
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Inference on the Edge: Performance Analysis of an Image Classification Task Using Off-The-Shelf CPUs and Open-
Source ConvNets / Peluso, V.; Rizzo, R. G.; Cipolletta, A.; Calimera, A.. - (2019), pp. 454-459. (Intervento presentato al
convegno 6th International Conference on Social Networks Analysis, Management and Security, SNAMS 2019 tenutosi
a esp nel 2019) [10.1109/SNAMS.2019.8931889].

Original

Inference on the Edge: Performance Analysis of an Image Classification Task Using Off-The-Shelf
CPUs and Open-Source ConvNets

Publisher:

Published
DOI:10.1109/SNAMS.2019.8931889

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2816982 since: 2020-04-28T16:29:57Z

Institute of Electrical and Electronics Engineers Inc.



Inference On The Edge: Performance Analysis of
an Image Classification Task Using Off-the-shelf

CPUs and Open-Source ConvNets
Valentino Peluso, Roberto G. Rizzo, Antonio Cipolletta, Andrea Calimera

Department of Control and Computer Engineering,
Politecnico di Torino, 10129 Turin, Italy

Mail: andrea.calimera@polito.it

Abstract—The portability of Convolutional Neural Networks
(ConvNets) on the mobile edge of the Internet has proven
extremely challenging. Embedded CPUs commonly adopted on
portable devices were designed and optimized for different kinds
of applications, hence they suffer high latency when dealing
with the parallel workload of ConvNets. Reduction techniques
playing at the algorithmic level are viable options to improve
performance, e.g. topology optimization using alternative forms
of convolution and arithmetic relaxation via fixed-point quan-
tization. However, their efficacy is hardware sensitive. This
paper provides an overview of these issues using as a case
study an image classification task implemented through open-
source resources, namely different architectures of MobileNet
(v1), scaled, trained and quantized for the ImageNet dataset.
In this work, we quantify the accuracy-performance trade-off
on a commercial board hosting an ARM Cortex-A big.LITTLE
system-on-chip. Experimental results reveal mismatches which
arise from the hardware.

I. INTRODUCTION

The creation of a smart society goes through the ability to
communicate information efficiently. The role of the ICT is
to provide the technology stack by which highly informative
data can flow from/to humans/machines autonomously. In this
regard, Internet-of-Things (IoT) and Machine-Learning (ML)
are twin pillars. IoT technologies enable ubiquitous devices
to sample and transmit data over the Internet. An efficient
implementation of IoT encompasses fast connectivity across
safe mobile networks, as well as accurate sensors and actuators
integrated into mobile platforms. ML is the software infras-
tructure that allows machines to evolve from simple controllers
to agents that learn. It includes algorithms, statistical models,
and training strategies used to infer abstract information from
raw data and to discover relationships among unknown condi-
tions. Together, IoT and ML contribute to the implementation
of intelligent services capable of predicting upcoming events
or trends and that can take decisions accordingly.
IoT and ML work as vertical layers bonded by a mutual need
of deploying the inference stage on the edge, i.e. on the end-
nodes of the Internet, where data are generated. For the IoT,
“edge inference” is a means to achieve (i) real-time service
response, (ii) less energy waste due to data movement from/to
the cloud, (iii) more privacy as data stay local [1]. For ML, it
means to improve the training stage as (i) data are processed
earlier, before being stacked on huge data-bases from which is

hard to distill new knowledge, (ii) distributed sensors become
active nodes that contribute with their computational power
alleviating the workload of data-centers [2].
Among the existing classes of ML methods, Deep Learn-
ing (DL) is the one that can benefit most from the edge
computing paradigm. Indeed, DL is a supervised learning
strategy that requires a huge amount of heterogeneous data and
high computational power to work properly. It reached large
popularity due to its ability to train feed-forward Deep Neural
Networks (DNNs) which have proven very efficient for end-to-
end classification of unstructured data, like images, audio, and
text. Convolutional Neural Networks (ConvNets), in particular,
achieved breakthroughs in several domains. Computer vision,
speech recognition, and natural language processing are practi-
cal examples where ConvNets exceeded human-level accuracy.
Within such domains, to enable inference on the edge means
to deploy ConvNets on mobile devices.
The shift towards the edge is not a free lunch, however.
ConvNets are computationally expensive: even the simplest
topology has millions of parameters to store and billions of
multiply-and-accumulate operations to run for a single for-
ward pass. Mobile devices, like smartphones, drones, vehicles,
might not have enough resources to host this kind of workload.
Hence, the challenge is to accelerate the processing in order
to achieve real-time response with a limited budget of energy.
There exist several strategies to accomplish this task that span
the whole design hierarchy [3], from hardware [4], designing
specialized accelerators, e.g. low-power spatial architectures
with tightly coupled execution units, to software [5], lever-
aging algorithmic optimization to reduce the cardinality of
the ConvNet still preserving accuracy. High efficiency can
be achieved with holistic approaches where hardware and
software are vertically co-designed. Unfortunately, this is not
always possible as many applications are built upon off-the-
shelf components to ensure low design costs, fast prototyping,
and short turnaround. The degrees of freedom are therefore
limited and the efficiency of algorithmic optimization might
be substantially affected.
In this paper, we report on the performance of a practical case
study: an image classification task implemented with a popular
ConvNet, i.e. MobileNet (v1) by Google [6], deployed on a
commercial chipset, i.e. the Samsung Exynos 5422 SoC [7],



Conv1
Pool1 Conv2

Pool2 Conv3

Pool3 Conv4

Pool4 Conv5
Pool5

fc6 fc7

fc8+Softmax

Cat

Figure 1: Generic ConvNet Architecture for Image Classification.

through an open-source inference engine, i.e. TensorFlow Lite
by Google [8]. The analysis aims at quantifying the impact of
optimization at the algorithmic-level, i.e. topology reduction
and arithmetic relaxation via fixed-point quantization, on the
two commercial mobile CPUs embedded in the adopted SoC,
i.e. the Cortex-A7 and the Cortex-A15 cores provided by ARM
through the big.LITTLE ARMv7 architecture [9]. Results
plotted in the accuracy-latency space reveal different trends
depending on the hosting CPU.

II. IMAGE CLASSIFICATION WITH MOBILENET

A. Overview on Deep Convolutional Neural Networks

Image classification is to recognize the content of an image
and to classify it with the labels that were available at training
time. Several computer vision applications leverage this task
to extract semantic information. A practical example comes
from social media platforms which run image classification to
generate descriptions, captions, tags and, in general, for copy-
writing. Other emerging applications are automatic indexing of
biomedical images, fault detection on manufactured goods or
predictive maintenance for tools and machinery in a fab-line,
segmentation and object recognition for augmented reality in
education and retail.
Starting from the astounding results obtained by Krizhevsky
et al. [10] in 2012, ConvNets evolved quickly achieving
impressive results. However, it is possible to recognize some
basic characteristics common to many models. The organi-
zation of a ConvNet reflects the hierarchical structure of the
primary sensory areas of the visual cortex [11]. The rationale
is the same implemented by the human brain, indeed: extract,
evaluate and combine features that have been learned to be
common among the majority of samples belonging to the same
class. The feature extraction is hierarchical, namely, low-level
features are extracted first and then used to extract features
at a higher level. Intuitively, edges may form shapes, which
in turn may form objects. Features at the higher levels are
then used to classify the content of the picture. This sequential
procedure is built through a chain of computational layers that
implement algebraic operations on matrices. Fig. 1 shows the
topology of a generic ConvNet. Convolutional layers (light
blue blocks) run matrix-matrix convolution between their local

filters and the multi-dimensional map generated by previous
layers; filters correspond to different features to extract. Ac-
tivation layers (mid-blue blocks) introduce non-linearity in
the feature space applying specific functions, e.g. Rectified
Linear Unit (ReLU), on the output map produced by the
convolutional layers; non-linearity helps to amplify semantic
differences. Finally, reduction layers (dark blue blocks) apply a
sub-sampling of the activation maps using functions like max-
pooling or average pooling; sub-sampling helps in reducing
the cardinality of the features, increase the level of abstraction
and make classification less sensible to geometrical distortions.
Once all the features have been extracted, the last stages of a
ConvNets implement the actual classification. Fully connected
layers (yellow blocks) serve this purpose using multi-layer
perceptrons that apply geometric separation. At the very last
stage, a softmax function is used to score the available labels;
the one with the highest probability identifies the class.

B. MobileNet: a ConvNet for Mobile Applications
In the beginning, ConvNets were mainly optimized to improve
accuracy. This brought to deeper and more complex models
with increased size [12] [13] [14]. The growing demand
for portable applications pushed designers to focus on more
compact and fast ConvNets: MobileNet is an example. It is
based on the concept of depth-wise separable convolution
originally introduced in [15]. As depicted in Fig. 2, a stan-
dard convolution is factorized as two consecutive stages: (1)
depthwise convolution, where each input channel is convolved
with each single filter; (2) pointwise convolution, where 1×1
convolutions combine the outputs generated by the depthwise
convolution. The result is an approximation of the standard
convolution with fewer arithmetic operations.
For a standard convolution, assuming stride one and padding,
the number of multiplications P is given as follows:

Pstd = DK ·DK ·M ·N ·DF ·DF (1)

with M the number of input channels, N the number of output
channels, DK ×DK the kernel size, and DF ×DF the size
of the feature map. For a depthwise separable convolution the
contributions are two, that of the depthwise stage:

Pdw = DK ·DK ·M ·DF ·DF (2)



* …

NDF

DF

M DK
DK

D’F

D’F N
M

(a)

DF

DF

M

*
D’F

D’F M
* …

N
1

1

D’F

D’F NDK

DK
111 M

1. Depthwise Convolution 2. Pointwise Convolution
(b)

Figure 2: Standard Convolution (a) vs. Depthwise Separable Convolution (b).

and that of pointwise stage:

Ppw =M ·N ·DF ·DF (3)

The total number is the sum Pdws = Pdw + Ppw. Therefore,
the resulting reduction factor w.r.t. standard convolution is:

σ =
Pdws

Pstd
=

1

N
+

1

D2
K

(4)

As reported in [6], MobileNets with 3 × 3 depthwise convo-
lutions reach compression in the range 8×-9×.
In this work, we make use of the pre-trained models available
in the TensorFlow Hosted Models [16] repository for an input
resolution of 224× 224.

C. ImageNet

The ImageNet dataset [17] collects more than 15 millions
high-resolution images classified with roughly 22,000 classes.
Since 2010, images have been collected from the web and
labeled by humans using Amazon Mechanical Turk crowd-
sourcing tool. As part of the Pascal Visual Object Challenge,
an annual competition called ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC) adopts the ImageNet as test-
bench. There exist different versions of ImageNet, each of
them of a different size. The one used to train MobileNet
(v1) is the ILSVRC12. It consists of 1.2 million samples
distributed across 1000 different classes; the validation set
contains 50,000 images, while the test set is made of 100,000
images. For the training stage of MobileNet, images are
resized to 224×224 by cropping the center of the original
versions.

III. TOWARDS THE EDGE: MOBILENET OPTIMIZATION

Even if MobileNet is already a lightweight ConvNet, mobile
applications may call for additional optimization to achieve
higher performance and/or meet stringent energy budgets.
The two orthogonal techniques analyzed in this work play at
different levels of granularity: (i) topology-level, (ii) weight-
level. The former applies a layer re-sizing, the latter plays with
the arithmetic precision of the inner parameters leveraging a
fixed-point quantization.

Topology-level optimization MobileNet gives the possibility
to tune a hyper-parameter α ∈ (0, 1] which defines the layers
width multiplier, being the baseline model defined with α=1.
Such parameter defines the ratio of input and output channels
dropped within each depthwise convolution layer. For instance,
given a layer with M input channels and N output channels,
the scaled model counts α ·M and α ·N channels respectively.
The overall number of multiplications within a depthwise
separalable convolutional is as follows:

Pdws = DK ·DK ·αM ·DF ·DF +αM ·αN ·DF ·DF (5)

Pre-trained models are available for α = {0.25, 0.5, 0.75, 1.0}.
Width multiplier has the effect of reducing the number of
multiplications and parameters by roughly α2. To notice that
all depthwise convolutions share the same α.
Weight-level optimization Quantization via fixed-point rep-
resentation is commonly used to shrink the model size. The
pre-trained weights of a floating-point ConvNet can be mapped
into a discrete space using integer representations. This arith-
metic shift enables to: (i) reduce the memory footprint by a
factor proportional to the number of scaled bit; (ii) accelerate
inference thanks to lower memory bandwidth. The bit-width
may range from 16- to 2-bit [18]. However, there is a wide
consensus that 8-bit is enough to prevent accuracy loss.
Several quantization methods and scaling schemes do ex-
ist, each with different performance and accuracy. The one
adopted on the pre-trained MobileNets publicly available
in [16] is asymmetric [19]. Such scheme maps real numbers r
to integers q, as depicted in Fig. 3. A more formal formulation
is given in the following equation:

q = bS · r + Ze (6)

where the b·e operator refers to nearest integer rounding. The
min./max. values of the floating-point distribution are mapped
to the min./max. values of the integer range. This is obtained
by means of two parameters: S and Z. The former is the
scale factor (or slope), the latter is quantization offset (or zero-
point). The scale factor S is a positive real number defined as:

S =
qmax − qmin

rmax − rmin
(7)



𝒁 = −𝑺 % 𝒓𝒎𝒊𝒏

𝒓𝒎𝒊𝒏 𝒓𝒎𝒂𝒙𝟎	

𝟎	 𝟐𝟓𝟓	

Floating-point (32-bit)

Fixed-point (8-bit) 

Figure 3: Asymmetric Quantization scheme.

with qmin = 0, qmax = 2n − 1, and n the bit-width of the
integer representation. The offset Z is the quantized value q
corresponding to the real value 0. That implies that the real
value r = 0.0 is mapped onto an exact fixed-point number. This
is an important aspect as ConvNets may show high sparsity.
To notice that all the layers share the same bit-width
n=8, while the quantization scheme is applied channel-wise,
namely, each filter within each convolutional layer has its own
quantization scale factor S and offset Z. This is paramount as
filters show uneven weights distributions [20].

IV. THE EMBEDDED PLATFORM

A. Hardware Specifications

The commercial board adopted as the hardware test-bench is
the ODROID-XU4 developed by Hardkernel. It integrates the
Samsung Exynos 5422 System-on-Chip (SoC) powered with
a 32-bit ARM big.LITTLE architecture widely used in high-
end embedded platforms. As reported in Table I, the SoC is an
octa-core split into two quad-core clusters: big and LITTE.
The former is the high-performance cluster consisting of four
Cortex-A15 cores running at a maximum frequency of 2GHz;
the latter is the low-power cluster with four Cortex-A7 cores
running at a maximum frequency of 1.4GHz. A private 32 kB
L1 cache is available for each single core, while the L2 cache
is shared by cores belonging to the same cluster: 2MB for
big, 512 kB for LITTLE. Lastly, 2GB of on-chip RAM is
shared between the two clusters.
It is worth mentioning that the two clusters are used separately
in this work. Indeed, the goal is to assess the effect of
algorithmic-level optimization on different architectures and
not to measure the maximum performance of the whole SoC.

B. Arm NEON Technology

Single-Instruction Multiple Data (SIMD) refers to the class of
architectures which rely on multiple processing elements to
accelerate highly parallel workloads, like ConvNets. With one
single instruction and multiple pieces of data loaded up, the
same operation is executed over all the data simultaneously
obtaining performance boost.
Both Cortex-A15 and Cortex-A7 come with the NEON tech-
nology, a 128-bit SIMD data-path designed to give support
to multimedia applications. This NEON unit is programmable
and can support vector operations over different types of data:
signed/unsigned integers with 8, 16, or 32 bit-width, and 32-
bit single-precision floating-point. Obviously, the maximum
parallelism reduces with the increase of the bit-width. A
32×64-bit register file works as the local memory which can

Table I: Hardware specifications of the Samsung Exynos 5422
SoC integrated into the ODROID-XU4 board.

Cluster CPUs Freq. L1 L2 RAM
big 4×A15 2GHz 4×32 kB 2MB

2GBLITTLE 4×A7 1.4GHz 4×32 kB 512 kB

host up to 256 (8-bit) integers or, alternatively, 64 (32-bit)
floats. This flexibility allows an efficient handling of vectors
and better utilization of the bandwidth.

V. EXPERIMENTAL RESULTS

A joint combination of the optimization methods introduced in
Section III gives developers a unique opportunity to balance
memory footprint, performance and prediction accuracy, on
the base of system requirements and/or the available hardware
resources. The results collected in this section quantify such
metrics through a trade-off analysis. The contents are orga-
nized as follows. First, we introduce the on-board environment
used to collect the performance statistics. Second, we provide
a memory-accuracy analysis of the pre-trained MobileNet
models; this analysis is hardware-independent, namely it holds
the same whatever the hosting CPU is. Third, we show
the performance-accuracy analysis for the target architectures
introduced in Section IV. Though is intuitive that optimized,
hence less complex MobileNets are faster and less accurate,
our analysis aims to identify solutions that are best in either
accuracy or performance, that is, identify the optimal settings
which can be deployed to cover different operating constraints.

A. Inference Engine And The On-board Environment

TensorFlow Lite (TFL) by Google is an inference engine, i.e.
a collection of software routines for deep learning, highly
optimized to run tensor-graphs, like MobileNet, on the Cortex-
A architecture. More specifically, the convolution operators
leverage the ARM NEON instruction-set, for both the floating-
point and the integer implementations. TFL provides users
with an abstract interface that loads pre-trained models in the
tflite format. In our experiments, we used TensorFlow Lite
version 1.14, cross-compiled using the GNU ARM Embedded
Toolchain (version 6.5) [21].
TFL integrates a benchmarking utility, called TensorFlow
Lite Model Benchmark, to facilitate the measurement of the
inference time on the target device. Specifically, it assembles
random inputs and collects the latency statistics. The returned
value is the average execution time recorded on-board. In our
setup, we iterated over 100 runs, interleaved by a 2-second
pause to avoid thermal throttling. Since the first execution
needs more time to properly configure the model and allocate
memory, a warm-up run is executed before starting the actual
measurements. All the experiments are run in single-thread
mode.

B. Memory-Accuracy Analysis

As already mentioned in the previous sections, different ver-
sions of MobileNet are available in the TensorFlow Hosted
Models [16] repository. Those used in this work are sized



50% 55% 60% 65% 70%

Top-1 Accuracy

0

5

10

15
M
em

o
ry

(M
B
)

0.25
0.5

0.75
1.0

FP32

INT8

Pareto Front

Figure 4: Accuracy Memory trade-off for different α and
arithmetic precision for MobileNet (v1).

to handle 224 × 224 input images. We consider four differ-
ent topologies, namely α = {0.25, 0.5, 0.75, 1.0}, and two
arithmetic representations, the original floating-point (FP32)
and the 8-bit fixed-point (INT8). Overall, there are 8 different
ConvNets ported onto two CPUs for a total of 16 cases.
The plot drawn in Fig. 4 maps each configuration in the
memory-accuracy space. Accuracy refers to the top-1 classi-
fication accuracy measured on the ImageNet validation set.
Memory refers to the size of the tflite file containing the
data structures needed to port the model on-chip, including
the network weights and the topology description. Within the
plot, blue dots are for FP32, while orange crosses are for
INT8; configurations with the same topology, i.e. same α, are
grouped within an ellipse (dashed black line). The Pareto curve
(solid red line) connects the optimal configurations.
Several considerations can be drawn. Memory and accuracy
are monotone w.r.t. both α and arithmetic precision, yet with
a different slope. Quantization is very efficient. For any given
α, the memory reduction from FP32 to INT8 is ×3.7 with
limited accuracy loss (best-case 0.2% for α=1.0, worst-case
2.0% for α=0.5). An ideal FP32-to-INT8 scaling should return
×4 memory reduction, which is not the case in practice as the
model flashed on-board also contains auxiliary data structures,
such as the network topology and other layers’ parameters,
which do not scale with the arithmetic precision.
Even more interesting, quantization dominates over topology
scaling. For instance, the configuration α=1.0-INT8 has 2.5%
higher accuracy and 6.9MB less memory than α=0.75-FP32.
FP32 and INT8 accuracy get very close for larger values of α.
As a result, it is unlikely to use the configuration α=1.0-FP32
as it gains 0.2% in accuracy w.r.t. α=1.0-INT8 at the cost of
13.5MB of memory space. By contrast, the accuracy distance
between FP32 and INT8 increases as α gets smaller.
For the most lightweight model, i.e. α=0.25, the accuracy
reaches very low values: a mere 49.7% for FP32. However,
such low accuracy configurations might represent a baseline
for simpler applications, e.g. classification tasks with fewer
classes, run on less powerful CPUs.
As a final remark, it is important to highlight that this analysis
holds for the ImageNet dataset while different trends might be
observed for other kinds of applications. The same consider-
ation does hold for results reported in the next subsection.

Table II: Frames per second for different MobileNet configu-
rations on the ODROID-XU4 board.

A15 big A7 LITTLE
α FP32 INT8 FP32 INT8

0.25 43.86 56.11 8.87 14.24
0.50 14.52 24.19 2.92 5.97
0.75 6.81 13.63 1.45 3.24
1.00 4.16 8.96 0.87 2.10

C. Performance-Accuracy Analysis

This section first considers the performance gain brought by
algorithmic optimization on different hardware architectures,
then it focuses on a study of optimality across the latency-
accuracy space.
a) Performance Assessment: Table II collects the average
frames per second (FPS) measured for the 16 configurations
under analysis, namely α = {0.25, 0.5, 0.75, 1.0} using FP32
and INT8, deployed on the two target architecture, A15 and
A7 cores. Within the A15 core, topology scaling from α=1.0
to α=0.25 gets impressive speed-up: ×10.55 for FP32, ×6.26
for INT8. α=0.25 ensures real-time performance (>30 FPS)
for both FP32 and INT8. Obviously, the A7 core runs at
a lower frequency, hence it cannot achieve that throughput.
When considering the average over the four values of α, for
FP32 (INT8) the A15 core is 4.8× (4.1×) faster. Despite this
absolute differences, the speed-up trend is quite similar for
both the cores.
The use of quantized weights does not just reduce memory
(as shown in Fig. 4), but it also improves latency. However,
the performance gain of INT8 w.r.t. FP32 is strictly related to
the value of α and the underlying hardware architecture. For
the A15 core, the savings achieved by quantization range from
1.27× (row α=0.25) to 2.21× (row α=1.0); for the A7 core,
they go from 1.60× (row α=0.25) to 2.41× (row α=1.0). As
per these results, quantization looks more efficient on larger
networks deployed on small cores. Larger networks have more
convolutional filters, therefore the percentage of those param-
eters that benefit from precision scaling is larger. Concerning
the dependence from the core size, is the cache size to play
the key role. It is known that the larger the cache, the lower
the number of accesses to the main memory. To be considered
that single access to the main memory has a latency several
times longer than that of an arithmetic operation. The use of
a scaled bit-width increases the amount of data that resides in
cache. This helps to improve performance. Obviously, reduced
cache size has a larger impact on performance. That is why
an inference run on the smaller A7 core is more sensitive to
quantization.
b) Pareto Analysis: The plots in Fig. 5 maps each configura-
tion in the latency-accuracy space. Labels and markers have
the same meaning of those used in Fig. 4. The most evident
result is that the optimal configurations (Pareto curve - solid
red line) do change depending on the underlying hardware
architecture. The configuration α=0.5-FP32 is a representative
case: it is Pareto for the A15 core, but not for the A7. That
suggests algorithmic optimization unevenly improve latency



50% 55% 60% 65% 70%

Top-1 Accuracy

0

50

100

150

200

250

L
a
te
n
cy

(m
s)

0.25

0.5

0.75

1.0
FP32

INT8

Pareto Front

50% 55% 60% 65% 70%

Top-1 Accuracy

0

200

400

600

800

1000

L
a
te
n
cy

(m
s)

0.25

0.5

0.75

1.0
FP32

INT8

Pareto Front

Figure 5: Accuracy Latency trade-off for different α and arithmetic precision for MobileNet (v1): A15 (left), A7 (right)

depending on the hardware characteristics. Unlike for memory,
where INT8 configurations dominate (please refer to Fig. 4),
FP32 configurations may turn to be optimal when performance
comes into play. An example is given by the configuration
α=0.5-FP32 which is a Pareto point for the A15 core.
This analysis suggests that moving across the latency-accuracy
space is not trivial and it asks for an accurate optimality
assessment at first. Let us consider a practical example. To
improve the accuracy of the configuration α=0.75-INT8, it is
more convenient to scale up the network, namely to move on
α=1.0-INT8, rather than increasing the arithmetic precision as
one would intuitively think. In fact, α=1.0-INT8 shows higher
accuracy and lower latency for both A15 and A7. Overall,
optimal configurations cannot be defined a-priori and a proper
balance between topology organization and precision scaling
is needed. This is in line with existing works which propose
concurrent design exploration via Neural Architecture Search.

VI. CONCLUSIONS

There exist multiple design choices and optimization strategies
that can help to enable inference on the edge. Though all them
attack the same problem, namely to make ConvNets smaller
and faster, they play with different parameters and metrics.
Therefore, the effect of a joint combination should be carefully
weighed and balanced also depending on the characteristics of
the hosting hardware. The issue becomes quite relevant when
resources are severely limited, as for in the mobile segment.
This work assessed this aspect by proposing a parametric
study conducted for off-the-shelf components and ready-to-
use tools, i.e. different versions of MobileNet (v1), trained on
Imagenet, optimized with TensorFlow Lite, and deployed on
two commercial ARM CPUs. The collected results show the
relevance of the above problem providing a first reference to
developers who approach the problem.

ACKNOWLEDGMENT

Co-funded by Compagnia di San Paolo.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics, 2017, pp. 1273–1282.

[3] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” Proceedings of the IEEE, vol.
105, no. 12, pp. 2295–2329, 2017.

[4] G. Santoro, M. R. Casu, V. Peluso, A. Calimera, and M. Alioto, “Design-
space exploration of pareto-optimal architectures for deep learning with
dvfs,” in 2018 IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE, 2018, pp. 1–5.

[5] V. Peluso and A. Calimera, “Scalable-effort convnets for multilevel clas-
sification,” in 2018 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2018, pp. 1–8.

[6] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[7] Exynos 5 octa 5422 processor: Specs, features. [Online].
Available: https://www.samsung.com/semiconductor/minisite/exynos/
products/mobileprocessor/exynos-5-octa-5422

[8] Tensorflow lite. [Online]. Available: https://www.tensorflow.org/lite
[9] big.little technology: The future of mobile. [Online].

Available: https://www.arm.com/files/pdf/big LITTLE Technology
the Futue of Mobile.pdf

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[11] Y. Bengio et al., “Learning deep architectures for ai,” Foundations and
trends R© in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[12] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[14] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[15] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
Conference on Machine Learning, 2015, pp. 448–456.

[16] Tensorflow lite hosted models. [Online]. Available: https://www.
tensorflow.org/lite/guide/hosted models

[17] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International journal of computer
vision, vol. 115, no. 3, pp. 211–252, 2015.

[18] Y. G. L. X. Y. C. Aojun Zhou, Anbang Yao, “Incremental network
quantization: Towards lossless cnns with low-precision weights,” in
International Conference on Learning Representations,ICLR2017, 2017.

[19] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 2704–2713.

[20] R. Krishnamoorthi, “Quantizing deep convolutional networks for effi-
cient inference: A whitepaper,” arXiv preprint arXiv:1806.08342, 2018.

[21] Linaro toolchain. [Online]. Available: https://www.linaro.org/downloads/

https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422
https://www.tensorflow.org/lite
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.tensorflow.org/lite/guide/hosted_models
https://www.tensorflow.org/lite/guide/hosted_models
https://www.linaro.org/downloads/

