POLITECNICO DI TORINO Repository ISTITUZIONALE

Fatigue response up to 10^9 cycles of a structural epoxy adhesive

Original

Fatigue response up to 10⁹ cycles of a structural epoxy adhesive / Tridello, Andrea; Ciardiello, Raffaele; Paolino, Davide Salvatore; Goglio, Luca. - In: FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES. - ISSN 8756-758X. - STAMPA. - (2020). [10.1111/ffe.13240]

Availability: This version is available at: 11583/2817260 since: 2020-04-28T13:59:56Z

Publisher: Wiley

Published DOI:10.1111/ffe.13240

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright Wiley postprint/Author's Accepted Manuscript

This is the peer reviewed version of the above quoted article, which has been published in final form at http://dx.doi.org/10.1111/ffe.13240.This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

(Article begins on next page)

Fatigue & Fracture of Engineering Materials & Structures

Fatigue response up to 10⁹ cycles of a structural epoxy adhesive

Journal:	Fatigue & Fracture of Engineering Materials & Structures
Manuscript ID	FFEMS-8619
Manuscript Type:	Original Contribution
Date Submitted by the Author:	12-Feb-2020
Complete List of Authors:	Tridello, Andrea; Politecnico di Torino, Department of Mechanical and Aerospace Engineering Ciardiello, Raffaele; Politecnico di Torino, Department of Mechanical and Aerospace engineering Paolino, Davide S.; Politecnico di Torino, Department of Mechanical and Aerospace Engineering Goglio, Luca; Politecnico di Torino, Department of Mechanical and Aerospace Engineering

1			
2			
3 4	1	Highli	ights
5			
6	2		
7			
8	3	1.	Ultrasonic fatigue tests on structural adhesives can be reliably performed.
9 10	л		
11	4		
12	5		
13	6		
14 15	-		
16	/		
17	8		
18	9	2.	Surface defects are detrimental for the VHCF response of adhesives.
19	4.0		
20 21	10		
22	11		
23	12		
24			
25 26	13		
27	14		
28	15	3	Internal defects have limited influence on the VHCE response of adhesives
29	15	5.	internal deletes have initied initience on the viter response of adhesives.
30 31	16		
32	17		
33	18		
34	10		
35 36	19		
37	20		
38	21	Δ	Fracture surfaces of adhesives subjected to VHCE loads show a peculiar morphology
39			ructure surfaces of duresives subjected to their loads show a peculiar morphology.
40 41			
42			
43			
44			
45 46			
47			
48			
49			
50 51			
52			
53			
54			
55 56			
50			
58			
59			
60			

2		
3 4	1	Fatigue response up to 10 ⁹ cycles of a structural epoxy adhesive
5 6	2	
7 8	3	
9 10	4	
11	5	Authors:
12 13	6	A. Tridello ^a , R. Ciardiello ^b , D.S. Paolino ^c , L. Goglio ^d
14	7	
15	8	
16 17	9	^a Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy,
18	10	andrea.tridello@polito.it
19	11	^o Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy,
20	12	<u>ramaele.clardiello@polito.it</u>
21 22	17	davide paolino@polito_it
23	15	^d Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy,
24	16	luca.goglio@polito.it
25	17	
27	18	
28	19	Corresponding Author:
29	20	A. Tridello
31	21	E-mail address: andrea.tridello@polito.it
32	22	Full postal address:
33 24	23	C.so Duca degli Abruzzi 24,
34 35	24	Department of Mechanical and Aerospace Engineering – Politecnico di Torino,
36	25	10129 – Turin,
37	20	HALY Rhone number: +20,011,000,6012
38 39	27	Filone number: +39.011.090.0915
40	29	
41	30	
42 43	31	
44	32	
45		
46 47		
48		
49		
50		
52		
53		
54		
55 56		
57		
58		
59 60		

2 3	33	Abstract			
4					
5 6	34	In the present paper, the Very-High-Cycle-Fatigue (VHCF) response of a structural adhesive used for			
7 8	35	automotive applications, Betaforce 4600G modified with microspheres, has been experimentally assessed.			
9 10	36	Ultrasonic fully reversed tension-compression tests up to 10^9 cycles have been carried out with the testing			
11 12 13	37	machine developed by the Authors on adhesives without macroscopic defects and on adhesives with artificial			
14 15	38	defects, inserted during the butt-joint preparation. Fracture surfaces have been observed with the optical			
16 17	39	microscope and the P-S-N curves estimated. Experimental results have shown that defect location			
18 19	40	significantly affects the VHCF strength and fracture surfaces exhibit a peculiar morphology with three distinct			
20 21 22	41	characteristic regions.			
22	42				
24 25	43				
26 27 28	44	Keywords: Very-High-Cycle Fatigue (VHCF); ultrasonic fatigue tests; accelerated tests; structural adhesive;			
28 29 30	45	epoxy resin.			
31					
32	46				
33 34	47				
35	10				
36 27	40				
37 38	49				
39	50				
40					
41	51				
43					
44					
45					
46					
4/ 10					
40 49					
50					
51					
52					
53					
54					
55 56					
57					
58					
59					
60					

1 2		
2 3 4	52	Acronyms and nomenclature
5 6 7	53	c_Y , m_Y : constant coefficients.
 7 8 9 10 11 12 13 14 15 16 17 18 19 	54	E_{ad} , η_{ad} : Young's modulus and loss factor of the adhesive.
	55	$E_{ad,FEA}$, $\eta_{ad,FEA}$: Young's modulus and loss factor of the adhesive for the FEA model.
	56	FEA: Finite Element Analysis
	57	L_{tot} : length of the adhesive butt-joint specimen
	58	L_1 : length of adherend 1;
20 21	59	L ₂ : length of adherend 2:
22 23 24 25 26 27 28 29 30 31 32 33 34 35 26	60	L _{ad} : adhesive thickness.
	61	s_{min}, s_{max} : minimum and maximum stress amplitude within the adhesive.
	62	s_{exp} , s_{FEA} : stress amplitude within the adhesive experimentally measured and computed through FEA.
	63	SEM: Scanning Electron Microscope
	64	VHCF: Very High Cycle Fatigue
	65	x: logarithm of the applied stress amplitude.
37 38	66	$\mu_Y(x)$: mean of the fatigue life distribution
39 40 41	67	σ_Y : standard deviation of the fatigue life distribution
41 42 43	68 69	
44 45 46 47 48 49	70	
	71	
	72	
50 51 52	73	
53		
54 55		
56 57		
58		
59 60		

1. INTRODUCTION

In the last years, the research on lightweight design of components has become a major topic for universities and industries. For example, in the automotive, marine, and aerospace sectors¹⁻³, the reduction of the vehicle weight is of primary importance due to the stringent regulations in terms of fuel consumption and emissions⁴, which have given a significant boost to the use of lightweight materials (e.g., composite materials^{5, 6}) or to the development of new design and manufacturing processes allowing to produce light components with optimized mass distribution (e.g., topology optimization and Additive Manufacturing). At the same time, it has been demonstrated that a further significant reduction of the weight of mechanical structures and vehicles can be achieved with structural adhesives for joining different components⁶. Indeed, the replacement of traditional joining techniques and mechanical fasteners with structural adhesives contributes to the reduction of the weight of mechanical assemblies, without affecting the mechanical strength and the stiffness of the joint. In particular, the use of adhesives simplifies the manufacturing process and, above all, structural adhesives are preferred to traditional joining techniques for their high strength to weight ratio, for their capacity to join dissimilar materials that can be hardly joined with other techniques and to improve the stress distribution and the stress uniformity along the lap region^{1, 7-8}. The mechanical characterization of structural adhesives under different loading conditions has thus become fundamental to guarantee a safe design for the joint and is therefore of utmost interest for researchers and industries.

Among structural adhesives, epoxy-based adhesives are widely used in the automotive sector for their ability to bond a wide range of materials, even dissimilar⁹. These adhesives are available in two-component (resin and hardener) products which can be cured at room temperature and in mono-component products that need elevated temperature for the activation. As for other structural components, they are subjected to different types of loads and, accordingly, to different failure modes: in particular, fatigue loads are extremely dangerous. A proper experimental characterization of the fatigue response of the adhesive is therefore mandatory to prevent the failure of the joint. According to the literature^{10, 11}, fatigue tests on adhesives are typically interrupted at 10^7 cycles (runout number of cycles), since they are in almost all the cases carried out with traditional testing machines (e.g., electro-hydraulic¹⁰) working at a loading frequency 48 101 smaller than 100 Hz. Due to a significantly large testing time, the Very-High-Cycle Fatigue (VHCF) region (i.e., 50 102 the fatigue region beyond 10⁷ cycles) is instead rarely assessed. However, as for other structural components, the required fatigue lifetime of adhesives has significantly increased in the last years. For ⁵³ 104 example, the fatigue life of components and, accordingly of the joints between components, could exceed 10^9 cycles in automotive and aerospace applications ^12, 13, mainly due to the loads induced by low amplitude 55 105 57 106 vibrations¹³. For these reasons and for a conservative design of joints employed for critical structural ⁵⁸ 107 applications, fatigue tests cannot be limited to 10^7 cycles and the VHCF response of adhesives should be 60 108 properly experimentally assessed.

109 In the present paper, the VHCF response of a structural adhesive used for automotive applications, Betaforce 4600G modified with microspheres for the thickness control (200 μ m), has been experimentally 110 assessed. Ultrasonic (loading frequency of 20 kHz) fully reversed tension-compression tests up to 10⁹ cycles 111 112 have been carried out by using the ultrasonic testing machine developed at Politecnico di Torino. In particular, the ultrasonic testing machine for VHCF tests on metal materials^{14, 15} has been adapted to perform 10 113 11 accelerated tests on adhesive butt-joints¹⁶. Fatigue tests have been carried out on adhesives without 114 12 13 115 macroscopic defects and on adhesives with artificial surface and internal defects, inserted during the butt-14 15 116 joint preparation, with the aim of investigating the effect of defect size and location on the crack nucleation 16 17 117 and on the VHCF response. Fracture surfaces have been observed with the optical microscope and, finally, 18 118 the P-S-N curves estimated. 19

2. MATERIALS AND METHODS

1 2 3

4

5 6

7 8

9

20 119 ²¹ 120

22 121 23

25

27

30

32

43

45

47

39 131 40

²⁴ 122 The present Section describes the experimental activity. In Subsection 2.1, the adhesive characteristic and 26 123 the butt-joint design procedure are reported. In Subsection 2.2, the system developed to prepare the butt-24²/₂₈ 124 joint is described. In Subsection 2.3, the methodology developed by the Authors for the assessment of the ²⁹ 125 Dynamic Elastic Modulus and the loss factor of the adhesive is reported. In Subsection 2.4, the ultrasonic fatigue testing configuration and the control system are described in detail. In the following, "adhesive butt-31 126 33² 127 joint specimen" will refer to the specimen obtained by bonding together the two Ti6Al4V round bars with ³⁴ 128 the Betaforce 4600G adhesive.

₃₈ 130 2.1. Adhesive butt-joint specimen: design

41¹³² The tested adhesive, Betaforce 4600G (supplied by Dow Automotive), is a mono-component adhesive that ⁴² 133 has been modified by the manufacturer with glass spheres to maintain the adhesive thickness close to the 44 134 optimal value of 200 µm. The microsphere diameter has been verified with the Scanning Electron 46 135 Microscope (SEM). Table 1 reports the adhesive mechanical properties taken from the datasheet provided 136 by the adhesive manufacturer.

¹⁷ 10 143

18 ¹⁴³ 19 144

Betaforce 4600G datasheet	
Tensile strength	56 MPa
Elastic modulus	2900 MPa
Lap shear strength (thickness 0.2 mm)	26 MPa
Elongation at break	4%

Table 1: Betaforce 4600G mechanical properties reported on the datasheet provided by the adhesive manufacturer.

20 21 145 The adhesive butt-joint subjected to the fatigue test has been obtained by bonding together two Ti6Al4V 22 146 round bars with calibrated lengths. The lengths have been defined through a procedure developed by the 23 24 147 Authors and based on Finite Element Analysis (FEA)¹⁶. In particular, the lengths L_1 and L_2 (length of adherend 25 26 148 1 and 2, respectively) are designed to meet the resonance condition: the adhesive butt-joint specimen, 27 28 149 characterized by a total length $L_{tot} = L_1 + L_2 + L_{ad}$ (being L_{ad} is the adhesive thickness) must have the same ²⁹ 150 resonance frequency of the system piezoelectric transducer-booster-horn in the ultrasonic testing machine. 30 31 151 The second condition for defining the lengths L_1 and L_2 concerns the desired stress amplitude range, [s_{min} ; 32 ₃₃ 152 s_{max}], to be applied to the adhesive. Indeed, by varying the lengths L_1 and L_2 (and therefore the relative 34 35 153 position of the adhesive joint within L_{tot}) it is possible to vary to applied stress amplitude range within the 36 154 adhesive. More details on the design procedure and on the characteristic of the adhesive butt-joint specimen 37 38 155 can be found in Ref.¹⁶.

³⁹ 40 156 For testing the Betaforce 4600G adhesive, the same adhesive butt-joint specimen geometry adopted in Ref.¹⁶ ⁴¹ 157 (Ti6Al4V round bar diameter of 14.6 mm, $L_1 = 114.25$ mm and $L_2 = 7.7$ mm) has been considered in this 42 43 158 study. Since the thickness and the dynamic elastic modulus of the tested adhesive are different from those 44 45¹⁵⁹ of the cyanoacrylate adhesive tested in Ref.¹⁶, a FEA calibration of the applied stress amplitude within the ⁴⁶ 160 adhesive has been carried out. An FE model of the adhesive butt-joint specimen and the horn has been 47 created according to Ref.¹⁶. The mechanical properties of the Ti6Al4V bars used for the joint correspond to 48 161 49 .) 50 162 those reported in Ref.¹⁶; whereas, the Young's modulus and the loss factor of the Betaforce 4600G adhesive ⁵¹ 163 have been experimentally assessed (Section 2.3). According to Ref.¹⁶, a harmonic analysis has been carried 52 53 164 out by applying a harmonic force at the horn end (i.e., where the horn is connected to the system 54 55¹165 piezoelectric transducer/booster), in order to correlate the horn input displacement and the applied stress ⁵⁶ 166 amplitude within the tested adhesive. For the tested adhesive, the stress range is [5.9:51.6] MPa. 57

58 167 59

⁶⁰ 168

2.2. Adhesive butt-joint: joint preparation

The adhesive butt-joint specimens have been prepared by using a device (Fig. 1) developed by the Authors 10 173 and following the Betaforce supplier indications, in order to obtain the maximum bonding strength. Firstly, a 12 174 superficial pre-treatment has been carried out to remove contaminants: the surfaces have been cleaned with sandpaper and then the residue of the polishing process has been removed with acetone. The application of the adhesive has been performed at a temperature of 60° C to reduce its viscosity which is relatively high at room temperature (230 Pa·s). At 60° C the viscosity is lower enough so that the adhesive can be easily spread 17 177 on the adherend through a nozzle. The device shown in Fig. 1 has been used for maintaining the proper bonding pressure during the curing process (180 °C for 30 minutes), as specified by the supplier.

Figure 1: Device used for the preparation of the adhesive butt-joint specimens in order to maintain the proper bonding pressure during the curing process.

43 185 Eighteen adhesive butt-joint specimens have been tested. Three adhesive butt-joint specimens with ₄₅ 186 "artificial defects" have been also tested in order to investigate the effect of improper bonding and of defect location on the VHCF strength. The artificial defects have been created by placing thin Teflon sheets 48 188 (thickness smaller than $100 \ \mu m$) on one of the two adherends, thus creating small regions without adhesive ₅₀ 189 and, therefore, artificial defects. Three cases, schematically shown in Fig. 2, have been investigated: adhesive with a surface defect (Fig. 2a), adhesive with an internal defect (Fig. 2b) and adhesive with surface and 53 191 internal defects (Fig. 2c). The real size of the artificial defects has been accurately measured on the fracture 55 192 surface images obtained with an optical microscope.

22 180

209 the two Ti6Al4V adherends are bonded together and the longitudinal resonance frequency (f_{exp}) of the 210 adhesive butt-joint specimen is measured again with the IET. Following the flow chart in Fig. 3a), a FE model 211 of the adhesive butt-joint specimen is then created and its first longitudinal resonance frequency, f_{FEA} , is 212 obtained with a modal analysis. For the first iteration, a tentative value of 1 GPa for the dynamic Young's modulus, $E_{ad,FEA}$, and of $3.4 \cdot 10^{-3}$ for the loss factor, $\eta_{ad,FEA}$, have been considered for the FEA model¹⁶. 10 213 11 12 214 The experimental resonance frequency f_{exp} is finally compared with the FEA resonance frequency, f_{FEA} : 13 215 according to Fig. 3a), if the two values do not match, $E_{ad,FEA}$ is iteratively varied until the condition f_{exp} = 14 ¹⁵ 216 f_{FEA} is met. When $f_{exp} = f_{FEA}$, the FEA Young's modulus corresponds to the actual adhesive Young's 16 modulus ($E_{ad,FEA} = E_{ad}$), which has been found to be equal to 3.1 GPa. The same procedure has been 17 217 18 19 218 repeated to estimate the adhesive loss factor (Fig. 3b): in this case, the condition that has been met is $\eta_{exp} =$ 20 219 $\eta_{ad,FEA}$, being η_{exp} and $\eta_{ad,FEA}$ the experimental and the FEA loss factors of the adhesive butt-joint, 21 22 220 respectively. The half-power bandwidth method¹⁸ has been applied for assessing η_{exp} and $\eta_{ad,FEA}$: when η_{exp} 23 24 221 $= \eta_{ad,FEA}$, the FEA loss factor corresponds to the actual adhesive loss factor ($\eta_{ad,FEA} = \eta_{ad}$), which has been 25 26 222 found to be equal to $2 \cdot 10^{-2}$. It is worth to note that, by varying $\eta_{ad,FEA}$ during the iterative procedure, f_{FEA} ²⁷ 223 could vary (i.e., E_{ad} should be also varied to meet again the condition $f_{exp} = f_{FEA}$). However, it has been 28 29 224 verified that, for the investigated range of the loss factor, the variation of f_{FEA} with respect to $\eta_{ad,FEA}$ was 30 ₃₁ 225 negligible. 32

³⁴ 227 2.4 Experimental tests

226 33

40

42

38 229 Before the ultrasonic fatigue tests, three tensile tests have been carried out on adhesive butt-joint ³⁹ 230 specimens. In this case, however, the length of the adherends has been increased to 60 mm in order to 41 231 properly grip the tested specimens. A servo-hydraulic testing machine, Instron 8801, has been used for the 43²232 tests, with a crosshead displacement rate of 2 mm/min.

44 233 Fully reversed ultrasonic tension-compression tests at constant amplitude have been carried out on the 45 46 234 Betaforce 4600G adhesive butt-joints with the ultrasonic fatigue testing machine developed by the Authors 47 ₄₈ 235 for tests on metallic materials¹⁴⁻¹⁵. The metal specimen commonly tested (hourglass, dogbone or Gaussian 49 236 specimen) has been replaced by the adhesive butt-joint specimen. Fig. 4 shows the testing system developed 50 51 237 by the Authors: the adhesive butt-joint specimen, the strain gage used for the calibration of the FEA model 52 ₅₃ 238 (calibration gage in Fig. 4), and the sensors used for measuring the displacement amplitude (laser 54 239 displacement sensor in Fig. 4) and the temperature (infrared temperature sensor in Fig. 4). 55

56 57

1 2 3

4

5 6

7 8

- 58
- 59 60

14

15

20 21 22

23

24 25

30 31 242 32

33

35

37

40

42

44

45

Figure 4: Ultrasonic fatigue testing system for VHCF tests on adhesive butt-joints.

As shown in Fig. 4, a calibration strain gage rosette has been attached at the half length of the adhesive butt-243 ³⁴ 244 joint specimen (*L*_{tot}) in order to validate the FEA model. The strain amplitude at the half of the adhesive butt-36 245 joint specimen length has been measured at increasing values of the input displacement provided by the ₃₈ 246 piezoelectric transducer (displacement range $[1.1 - 1.5] \mu m$). As in Ref.¹⁶, a linear relationship between the ³⁹ 247 input displacement and the strain amplitude has been found. For the same input displacement, the strain 41 248 measured with the calibration gage, s_{exp} , has been compared with the strain computed through FEA, s_{FEA} . 43 249 Similarly to Ref.¹⁶, the difference between s_{exp} and s_{FEA} has been found to be very limited (smaller than 1%), 250 thus proving that the stress amplitude within the adhesive can be reliably computed through FEA.

46 251 Ultrasonic tests have been carried out at constant stress amplitude: the applied stress amplitude within the 47 48 252 adhesive has been kept constant through a closed-loop proportional feedback control based on the 49 253 displacement amplitude measured with the laser sensor shown in Fig. 4 (KEYENCE LK-G5000, sample 50 51 254 frequency of 300 kHz). The correlation between the measured displacement and the stress amplitude within 52 53 255 the adhesive has been finally assessed through FEA.

54 256 The specimen temperature has been also monitored during the tests: in particular, the temperature 55 56 257 measured as close as possible to the adhesive with an infrared temperature sensor (OPTRIS CT-LT-15) has 57 been limited to a maximum value of 22° C. Two vortex tubes (Fig. 4) with the cold air flux concentrated near 58 258 59 259 the adhesive have been also used to limit the adhesive heating during the test¹⁵. As shown in Ref.¹⁶, by 60

limiting the temperature to 22° C near the joint, it is possible to keep the temperature inside the adhesive almost constant, with a limited increment during the test (less than 9% with respect to the initial value). For the largest applied stress amplitude, the temperature has exceeded the upper limit value of 22° C: in these cases, the control system automatically interrupts the test until the temperature drops below a lower limit set equal to 21 ° C (intermittent testing condition^{19, 20}). 10 264

3. EXPERIMENTAL RESULTS

15 267

17 268 Section 3 presents the experimental results. In Section 3.1 and in Section 3.2, the results of the tensile tests and of the ultrasonic tests are reported and analyzed. In Section 3.3, the fracture surfaces are analyzed and, finally, in Section 3.4 the P-S-N curves are estimated and a possible solution for the design curves is proposed.

3.1. Quasi-static tests

Figure 5a) and Fig. 5b) show the average stress-displacement curve and the fracture surfaces obtained through the tensile tests, respectively.

Figure 5: Tensile test results: a) average stress displacement curve; b) fracture surface images.

According to Fig. 5 a), the average tensile strength is equal to 56 MPa, in agreement with literature results 47 279 on high strength structural epoxy adhesive²¹. The scatter of the tensile strength between the three tests is limited and smaller than 0.5%, proving the effectiveness of the procedure developed for the preparation of 52 282 the adhesive butt-joint.

3.2. VHCF tests

57 285

59 286 Eighteen ultrasonic fatigue tests have been carried out on specimens without defects. Thirteen specimens have failed between $8.75 \cdot 10^5$ cycles and $2.57 \cdot 10^8$ cycles, in a stress range between 16 MPa and 26 MPa,

17 296

and five specimens have not failed up to 10^9 cycles (runout specimens). The specimens with artificial defects have been tested at stress amplitudes in the range [13 - 17] MPa and failed between $1.85 \cdot 10^7$ cycles and $1.38 \cdot 10^8$ cycles. More in details, the specimen with the internal defect has been firstly tested at 13 MPa, but it has survived up to 10^9 cycles; it has been subsequently tested at 15 MPa, but, again, it has survived up to 10^9 cycles; it has been finally tested at 17 MPa and it has failed before 10^9 cycles. The specimens with 10 292 artificial surface defects, on the contrary, have been tested at 13 MPa and have failed before 10^9 cycles. Fig. 6 shows the experimental dataset in an S-N plot: both failures from specimens without defects and

failures from specimens with artificial defects are reported. 15 295

Figure 6: S-N plot of the experimental dataset.

Fig. 6 confirms that the proposed ultrasonic testing methodology can be effectively used for the assessment 38 301 of the VHCF response of structural epoxy adhesives with thickness up to 200 μ m. More in detail, all the ₄₀ 302 fatigue failures originating in specimens without defects are at levels of stress amplitude above 16 MPa. Therefore, a conservative stress amplitude of 15 MPa can be considered as reference value for preventing 43 304 failures within the adhesive at 10^9 cycles. On the other hand, by considering the specimens with artificial 45 305 defects, the defect location clearly affects the VHCF strength. The specimens with an artificial surface defect are characterized by a significantly smaller VHCF strength: for examples, the specimens with surface defects ⁴⁸ 307 have failed at 13 MPa, whereas, below 16 MPa, no failures have been found for specimens without defects. 50 308 The internal defect is instead not detrimental for the VHCF response. The specimen with the internal defect has failed at 17 MPa at $1.85 \cdot 10^7$ cycles, with a VHCF strength close to the VHCF strength of specimens ⁵³ 310 without defects.

- 55 311
- 57 312
- ⁵⁸ 313
- 60 314

3.3. Fracture surfaces

The fracture surfaces of all the failed specimens have been observed with the optical microscope. Fig. 7 shows a typical fracture surface for the specimens without artificial defects: Fig. 7a) and Fig. 7b) show the two 10 319 adherends of the same tested specimen.

(a)

Figure 7: Typical fracture surface for specimens without artificial defects: a) adherend 1; b) adherend 2.

35 323 Three distinct regions, characterized by different morphologies, can be clearly observed on the fracture surfaces:

- *Crack nucleation region*: in this region, the crack originates in proximity of the specimen free surface. 40 326 The fracture surface shows an interfacial nature: as shown in Fig. 7a, the metal surface of adherend ₄₂ 327 1 is clearly visible.
- Steady propagation: in this region, the fracture surface shows a cohesive nature and the adhesive is 45 329 visibly darker on the fracture surface. The maximum extension of this region corresponds to the size ₄₇ 330 of the crack that causes the interruption of the test due to a significant reduction of the resonance frequency of the specimen (i.e., the test is interrupted if the resonance frequency of the specimen 50 332 drops below 19450 Hz).
- ₅₂ 333 Final failure: this region, of cohesive nature, is characterized by a lighter colour than that in the second zone and is similar to that obtained in the quasi-static tests (Fig. 5b).

57 336 The fracture surfaces of the specimens with artificial defects have been also observed with the optical microscope. For one of the two adherends, Fig. 8a) shows the fracture surface of the specimen with

4

14 15 16

17 18 340

19 20 341

25

26

28

30

31

33

35

36

38

internal defect, Fig. 8b) shows the fracture surface of the specimen with surface defect and Fig. 8c) shows 338 339 the fracture surface of the specimen with surface and internal defect.

2 mm 2 mm 2 mm

(a)

Figure 8: Fracture surfaces of specimens with artificial defects: a) specimen with internal defect: b) specimen with surface defect; c) specimen with surface and internal defects.

(b)

(c)

24 343 For the specimens with surface defects (Fig. 8b and Fig. 8c), the crack starts propagating from the artificial 344 defect: in this region, the morphology is similar to the morphology of the region "Nucleation region" in Fig. 27 345 7. On the contrary, in the specimen with the internal artificial defect (Fig 8a), the fatigue crack does not start ₂₉ 346 propagating from the defect, but it still originates from the specimen surface, with the fracture surface similar 347 to that of specimens with no artificial defects. It is worth to note that, as shown in Ref.¹⁶, even if small regions 32 348 without adhesive and characterized by an imperfect bonding (simulated in Ref.¹⁶ by randomly separating the 34 349 nodes at the interface between the adhesive and the adherends) are present, the applied stress amplitude 350 within the adhesive layer is only locally altered in the vicinity of the defect. This is confirmed by the fact that, 37 351 even though an internal defect is present, the crack starts propagating from the surface (the weakest region) 39 352 with a VHCF strength similar to that of specimens without defects.

40 353 The fracture surfaces have been also observed with the Scanning Electron Microscope (SEM). A Zeiss 41 42 354 SUPRA40 Field Emission-SEM has been used, by considering an accelerating voltage of 10 kV with a secondary 43 44 355 emission signal. The fracture surfaces have been coated with a gold layer of 10 nm. Fig. 9 displays SEM images 45 356 at different magnification of one representative fracture surface. In Figs 9a), 9b) and 9c), the steady 46 47 357 propagation region is shown at three magnifications, 100x, 500x, and 1000x, respectively; whereas Figs 9d) 48 49 358 and 9e) display the final fracture region observed at a magnification of 100x and 500x, with a detail of a 50 359 microsphere in Fig. 9e). 51

- ⁵² 360 53 54 55 56
- 57
- 58
- 59 60

Fig. 9a) shows that the morphology in the region of steady propagation is uniform. In Fig. 9b) and 9c),
 obtained at higher magnification, more details on the crack propagation region can be observed: in particular,
 the red arrows indicate areas of possible delamination and signs of crack propagation; whereas, the yellow
 arrows highlight micro-voids, with an average size of 10 μm, formed during the crack propagation or during
 the joint preparation. The same features, micro-voids and propagation lines, are not present in the region of

final fracture, shown in Fig. 9d). Figure 9e) shows a detail of a microsphere: the diameter has been measured and found to be equal to $200 \,\mu m$, as declared by the adhesive supplier.

3.4. P-S-N curves

10 374

42 386

12 375 The P-S-N curves have been finally estimated. According to the literature (consider, for example, Reference²² and the references therein), the logarithm of fatigue life is assumed to follow a Normal distribution with 15 377 constant standard deviation, σ_Y , and mean that linearly depends on the applied stress amplitude ($\mu_Y(x) = c_Y$ 17 378 $+ m_{Y} x$, being x the logarithm of the applied stress amplitude and c_{Y} and m_{Y} constant coefficients). The constant parameters of the distribution have been estimated by considering only specimens without artificial defects and by applying the Maximum Likelihood Principle in order to take into account both failures and 22 381 runouts.

Fig. 10 shows the estimated median, the 0.95-th, 0.05-th and 0.01-th quantiles of the P-S-N curves, together with the experimental data. The VHCF response of the specimens with artificial defects are also reported on 27 384 the P-S-N plot.

47 389 According to Fig. 10, the estimated P-S-N curves are in good agreement with the experimental data: seven failures out of thirteen (about 50%) are below the median curve (Fig. 10). Furthermore, twelve failures out of thirteen are within the estimated 90% confidence interval, confirming that the statistical model is 52 392 appropriate both for epoxy adhesives and for metallic materials²². The 1% probability P-S-N curve is below all the experimental failures of specimens without artificial defects and, therefore, can be conservatively considered as a design curve¹⁴ for butt-joints with the Betaforce 4600G structural adhesive. Moreover, the 57 395 P-S-N curves confirms the influence of defect location on the VHCF strength. The failure associated to the specimen with the artificial internal defect is slightly below the estimated 5% P-S-N curve, but conservatively ⁶⁰ 397 above the 1% design curve, thus confirming that internal defects are less detrimental. On the contrary, the

398 two failures with surface artificial defects are significantly below the design curve. Therefore, it can be 399 concluded that the 1% P-S-N curve can be used as design curve provided that large surface defects are not 400 present in the butt-joints. On the contrary, in case of butt-joints with large surface defects, the fatigue 401 strength is significantly lowered, with possible premature and dangerous failures even for very low stress 10 402 amplitudes.

¹³ 404 4. CONCLUSIONS

1 2 3

4

5 6

7 8

9

11 12 ⁴⁰³

14 15 405 16

18

19

21

23

26

44

58

17 406 In the present paper, the VHCF response up to 10^9 cycles of a structural adhesive for automotive applications, 407 epoxy Betaforce 4600G adhesive modified with microsphere of 200 μ m diameter for the thickness control, 20 408 was experimentally assessed. Fully reversed tension-compression ultrasonic fatigue tests (working frequency of 20 kHz) were carried out on butt-joints obtained by bonding two Ti6Al4V bars with the investigated 22 409 23 24 410 adhesive. The ultrasonic testing machine developed by the Authors for testing adhesives was used for the ²⁵ 411 experimental tests.

27 28 412 Eighteen tests were carried on adhesive butt-joint specimens with no large macroscopic defects within the ²⁹ 413 adhesive. Thirteen specimens failed between $8.75 \cdot 10^5$ e $2.57 \cdot 10^8$ cycles in a range of applied stress 30 31 414 amplitude between 16 and 26 MPa. No failures occurred at levels of stress amplitude below 16 MPa. 32 33⁴¹⁵ Therefore, a conservative stress amplitude of 15 MPa was considered as reference value for preventing ³⁴ 416 failures within the tested adhesive at 10^9 cycles. 35

³⁶ 417 Three tests were also carried out on adhesive butt-joints with large artificial defects within the adhesive. A 37 38 418 significant dependence between the VHCF strength and the defect location was found: specimens with 39 40 419 artificial surface defects were characterized by a VHCF strength significantly smaller (failures occurred at 13 41 42 420 MPa) than that of specimens without artificial defects. On the other hand, the specimen with the internal 43 421 defect was characterized by a VHCF strength close to that of specimens without defects.

⁴⁵ 422 Fracture surfaces were investigated with the optical microscope. A peculiar fracture surface morphology was 46 47 423 found in all the experimental failures. In particular, three characteristic regions, with different morphologies, 48 .0 49 424 were observed on the fracture surfaces. The first region, in which the fatigue crack originated, was ⁵⁰ 425 characterized by an interfacial nature; whereas, the second (steadily crack propagation) and the third regions 51 52 426 (final fracture) were characterized by a cohesive nature. The fracture surface morphologies of specimens 53 54 427 with artificial defects were similar to the fracture surface morphology of specimens without defects, even in ⁵⁵ 428 case of specimens with internal defects, thus confirming that the surface region is the most critical for the 56 57 429 VHCF response.

59 430 Finally, the P-S-N curves were estimated and analyzed. Data points related to specimens without defects and 60 431 to the specimen with internal defect were above the 1% P-S-N curve. Therefore, the 1% P-S-N curve was

1		
3	432	conservatively considered as a design curve for the investigated butt-joint, provided that large macroscopic
4 5	433	defects are not present.
6 7	434	To conclude, the experimental results confirmed that ultrasonic fatigue tests can be effectively carried out
8 9	435	on structural adhesives with thickness up to $200~\mu m$ and highlighted that, even in the VHCF region, surface
10	436	plays a major role for crack nucleation.
12	437	
13 14	137	
15	438	Author Contributions: Andrea Tridello carried out the VHCF tests, analysed the VHCF test results, observed
17	439	the fracture surfaces with the optical microscope and wrote the paper; Raffaele Ciardiello prepared the
18 19	440	specimens, performed the static tests, observed the fracture surfaces with the Scanning Electron Microscope
20	441	(SEM) and made additions to the paper; Davide S. Paolino has supervised the work and reviewed the full
21 22	442	manuscript; Luca Goglio has supervised the work and reviewed the full manuscript.
23 24	443	
25		
26 27	444	REFERENCES
28 29 30 31 32 33 34 35 36 37 38	445 446	1 Banea MD, da Silva LFM. Adhesively bonded joints in composite materials: An overview. P. I. Mech. Eng. LJ. Mat. 2009, 223: 1-18.
	447 448	2 Rudawska A. Adhesive joint strength of hybrid assemblies: Titanium sheet-composites and aluminium sheet-composites—Experimental and numerical verification. Int. J. Adhes. Adhes. 2010; 30(7): 574-582.
	449 450	3 Casalegno V, Salvo M, Rizzo S, Goglio L, Damiano O, Ferraris M. Joining of carbon fibre reinforced polymer to Al-Si alloy for space applications. Int. J. Adhes. Adhes. 2018; 82: 146-152.
	451 452	4 Ciardiello R, Belingardi G, Martorana B, Brunella V. Physical and mechanical properties of a reversible adhesive for automotive applications. Int. J. Adhes. Adhes. 2019; 89: 117–128.
39 40	453	5 Jambor A, Beyer M. New cars-new materials. Mater. Design 1997; 18: 203-209.
41 42 43 44 45	454 455	6 Li Y., Lin Z., Jiang A., Chen G. Experimental study of glass-fiber mat thermoplastic material impact properties and lightweight automobile body analysis. Mater. Des. 2004; 25: 579-85.
	456 457	7 da Silva LFM, Ochsner A, Adams RD. Handbook of Adhesion Technology. 1st Edition. Springer-Verlag Berlin Heidelberg; 2011.
47 48	458 459	8 Belingardi G, Chiandussi G. Stress flow in thin walled box beams obtained by adhesive bonding joining technology. Int. J. Adhes. Adhes. 2004; 24: 423–439.
50 51	460 461	9 Raftery GM, Harte AM, Rodd PD. Bonding of FRP materials to wood using thin epoxy gluelines. Int. J. Adhes. Adhes. 2009; 29: 580-588.
52 53 54 55 56 57 58 58	462 463	10 Imanaka M, Hamano T, Morimoto A, Ashino R, Kimoto M. Fatigue damage evaluation of adhesively bonded butt joints with a rubber modified epoxy adhesive. J. Adhes. Sci. Technol. 2003; 17:7: 981-994.
	464 465 466	11 Banea MD, da Silva LFM, Carbas RJC, Cavalcanti DKK, De Souza LFG. The effect of environment and fatigue loading on the behaviour of TEPs-modified adhesives (In press). J Adhesion. doi.org/10.1080/00218464.2019.1680546
60	467	12 Bathias C, Paris PC. Gigacycle Fatigue in Mechanical Practice, 1st ed.; CRC Dekker, New York, USA, 2004.

³ 468 13 Shanyavskiy AA. Very-High-Cycle-Fatigue of in-service air-engine blades, compressor and turbine. Sci.
 ⁴ 469 China Phys. Mech. Astron. 2014; 57: 19-29.

- 470 14 Tridello, A. VHCF response of Gaussian specimens made of high-strength steels: comparison between
 7 471 unrefined and refined AISI H13. Fatigue Fract. Engng. Mater. Struct. 2017; 40 (Issue 10): 1676–1689.
- 9 472 15 Tridello A., Paolino D.S., Chiandussi G., Rossetto M. Effect of electroslag remelting on the VHCF response
 10 473 of an AISI H13 steel. Fatigue Fract. Engng. Mater. Struct. 2017; 40 (Issue 11), 1783–1794.
- 12 474 16 Tridello A, Paolino DS, Chiandussi G, Goglio L. An innovative testing technique for assessing the VHCF 13 475 response of adhesively bonded joints. Fatigue Fract. Engng. Mater. Struct. 2019; 42: 84–96.
- 14
 15 476 17 Standard E1876–09 (2009). Standard test method for dynamic Young's modulus, shear modulus, and
 16 477 Poisson's ratio by impulse excitation of vibrations, ASTM Standard, West Conshohocken (PA).
- 17
 18 Standard E756 05 (2017). Standard Test Method for Measuring Vibration-Damping Properties of
 19 479 Materials, ASTM Standard, West Conshohocken (PA).
- 20
 21 480 19 Stanzl-Tschegg S. Very high cycle fatigue measuring techniques. Int. J. Fatigue 2014; 60, 2-17.
- 481 20 Mayer H. Recent developments in ultrasonic fatigue. Fatigue Fract. Eng. Mater. Struct. 2016; 39 (issue 1), 3-29.
- ²⁵ 483
 ²⁶ 484
 ²⁶ 484
 ²⁷ 484
 ²⁶ adhesives under combined static or high-rate loading. Int. J. Adhes. Adhes. 2016; 67: 86-93.
- ²⁸ 485
 ²⁹ 486
 ²⁹ 486
 ²⁰ a
 ²⁰ 486
 ²⁰ 486
 ²¹ 20
 ²² 30
 ²³ 486
 ²⁴ 22
 ²⁵ 22
 ²⁶ 22
 ²⁷ 20
 ²⁸ 22
 ²⁸ 22
 ²⁹ 22
 ²⁰ 22