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Abstract—The paper presents a general framework valid
for high frequency excitation based position observer for low
speed sensorless control of synchronous reluctance machines. A
finite control set model predictive control technique is proposed
accordingly, exploiting the switching current ripple for position
estimation. Position error due to cross-saturation is inherently
accounted for. The proposed scheme is integrated with Adaptive
Projection vector for Position error estimation (APP) for high
speeds region through a simple fusion structure for smooth
transition. Performance of proposed technique is validated on
a 1.1 kW synchronous reluctance motor test bench.

Index Terms—Sensorless control, model predictive control,
synchronous reluctance machine

I. INTRODUCTION

Thanks to the saliency of synchronous reluctance (SyR) ma-
chine, the position and speed estimation without an encoder or
resolver becomes realizable. The fundamental wave excitation
approaches based on back-emf are robust at medium and high
speeds regions, but falter at low speeds and are unobservable
at standstill. To circumvent this, the fundamental excitation
scheme is usually supplemented with high frequency excitation
schemes for sustained operation in zero to low speeds region.

The high frequency excitation schemes can be broadly
classified into two categories: continuous and discontinuous
excitation. The continuous excitation pertains to the periodic
high frequency injection in the form of rotating or pulsating
signals in stationary or synchronous reference frames for low
speeds position estimation. A pulsating voltage injection along
d-axis in synchronous reference frame is reported in [1]–[3]
while rotating voltage injection in stationary reference frame
is reported in [4], [5]. Compensation of position error owing
to cross-saturation is addressed in [6]–[8]. To simplify the
demodulation stage and bandwidth constraints, square wave
voltage injection at close to switching frequency is explored
in [9]–[11]; however, their feasibility is challenged in high
inductance machines as the amplitude of injected voltage is a
limited resource.

Multiple works on discontinuous excitation schemes sans
periodic injection have been studied: [12], [13] proposes
a modified PWM patterns and over-sampling for INFORM

method, while [14] phase shifts PWM carrier waves to gener-
ate a rotating voltage at switching frequency. Intermittent test
voltage vector injection is proposed in [15], [16]. Alternatively,
finite control set model predictive control (FCS-MPC) assists
current derivatives/ripples based approach as the full dc-link
voltage appears across the motor terminals in a control period
due to absence of modulators. The authors of [17] use model
predictive current control and calculate the position error
signal from the back-emf component, which is inadequate for
low speeds operation. An optimization solver is used in [18]
for MPC based position estimation which has a demerit of high
steady-state error (> 10◦) under load, due to neglected effects
of saturation; the results obtained do not justify the computa-
tional effort. Predictive torque control is used in [19] where the
position error signal is computed in stationary reference frame;
additional angle compensation curve is used to compensate
for cross-saturation effects. The position error is observed to
be quite large in the bounds of ±20◦. Position estimation
in stationary reference frame with MPC is proposed in [20]
which, besides being computationally elaborate, overlooks the
impact of saturation and cross-saturation. Work [21] reports a
comprehensive review of high frequency injection techniques.

Dealing with the medium to high speed range, numerous
sensorless schemes based on fundamental excitation have been
reported in literature [22]–[24]. Active flux based sensorless

Fig. 1. Block diagram of the sensorless model predictive control scheme with
flux and position observer.



control is widely studied in [5], [8], [25]; however, it suffers
from instabilities at braking and very high speeds operation
as expounded in [26], [27]. An Adaptive Projection vector
for Position error estimation (APP) is proposed in [27] to
ensure stability in all operating points. Fusion methods for
smooth transitioning between the low and high speed models
are reported in [5] [8].

The previous conference work [28] proposed a deadbeat
FCS-MPC based sensorless control estimating position error
from the discrepancy in incremental flux estimation between
voltage and current models, for zero to low speeds region. In
this work, such FCS-MPC algorithm is reformulated within
the generalized context of projection vector framework, for the
first time for position error construction in the low speed re-
gion, upon its introduction for fundamental excitation schemes
[27]. Within such framework, the high frequency excitation
position observer is integrated with a fundamental excitation
scheme based on APP for high speeds region. The APP
scheme stand valid at very high speeds for flux weakening
and maximum torque per volt (MTPV) operations; however,
they are deemed out of scope for this paper.

The section II introduces the machine model, control system
notation and the model predictive control scheme with flux
observer. Section III and IV presents the main contributions
of the paper, summarized as follows:
• A general projection vector framework is developed for

zero to low speeds region position estimation based on
high frequency excitation. Its applicability to various
signal injection schemes, including FCS-MPC is shown
in section III.

• Accordingly, an injection-less scheme based on FCS-
MPC is developed which inherently accounts for satu-
ration and cross-saturation effects.

• In section IV, the proposed scheme is integrated with APP
for high speeds region with a speed-dependent fusion
coefficient for smooth transition.

• Parameter tuning guidelines are addressed for compati-
bility with plug & play and self-commissioning systems.

The section V presents the experimental validation of the
proposed injection-less scheme and the dynamic performance
on a 1.1 kW SyR motor test bench.

II. SENSORLESS CONTROL SYSTEM

The electrical rotor position is θ and the electrical angular
speed is ω = s θ where s is the differential operator d/dt.
Estimated vectors are represented by the superscript .̂ The
orthogonal rotational matrix is J = [ 0 −11 0 ] and I is the identity
matrix.

The machine model is expressed in coordinates of estimated
rotor reference frame, denoted by subscript d̂q, whose d-
axis is at θ̂ = θ − θ̃, where θ̃ is the position error. Real
space vectors will be used; for example, the stator current
in estimated rotor reference frame is id̂q = [id̂, iq̂]

T. Space
vectors in stationary reference frame are denoted by subscript
αβ. The block diagram illustrating an overview of motor
control scheme is shown in the Fig. 1.

Fig. 2. Experimentally obtained flux maps lookup table, Λ, of the SyR motor
under test: λdq = Λ(idq) = Li · idq

A. Mathematical Model of SyR Machine

The voltage equation of a SyR machine is expressed as

sλd̂q = vd̂q −Rsid̂q − ω̂ Jλd̂q (1)

where Rs is the stator resistance and λd̂q is the stator flux
linkage. The stator flux linkage and its time-derivative in terms
of the incremental inductance l and apparent inductance L
matrices in estimated reference frame are expressed as

λd̂q = eJθ̃ L e−Jθ̃ id̂q (2a)

sλd̂q = s
(

eJθ̃ λdq

)
= s θ̃ · Jλd̂q + eJθ̃ l s

(
e−Jθ̃ id̂q

)
(2b)

The components of inductance matrices are

l(idq) =

[
ld ldq
ldq lq

]
L(idq) =

[
Ld 0
0 Lq

]
(3)

where ld, lq represents the incremental inductance along direct
d and quadrature q-axis respectively while ldq is the cross-
saturation term. Apparent inductance are defined likewise. All
quantities are a function of idq . The electromagnetic torque is
given by

T =
3p

2
iT
d̂q

Jλd̂q (4)

where p is the number of pole pairs.

B. Hybrid Flux Observer

The flux observer is implemented in stator reference frame,
depicted in Fig. 4 and defined as

sλ̂αβ = vαβ −Rsiαβ +Gαβ

(
eJθ̂Li e−Jθ̂iαβ − λ̂αβ

)
(5)

whereGαβ is a 2×2 gain matrix and Li is the flux map lookup
tables (LUTs) based current model apparent inductance in
estimated rotor reference frame. State equation of flux observer
in the estimated rotor reference frame is given by

s λ̂d̂q = vd̂q −Rsid̂q − ω̂J λ̂d̂q +G
(
Li id̂q − λ̂d̂q

)
(6)

where the gain matrix G is

G = e−Jθ̂Gαβ eJθ̂ (7)



In this work, a diagonal gain matrix G = g I is used; hence,
the gain matrices are equivalent, G = Gαβ . The scalar value
g determines the cross-over frequency from the predominance
of current model - g rad/s or lower - to voltage model based
observer - g rad/s or higher.

Let Λ denote the flux map LUTs of the machine under
test λdq = Λ(idq), shown in the Fig. 2. It is experimentally
identified on a constant speed test-bench [29]. Accurate flux
maps are assumed, i.e., Λ̂ = Λ. Nevertheless, as machine
inductances vary with the operating point, and as id̂q 6= idq
under position error, the current model inductance Li deviates
from the real machine inductance L. The current model
apparent inductance is computed in real-time as

Li(id̂q) · id̂q = Λ(id̂q) (8)

Conversely, the real machine inductance L depends on the
operating point idq as in (9).

L(idq) · idq = Λ(idq)

=⇒ L(idq) · e−Jθ̃ id̂q = Λ(e−Jθ̃ id̂q) (9)

Comparison of the former two expressions highlight phe-
nomenon of position error induced inductance error. Lineariz-
ing (9) gives

L · (id̂q − θ̃J id̂q) = Λ(id̂q − θ̃ J id̂q)

≈ Λ(id̂q)− θ̃ l J id̂q (10)

This is equivalent to the first-order Taylor series approxima-
tion [30]. On simplification using (8), the inductance model
accounting parameter error (IMAP) is derived as

L ≈ Li + θ̃ (Li − l) J (11)

IMAP is introduced in [27] as improved inductance model.
Note that the components of Li are also denoted by the
superscript i. Unlike apparent inductance, the incremental
inductance is largely constant and invariant to small position
error, i.e., li ≈ l. The incremental inductance ld is computed
in real-time as

ld(id̂q) =
Λ(id̂ + δid, iq̂)−Λ(id̂, iq̂)

δid
(12)

where δid is a small value (≈ 10 mA). The other incremental
inductances are computed in a similar fashion.

C. Model Predictive Control Scheme

The key equations pertaining to a deadbeat type FCS-
MPC in estimated synchronous rotor reference frame d̂q are
presented in (13)-(15). Controlled variables are the flux linkage
components λd̂ and λq̂ . The superscript k denotes the discrete
kth time instant.

To account for the unit digital delay, the observed state
variable λ̂

k

d̂q is estimated for the k + 1th sampling instant
as

λ̂
k+1

d̂q = λ̂
k

d̂q + Ts

(
vk
d̂q
−Rsikd̂q − ω̂J λ̂

k

d̂q

)
(13)

where Ts is the sampling interval. This corresponds to the
voltage model block in Fig. 1. The voltage vk

d̂q
in (13) is

Fig. 3. Incremental saliency ld/lq of the 1.1 kW SyR machine under test: (a)
in idq current plane; (b) in λdq flux plane. Red curve is the MTPA trajectory.

computed from the measured DC link voltage, incorporating
dead-time compensation.

The deadbeat reference voltage v∗
d̂q

that drives the error to
zero at the next control cycle is given by

v∗
d̂q

= Rs i
k
d̂q

+
λ∗
d̂q
− λ̂

k+1

d̂q

Ts
+ ω̂ J λ̂

k+1

d̂q (14)

where λ∗dq is the reference flux that corresponds to the
commanded reference torque T ∗ from the speed control loop.
The T ∗ → λ∗dq relationship is obtained by superimposing
a minimum λq over the MTPA trajectory; the need for a
minimum λq is to aid the sensorless control as discussed in
the succeeding section. The resistive term in (14) is relatively
insignificant and hence, the current quantities are not estimated
for k + 1 in the interest of computational efficiency.

The cost function to determine the voltage vector that is at
the shortest Euclidean distance from the reference voltage (14)
is given by

f(vk+1

d̂q,j
) = |v∗

d̂q
− vk+1

d̂q,j
| (15a)

vk+1

d̂q
= argmin

j=0,1..7
f(vk+1

d̂q,j
) (15b)

where the notation vd̂q,j represents the six active vectors (j =
1 . . . 6) and two zero vectors (j = 0, 7) of a two-level voltage
source inverter in estimated rotor reference frame.

D. Saliency Analysis

Incremental saliency is defined as the ratio of incremental
inductances ld/lq . All high frequency based sensorless tech-
niques rely on incremental saliency for position estimation at
zero to low speeds region.

Fig. 3 shows the incremental saliency of the machine under
test in both dq current and dq flux planes. At no load, around
the origin, saliency disappears due to the unsaturated ribs in the
q-axis. This is circumvented by imposing a minimum flux in q-
axis for a reliable presence of incremental saliency. Moreover,
at very high loads, the saturation of d-axis reduces the saliency
on MTPA trajectory as illustrated in Fig. 3. Hence, low speed
sensorless drives should be wary of poor saliency regions for
stable operation.



III. LOW SPEED POSITION ERROR ESTIMATION

A. General Framework Development

The generalized high frequency based position error signal
εh is defined as the projection of difference in voltage and
current model high frequency flux estimates on a projection
vector φh, expressed as

εh = φT
h (sλd̂q − l · s id̂q) (16)

where derivatives represents the high frequency terms. The
projection vector φh has the dimension of V−1.

At high frequencies, the approximation of observed high
frequency flux to the real (voltage model) high frequency flux
holds, s λ̂d̂q ≈ sλd̂q . The term sλd̂q in (16) is computed
directly from (1) while the current model flux estimate l ·s id̂q
is obtained from flux map LUTs.

To establish the relation of position error signal εh in (16)
to position error θ̃, the term s id̂q is examined as

s id̂q = s
(

eJθ̃idq

)
= s θ̃ · J eJθ̃ idq + eJθ̃ · s idq (17)

= eJθ̃ l−1 e−Jθ̃ · sλd̂q + s θ̃ · eJθ̃
(

JL−1 − l−1J
)

e−Jθ̃ λd̂q

Derivative of position error is neglected, i.e., s θ̃ = 0. Lin-
earizing (17) for small values of θ̃ gives

s id̂q ≈ l
−1 · sλd̂q + θ̃

(
J l−1 − l−1J

)
· sλd̂q (18)

Substituting (18) in (16), the high frequency position error
signal simplifies to

εh = φT
h · θ̃

(
J− l J l−1

)
· sλd̂q (19a)

J− l J l−1 =

1

ld lq − l2dq

[
−ldq(ld + lq) l2d − ld lq + 2 l2dq

−(l2q − ld lq + 2 l2dq) ldq(ld + lq)

]
(19b)

It can be inferred from (19) that the error signal εh is always
a function of the position error θ̃, irrespective of the projection
vector φh.

B. Applicability to Signal Injection Schemes

The general framework is applicable for sinusoidal and
square-wave high frequency voltage injection schemes. The
components of high frequency injected signal in estimated
rotor reference frame are denoted by subscript d̂qh.

For a pulsating voltage injection of magnitude vh and
frequency ωh along d̂ axis, the high frequency flux is given
by

vd̂qh = vh

[
cos(ωht)

0

]
=⇒ λd̂qh =

vh
ωh

[
sin(ωht)

0

]
(20)

As the derivative is an algebraic operator in high frequency
domain, it is convenient to use the integral of (16) as

εh = φT
h

(
vh
ωh

[
sin(ωht)

0

]
− l · id̂qh

)
(21)

Consequently, the projection vector φh takes the dimension
of (Vs)−1. Using (19) and (20), the error function (21) is
equivalent to

εh = φT
h · θ̃

[
−ldq(ld + lq)

−(l2q − ld lq + 2 l2dq)

]
vh sin(ωht)
ωh(ldlq − l2dq)

(22)

The d-axis signal in (22), being proportional to the cross-
saturation term ldq , is diminished in magnitude and unob-
servable at id = 0. Hence, the q-axis signal is preferred for
reliability whose the corresponding projection vector is given
by

φh =
[
0 φqh

]T
(23a)

φ−1qh = −
vh (l2q − ld lq + 2 l2dq)

ωh(ldlq − l2dq)
(23b)

Ideally, the demodulation of error signal is equivalent to the
position error as

θ̃ = LPF
(
εh · 2 sin(ωht)

)
(24)

This approach is adopted in [8] [31]. The low pass filter in
the demodulation stage (24) hinders the maximum achievable
bandwidth of the position observer. Typically, the closed-loop
bandwidth of position tracking loop is set to three times
lower than the cutoff frequency of the low pass filter [7].
Moreover, additional low pass filters to retrieve fundamental
current component unfavorably affects the current controller in
vector control scheme. To alleviate these concerns, injection
at near switching frequency has been extensively studied [9]–
[11].

C. Proposed Sensorless Technique with MPC

Let the discrete time derivative function be represented the
operator ∆ as

∆xk =
1

Ts
(xk − xk−1) (25)

Owing to the nature of finite control set MPC, discrete voltage
vectors are applied. The proposed scheme is based on the
instantaneous machine response upon excitation with an active
voltage vector.

The position error function (16) is reformulated in the
context of MPC as the difference in voltage and current model
flux ripple from the last switching actuation as

εkh = φT
h

k
(∆λk

d̂q
− l ·∆ik

d̂q
) (26)

The term ∆λk
d̂q

is computed from the HFO while ∆ik
d̂q

is
determined from measurements. The susceptibility of error
function (26) to measurement noise should be addressed.
Owing to the smaller inductance in q-axis, the current ripple
∆iq is generally higher than ∆id and consequently, less
gullible to measurement noise and current sensor resolution.
Furthermore, the noise is amplified in ld ∆id more than lq ∆iq



Fig. 4. Block diagram of the proposed sensorless technique highlighting the hybrid flux observer with low and high speed projection vectors relying on high
frequency and fundamental excitation respectively, fusion mechanism and PLL.

since ld > lq . Hence, a projection vector along q-axis is
preferred as

φkh =
[
0 φkqh

]T
(27)

The gain φkqh should be chosen such that εh = θ̃. To
this end, in the context of MPC, the error function in (19)
transforms to

εkh =
(
φh

k
)T · θ̃

(
J− l J l−1

)
·∆λk

d̂q
(28)

From (27) and (28), it follows that φqh has a dimension of
V−1 and takes the form

φkqh
−1

=
ldq(ld + lq)

ld lq − l2dq
∆λkq̂ −

l2q − ld lq + 2 l2dq
ld lq − l2dq

∆λk
d̂

(29)

At low speeds, the magnitude of active voltage vector is
much greater than resistance and back-emf terms. Hence, for
computational simplicity, ∆λk

d̂q
≈ vk−1

d̂q
is adopted. Note that

the term φkqh is effectively a gain; therefore, the approximation
will only marginally shift the bandwidth of observer but does
not translate to steady-state error. Finally, the expression of
term φkqh in (29) is simplifies to

φkqh
−1 ≈ ldq(ld + lq)

ld lq − l2dq
vk−1q̂ −

l2q − ld lq + 2 l2dq
ld lq − l2dq

vk−1
d̂

(30)

D. Implementation Constraints

At low speeds, the control tends to impose a string of
zero vectors in steady-state. This impedes the sensorless
performance as the machine remains unexcited for a short span
of time. Moreover, the quantity φqh

−1 in (29) represents the
strength of position error signal and must be large enough for
a reliable position estimation.

To meet these requirements, two thresholds are defined:
• φ−1min is the minimum value of |φkqh

−1| to be deemed
reliable.

• Nmax is the maximum permissible number of consecutive
voltage vectors to have failed the threshold φ−1min.

The cost function is modified such that a hard constraint C is
enabled once the threshold Nmax is reached as

f(vk+1

d̂q,j
) = |v∗

d̂q
− vk+1

d̂q,j
|+
(
n > Nmax

)
Cj (31)

where n is the count of consecutive instances of |φkqh
−1| <

φ−1min. When the limit Nmax is exceeded, the hard constraint
Cj functions to ensure that only those active voltage vectors
vk+1

d̂q,j
that satisfy φ−1min are eligible for the next sampling

instant. This is accomplished by computing the term φ−1qh,j
for each of the six active vectors (j = 1 . . . 6) and assigning
a large penalty for the jth vector if |φ−1qh,j | < φ−1min as

Cj =
(
|φ−1qh,j | ≤ φ

−1
min

)
· ∞+

(
|φ−1qh,j | > φ−1min

)
· 0 (32)

For the applied voltage vectors having |φkqh
−1| < φ−1min, the

evaluation of error function is suspended with εkh = 0.

IV. FULL-SPEED POSITION OBSERVER

The proposed full-speed flux and position observer scheme
is described in Fig. 4. This includes the Hybrid Flux Ob-
server and the position error evaluation through the low speed
projections vector. In parallel, a high speed projection vector
block evaluates the position error from fundamental model for
high speeds region. The fusion and phase locked loop blocks
complete the sensorless scheme, as described in the following.

A. High Speed Position Error Estimation
The Adaptive Projection vector for Position error estima-

tion (APP) approach introduced in [27] is used for position
observation at medium to high speed. Using the projection
vector approach also for the fundamental excitation model of
the machine, the generalized position error signal εθ is defined
as the projection of difference in observed and current model
flux estimates on the vector φθ as

εθ = φT
θ (λ̂d̂q −L

i id̂q) (33)

Through linear error dynamics of the state observer (6),
the transfer function Kθ from the position error signal to the
position error εθ → θ̃ is derived in [27] as

Kθ =
εθ

θ̃
= φT

θ (s I +G+ ωJ)−1 (s I + ωJ)λa
d̂q

(34)

where λa
d̂q

is the auxiliary flux vector. Using IMAP, the
auxiliary flux vector is computed to [27]

λa
d̂q

=
(
JLi − l J

)
id̂q =

[
(ld − Liq) iq̂ − ldq id̂
(Lid − lq) id̂ + ldq iq̂

]
(35)



Fig. 5. Analysis of high speed closed loop transfer function of position
observer

Thus, it follows from (34) that the projection vector to obtain
Kθ = 1 is given by

φT
θ =

−1

ω |λa
d̂q
|2
λa

T

d̂q
J
(
s I +G+ ω J

)
(36)

The derivative term in (36) does not have a major impact
on the closed loop position observer as demonstrated in the
next section. Hence, the projection vector is simplified to

φT
θ =

−1

ω |λa
d̂q
|2
λa

T

d̂q
J
(
G+ ω J

)
(37)

The projection vector in (37) is referred to as APP. For a
constant gain g flux observer, the APP technique is shown
to have better stability than the active-flux based position
estimation in [27]. Furthermore, the APP is immune to stator
resistance variations and non-ideal inverter compensation as
demonstrated in [32].

Since the high speed error estimation relies on fundamental
quantities, the switching constraint (32) is obsolete and the
cost function reverts back to (15).

B. Fusion Structure

The position observer is designed to transition from low to
high speed model at the cross-over frequency g, akin to the
flux observer. To refrain from sharp discontinuous transition
and chattering, the two position estimation models are fused
together with a linear speed dependent fusion coefficient fω ,
expressed as

εk = fω · εkh +
(
1− fω

)
· εkθ (38a)

fω =


1, if |ω̂k| < g − ωg
0, if |ω̂k| > g + ωg
g+ωg−|ω̂k|

2ωg
, otherwise

(38b)

where the term ωg signifies the span of transition on either
sides of cross-over frequency g. The fusion coefficient fω is
designed to ensure smooth transition over the span of speeds
g − ωg to g + ωg .

C. Phase Locked Loop

A conventional phased locked loop (PLL) with a
proportional-integral (PI) controller is employed to drive the
observer error signal εk to zero as

ω̂ = kp ε+

∫
ki ε dt θ̂ =

∫
ω̂ dt (39)

Fig. 6. Frequency response plot of closed loop position observer (41) for
simplified projection vector (37) at three different operating speeds; dotted
lines correspond to the ideal projection vector with derivative term (36).
Parameters: g = 2π · 10 rad/s, Ωω = 2π · 25 rad/s.

where kp and ki are the respective gains. The gains of the PLL
are tuned for a critically damped response considering ε = θ̃
by placing the two poles at s = −Ωω as

kp = 2 Ωω ki = Ω2
ω (40)

It is of interest to analyze the dynamics of PLL, in particular,
for high speed model. The block diagram of closed loop
position observer is shown in Fig. 5 whose transfer function
is given by

θ̂(s)

θ(s)
=

(skp + ki)Kθ(s)

s2 + (skp + ki)Kθ(s)
(41)

For G = g I and using the projection vector (37), the transfer
function Kθ in (34) reduces to

Kθ =
s2 + g2 + ω2 + s g

(s+ g)2 + ω2
(42)

Note that Kθ is a function of angular speed and is independent
of operating point idq . The frequency response plot of (41)
at different operating speeds for simplified projection vector
(37) is shown in the Fig. 6; also juxtaposed is the frequency
response of ideal projection vector with the derivative term
(36). Notice that the closed loop bandwidth is only marginally
altered by the absence of derivative term, justifying the sim-
plification.

D. Calibration of Gains

The flux observer gain is set to g = 2π · 10 rad/s (300
rpm). For a precise position estimation at low speeds, it is
desired that the error function is evaluated, at the least, once
every mechanical degree. This results in Nmax = 5 at the
angular speed of g rad/s. Beyond g, the dominance of high
speed model comes into effect. The threshold φ−1min = 60 V



Fig. 7. Experimental Setup of 1.1 kW SyR motor under test on a dspace
DS1103 control platform running at a sampling frequency of 10 kHz.

TABLE I
MOTOR PARAMETERS

Parameters Symbol Values Units

Rated power Pn 1.1 kW
Rated speed ωn 1500 rpm
Rated torque Tn 7.1 Nm
Rated voltage Vn 340 V
Rated current In 2.3 A
Pole pairs p 2 -
Stator resistance Rs 4.5 Ω
Shaft inertia J 0.04 kgm2

is set to around 10% of DC link voltage. The transition span
of the fusion model is set to ωg = 2π · 2 rad/s.

The position observer poles are placed at Ωω = 2π · 25
rad/s; the estimated speed is low-pass filtered at 2π · 25 rad/s.
The poles of PI speed controller of SyR machine are placed
for a critically damped response at 2π · 1 rad/s. A minimum
flux λminq = 0.2 Vs is imposed for saliency and fundamental
excitation at no-load. Unless mentioned otherwise, the follow-
ing results adhere to aforementioned parameters.

V. EXPERIMENTAL RESULTS

A. Test-bench Setup

The proposed sensorless scheme is validated experimentally
on a 1.1 kW SyR motor on a dspace DS1103 control platform
running at a sampling frequency of 10 kHz. A picture of
the setup is shown in Fig. 7. The parameters of the SyR
motor under test are tabulated in Table I. The SyR machine is
sensorless speed controlled while the load torque is imposed
by an auxiliary drive.

B. Test for Dynamic Stiffness

A challenging scenario for a low speed sensorless control
is to sustain a rated torque step at standstill. In the Fig. 8(a),
a heavy transient of twice the rated torque is imposed at
standstill condition. The position error is stable with an error
less than ≈ 5◦ at steady-state. The small error at standstill
is likely due to secondary saliences as the flux map LUTs
is an average model computed from constant speed test [29].
The high speed model is subjected to similar test in Fig. 8(b)
at 750 rpm (0.5 p.u); negligible position error is observed.
Besides, the two tests show similar sag in angular speed during
transients.

Fig. 8. Torque step of 0 → 2 p.u to test for dynamic stiffness with speed
controller poles at 2π · 1 rad/s: (a) Low speed model at standstill condition
ω∗ = 0; (b) High speed model at ω∗ = 0.5 p.u (750 rpm).

Fig. 9. Torque step of 0 → 2 p.u to test for dynamic stiffness with speed
controller poles at 2π · 2.5 rad/s: (a) Low speed model at standstill condition
ω∗ = 0; (b) High speed model at ω∗ = 0.5 p.u (750 rpm).

The tests in Fig. 8 are repeated for a higher bandwidth speed
controller whose the poles are shifted from 2π · 1 rad/s to
2π·2.5 rad/s, shown in the Fig. 9. To curtail the high frequency
noise, the position observer poles are lowered from 2π · 25



Fig. 10. Dynamic performance analysis: speed step 0 → 1 p.u and speed
reversal 1 → -1 p.u at no load.

rad/s to 2π · 15 rad/s which corresponds to a bandwidth of
37 Hz. Same scales are retained for ease of comparison. Peak
transient position error is around 15◦. The sag in speed is
observed to decrease by a factor of 2 while the settling time
is improved by a factor of 3.

C. Speed Transients

To demonstrate the dynamic performance, a step change in
speed reference from 0→ 1500 rpm (1 p.u) and subsequently,
speed reversal from 1500→-1500 rpm are reported in Fig. 10.
Negligible transient and steady-state position error is observed.
The fusion coefficient fω signifies relative dominance of the
two models.

D. Fusion

To illustrate the dynamic performance in the fusion region,
a torque step in load of 1 p.u is applied in Fig. 11(a). The
operating speed of machine is the upper-bound of fusion
window, g+ ωg . At t = 0s, the control abruptly transitions to
the low speed model as pointed out by the fusion coefficient
fω . Stability is retained.

A slow speed ramp is applied at a load torque of 0.5 p.u
in Fig. 11(b) to illustrate the smooth transitioning between
the models. The position error in Fig. 11(b) reflects transition
where the high frequency noise is largely suppressed after
t = 3s once fundamental excitation based estimation gains
dominance.

Fig. 11. Analysis of fusion: (a) Torque step at upper-bound speed of fusion
window, g+ωg , to demonstrate transient performance; (b) Slow speed ramp
to highlight the smoothness of transition.

Fig. 12. Sinusoidal speed reference disturbances at 1.5 Hz: (a) Low speed
model at standstill condition mean ω∗ = 0; (b) High speed model at mean
ω∗ = 0.5 p.u (750 rpm).



Fig. 13. Sinusoidal load torque disturbances at 1.5 Hz with speed controller
poles at 2π · 1 rad/s: (a) Low speed model at standstill condition ω∗ = 0; (b)
High speed model at ω∗ = 0.5 p.u (750 rpm).

E. Speed Control Bandwidth Analysis

To comment on the capability of proposed control to track
disturbances, a sinusoidal speed reference is imposed at stand-
still to validate the low-speed sensorless model, as reported in
Fig. 12(a). At a disturbance frequency of 1.5 Hz, the estimated
speed is phase shifted by 45◦ from the reference speed. Similar
behavior is observed at 750 rpm when the high speed model
prevails, as shown in Fig. 12(b). In either case, the position
error is negligible.

A second test regards sinusoidal disturbances in load torque
injected at standstill conditions, reported in Fig. 13(a). At 1.5
Hz, the estimated torque lags the load torque by an angle of
45◦. On Repeating the test at 750 rpm for high speed model in
Fig. 13(b), identical behavior is discerned. The position error
remains negligible.

These tests conclude that the control is capable of tracking
disturbances either in load torque or in reference speed up to
1.5 Hz for the speed controller with poles at 2π ·1 rad/s. Shift-
ing the poles to 2π ·2.5 rad/s increases the tracking frequency
to 3 Hz as demonstrated in Fig. 14 where disturbances in load
torque is injected at standstill and half-rated speed, analogous
to the test in Fig. 13. Should higher bandwidth be desired,
the gains of speed controller can be increased at the cost of
increase in torque ripples due to discrete nature of FCS-MPC.

VI. CONCLUSION

Within the framework of projection vectors, this paper
presents a sensorless technique for operation in all speeds
without dedicated high frequency signal injection. Position

Fig. 14. Sinusoidal load torque disturbances at 3 Hz with speed controller
poles at 2π · 2.5 rad/s: (a) Low speed model at standstill condition ω∗ = 0;
(b) High speed model at ω∗ = 0.5 p.u (750 rpm).

estimate at low speeds is extracted from the switching actua-
tion of FCS-MPC while the high speed model relies on flux
observer error through APP scheme. A fusion coefficient is
introduced for linear speed dependent transition between the
two models.

The proposed technique is validated on a 1.1 kW SyR
motor test bench; the position error is confined to < 5◦

electrical during heavy load transients at standstill. Good
dynamic performance is observed in speed step and speed
reversal tests with seamless transition between the models.
Furthermore, the control shows good resilience and tracks
sinusoidal disturbances in load torque and speed reference
commands.
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