration. To eliminate the destructive effect of these impulses, the SES is

substituted by LSES. The result is demonstrated in Fig. 19(b) and now the FTF,

BSF and 2ÖBSF can be clearly spotted. In addition, as a typical characteristic

of rolling elements (balls) defects, the second (even) harmonic of the BSF (2×65

Hz) is larger than the first (odd) harmonic. This modulation frequency is present

for −0.5 ⩽ MO ⩽ 0.5 and it is the largest peak in the LSES for MO equal to -0.3

and -0.4. Moreover, the log-MSES is depicted in Fig. 19(c) which provides a

comprehensive and valuable map of the signal’s cyclic frequencies.

It is worth noting that the impulsive components of the signal are not com-

pletely random peaks and actually, they are impulse responses spaced at mul-

tiples of BSF. Also, it can be seen in Fig. 19(b) and (c) that the harmonics of

BSF are smeared, which is a consequence of random amplitude modulation of

the impulsive signal related to the ball defect.

Another interesting observation is that, in addition to the BSF, both the

BPFI and BPFO, related to the same bearing (the latter with sidebands spaced

at the shaft frequency), can also be detected in Fig. 19(c). Since these two

frequencies are discrete, it indicates that their corresponding signals are related

to the stationary part of the raw signal and, in contrast to the signal associated

to the ball defect, their amplitudes are not randomly modulated.
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Figure 21: Case 6 (a) SAM (b) MSES

4.6. Case 6

For the last case the objective is to investigate the performance of the pro-

posed method for diagnosis of a REB working under variable speed condition.

In contrast to previously studied data in this paper, the time record is provided

by Ref. [25]. Data are available for three different defective conditions: outer

race, inner race and roller. Here, the signal related to the faulty inner race,

which is the most difficult case, is examined. The acceleration signal is recorded

for 21 seconds with sampling frequency 50 kHz and the shaft rotational speed

varies in the range of 9.9 to 15.2 Hz (Fig. 20). The detailed explanation of the

experiment and test rig are also given in Ref. [25].

Conventional bearings fault diagnosis techniques are developed by assum-

ing constant shaft speed during the operations, i.e. the impulse generated by

bearings faults are almost uniformly spaced in time. Accordingly, they are not

directly applicable to variable speed conditions as the time interval between

two successive impulses is a function of the shaft rotational speed. To be able

to utilize these methods, a primary pre-processing step is required. For this
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Figure 22: Case 6: SES of the modified signals for (a) MO = 1 (raw signal) (b) MO = 0.2

purpose, order tracking [1] is employed to map the recorded signal from time

domain to angular domain, i.e. by using a tachometer signal the vibration signal

is resampled at uniform increment of the shaft angular rotation.

The proposed method is applied on the resampled signal and the SAM and

MSES (the x axis is harmonics or “orders” of shaft speed, Orot) are exhibited in

Fig. 21(a) and (b). The Ball Pass Order Inner race (BPOI) is clearly detectable

for −0.5 ⩽ MO ⩽ 0.7 in Fig. 21(a) and for MO equal to -0.5, -0.4 and 0.2 the

BPOI has its highest density and also it is the largest peak in the SES of the

corresponding modified signals. In addition, it can be noticed that bearing

defect signal is the only component of the signal since only BPOI, shaft order

and sidebands around BPOI (spaced at the shaft order) are present.

The SES and magnitude spectrum of the raw signal (MO = 1) are depicted

in Fig. 22(a) and Fig. 23(a) respectively. Although the BPOI is present, the

amplitude is low and harmonics of the shaft order dominates the SES. Similarly,

the discrete frequencies in the magnitude spectrum are related to the harmonics

of the shaft order.

The SES and magnitude spectrum of the modified signal for MO = 0.2 (the
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Figure 23: Case 6: Magnitude spectra of the modified signals for (a) MO = 1 (raw signal) (b)

MO = 0.2

maximum value of MO in which the BPOI is equal to one) are presented in

Fig. 22(b) and Fig. 23(b). In contrast to the SES of raw signal, first and second

harmonics of the BPOI along with their sidebands are evidently detectable.

The reason behind the improvement can be recognized by comparing Fig. 23(a)

and (b). As the MO is smaller than one, the effect of frequencies with sizeable

magnitude related to the shaft frequency is decreased. On the other hand, the

influence of the resonance frequencies containing the information of the bearing

defect signal is boosted. It is interesting that this worthwhile diagnostic outcome

is achieved by reducing the effect of discrete frequencies and not by removing

them.

4.7. Summarization of SAM performance

The performance of SAM and the comparison with other techniques are

summarize as follows:

� The method is simple and fast. For instance, for cases 1, 3 and 6 with
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120000, 480000 and 1 million samples the computational time by a laptop

with a core i7 processor was 1.3, 4.3 and 7 seconds respectively

� No parameter should be set in advance based on the characteristic of

system

� CPW and SES of raw signals are two subclasses of SAM. As a result,

the performance of SAM is better than each of them individually. Case 4

shows that SAM is also successful while both CPW and SES of raw signal

fail, so the overall performance of SAM is better than these two methods

combined

� In contrast to the methods which try to find a proper frequency band for

demodulation such as fast Kurtogram or Protrugram:

– There is no need to multiple filtering process and further computation

of any indicator such as kurtosis to find the most impulsive band

– All modulation sources are revealed. Therefore, presence of multiple

defects might not be neglected

� Log-SAM provides a robust technique for diagnosis of REBs in presence

of highly impulsive (non-Gaussian) noise

� The completely original contribution of SAM is that different components

of a signal are automatically separated based on their energy levels. These

components may also be distributed in different frequency bands. There-

fore, SAM could be considered as a complementary to methods that de-

compose a signal for different center frequencies and frequency bands

� Although CSA includes a powerful family of approaches to extract modula-

tion frequencies, unlike SAM the proper frequency band for demodulation

should be set manually which is sometimes challenging
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Figure 24: Mean-MO plots for six cases

4.8. Effect of the selected range for MO

By comparing the results for these six cases, it can be noticed that the most

valuable diagnostic information are revealed by 0 ⩽ MO ⩽ 1.

In addition, as it was discussed MO > 1 boost the more powerful parts of a

signal which are represented by larger peaks in its magnitude spectrum. Those

are not usually associated to bearings signals which are often weaker than signals

generated by other parts of a machinery. Only for case 3 the 1 < MO ⩽ 1.5 was

able to enhance the bearing signal. For MO > 1.5 (results are not depicted

here) the defect frequencies are not maximized in neither case. It was discussed

that MO > 1 does not generate any false peak in the SESs; therefore, there is

no actual limitation to select even a very large value. But as it is shown by

the results in this section, using MO > 1 does not provide significant practical

benefit due to lower energy level of bearings signals. As a result, choosing 1.5

as a not very large upper limit is suitable for practical purpose.

Negative MOs larger than -0.5 have enhanced the weaker defect signals for

cases 1, 2, 5 and 6 as the effect of magnitude spectra are reversed. On the
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Figure 25: SAM for case 2 (−1.5 ⩽ MO ⩽ 0)

other hand, for case 4 and 5 background noise has dominated the modified

signals. Although for some low values of MO the SESs do not include any

useful information, this does not hinder the effectiveness of SAM at all, as it

presents the SESs for all values of MOs. Moreover, no false peak has been

produced by negative MOs as low as -0.5 for either case. To further investigate

this matter, mean-MO plots are depicted in Fig. 24 for all cases. Bases on

the proposed technique to find the lower limit of MO in section 3, the lowest

acceptable values of MO (value of MO related to the maximum in a mean-MO

plot) for cases 1 to 6 are -0.6, -0.8, -0.4, -0.5, -0.4 and -0.6 respectively. This

shows that selection of -0.5 was practically effectual for REBs diagnosis. Also,

SAM for case 2, for a different range of MO (−1.5 ⩽ MO ⩽ 0) is shown in Fig. 25

to exemplify the emergence of false peaks for MO < −0.8.

To conclude, all things considered, the proposed −0.5 ⩽ MO ⩽ 1.5 was shown

to be an appropriate range for practical applications. Wider arbitrary ranges

could be also employed but care must be taken for selection of the lower limit.

5. Conclusion

This paper introduces a new empirical method for rolling element bearings

diagnosis which employs a nonlinear filtering process to separate components

of a signal. Since it is achieved automatically, it offers a shortcut to traditional

techniques which finds a single effective frequency band for demodulation.
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The proposed method, the Spectral Amplitude Modulation (SAM), is in-

spired by and relies on the fact that the phase of a signal contains more infor-

mation than its magnitude. First, magnitude and phase of a signal are computed

by mean of Fourier transform. Afterwards, a series of signals, which are called

modified signals, are reconstructed by giving different weights (the Magnitude

Order (MO)) to the magnitude of the original signal, while keeping the same

phase as the original signal. Then, the squared envelope spectrum of each mod-

ified signal is calculated, and the outcomes are normalized and presented in a

three-dimensional graph. Moreover, LSES (Fourier transform of logarithm of

squared envelope signals) has been employed as a more robust alternative to

SES in presence of highly impulsive noise. Furthermore, physical and mathe-

matical interpretation of the method has been provided. It has been detailed

that, by setting different values of MO, components of a signal with different

energy levels are extracted. From a mathematical point of view, it has been

demonstrated how the effect of modulation on the phase and magnitude of a

signal is responsible for the amplitude of each spectral line in the SES.

Finally, the performance of SAM has been validated and examined thor-

oughly on six real cases collected from two different experimental setups. In

presence of multiple defects and also strong masking exogenous signals such

as Electro Magnetic Interference (EMI), the superior performance of SAM to

highlights all the modulation sources has been presented. In addition, it was

clarified that SES of raw and cepstrum pre-whited signals may overlook valu-

able diagnostic information. The proposed method combines the advantages of

these two techniques as it puts them in a unified and comprehensive concept, in

other words, these two techniques can be considered as two particular subsets

of SAM. Moreover, employing LSES provides an additional and effective tool to

cope with highly contaminated signals with impulsive noise which is common

in industrial application. The last case shows the high potential of SAM for

diagnosis of bearing when rotational speed of shaft is variable.
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External resource

The algorithm coded in Matlab is available on the following address: www.

?????.com
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