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Integer ConvNets on Embedded CPUs: Tools and
Performance Assessment on the Cortex-A Cores

Valentino Peluso, Antonio Cipolletta, Francesco Vaiana, Andrea Calimera
Politecnico di Torino, 10129 Torino, Italy

Abstract—Quantization via fixed-point representation is com-
monly used to reduce the complexity of Convolutional Neural Net-
works (ConvNets). It is particularly suited for accelerating edge-
inference on embedded devices as it enables to reduce resource
requirements with no loss of prediction quality. However, porting
integer ConvNets on low-end CPUs is not straightforward: it
calls for proper software design and organization with a high
degree of hardware awareness. Today there are plenty of fixed-
point libraries integrated into different inference engines which
provide design support. The aim of this work is to review the
most stable tools and analyze their performance on different use-
cases processed on embedded boards powered by Arm Cortex-A
cores. The collected results provide an interesting analysis with
useful guidelines for developers and hardware designers.

I. INTRODUCTION

There is a very active research branch, at the intersection
between deep learning and embedded systems, that is facing
a new challenge: move the inference stage from the cloud to
the edge, namely, on board of end-nodes like mobile phones,
drones, vehicles, etc. The availability of smart systems capable
of locally inferring highly informative data would bring about
the predictability of the service response time, more user
privacy, and the cut of continuous internet connectivity.

In order to meet the stringent energy constraints of mobile
applications, a typical end-node has too few computational
resources to guarantee the processing of ConvNets with an
acceptable latency. While new custom hardware accelerators
for the mobile segment are expected to reach massive pro-
duction soon, there are orthogonal approaches which rely on
software acceleration [1], [2]. These methods include compres-
sion techniques that shrink the complexity of the ConvNets
thus to fit low-cost embedded CPUs already available on the
market, e.g. the Cortex-A cores developed by Arm. In this
context, quantization is one of the most effective technique. It
translates a pre-trained floating-point ConvNet into an integer
model without loss of accuracy. Recent studies demonstrated
that 8-bit fixed-point integers ensure the same accuracy of
32-bit floating-point. The advantages brought by fixed-point
quantization are many. First, it allows to linearly reduce the
memory size of the model. Second, it is orthogonal to other
compression techniques like pruning and neural architecture
search. Third, it can reduce latency due to higher cache
utilization and lower memory bandwidth.

The focus of this work is on the third point. The fact that
integer ConvNets get faster just because they use scaled bit-
widths cannot be taken as granted. To achieve speed-up re-
quires a careful code optimization without which the potential

savings turn into overhead. Let’s consider the Cortex-A archi-
tecture. It comes with the NEON unit, an advanced single-
instruction multiple-data (SIMD) architecture that supports
integer vector operations. A proper use of such module allows
to maximize the parallelism, reduce the memory accesses
and hence achieve substantial performance boost. However,
a correct execution of multiply-and-accumulate operations
in fixed-point asks for additional instructions not needed in
floating-point, such as data extension, arithmetic shifts, etc.
An accurate schedule is crucial to avoid under-utilization of
the local memories (register file and caches) and the execution
lanes. It is clear that custom code optimization and a proper
compiling strategy are paramount.

Being-aware of this issue, both industry and academia are
investing in new tools and libraries that can support the deploy-
ment of integer ConvNets. The most representative examples
are Arm NN1 by Arm, ncnn by Tencent2, and TensorFlow Lite
by Google3. These tools provide an abstract user interface cou-
pled with specialized deep learning libraries that collect hand-
written kernels built with NEON intrinsics and/or assembly
code. Given the custom nature of such tools and kernels, it
is natural to ask whether they can generalize over multiple
tasks and use-cases. Different ConvNets make use of several
layers that may require alternative kind of optimization (e.g.
traditional convolution vs depth-wise convolution). Commonly
adopted embedded CPUs may have a different instruction
set (e.g. ARMv7 vs. ARMv8), cache memories differently
sized, and multiple clock frequencies. Moreover, there might
be cases where multi-thread execution can be adopted to boost
performances.

The complexity of the problem recalls the synthesis of dig-
ital circuits, where different descriptions of the same module
may lead to different quality-of-design, also depending on the
target technology node. The final solution is the result of an
iterative design flow tuned against the specific needs. Against
this background, the objective of this work is to try answering
the following questions: Are existing tools ready to handle
the heterogeneity of ConvNets on embedded systems? Are they
scalable? What’s the exact level of performance they achieve?

The paper first reviews existing tools and libraries for
the deployment of integer ConvNets on the Cortex-A CPUs.
Then, it introduces a performance assessment using different

1https://mlplatform.org/
2https://github.com/Tencent/ncnn
3https://www.tensorflow.org/lite



architectures and benchmarks, with emphasis on the aforemen-
tioned aspects.

II. INFERENCE ENGINES FOR INTEGER CONVNETS

The success of deep learning is driven by the availability of
open-source frameworks that accelerate training and inference
of deep neural networks. The most representative examples
are TensorFlow by Google and PyTorch by Facebook. Deep
learning frameworks support automatic differentiation (needed
for back-propagation) and integrate optimized computing li-
braries for the acceleration on GPUs and high-end CPUs. On
top of that, they offer a high-level interface that allows easy
use of the most common neural network layers. A designer
just needs to provide a model description, typically through a
Python class, and specify the training options (learning rates,
epochs, etc.) with few lines of code. These tools are not
devised for deploying and serving trained models on embedded
devices, hence the performance they achieve on low-end CPUs
shows substantial margins for optimization. Other solutions
tailored for edge-inference emerged in the last years. Referred
as inference engines, they serve as a bridge between deep
learning frameworks and embedded platforms.

Similarly to deep learning frameworks, inference engines
are structured on two layers: back-end and front-end. The
back-end is at the lowest level and its function is to collect
highly optimized neural kernels, generally written using intrin-
sics or assembly code. Since the mobile market offers diverse
hardware solutions (CPUs, GPUs, and DSPs), state-of-the-art
inference engines provide different back-ends. The front-end
operates at the highest level providing users with an interface
to import a pre-trained ConvNet and to run optimization for
the low-level implementation. The selection of the back-end is
done at compile time depending on the target architecture. It
is worth emphasizing that inference engines not only improve
the intrinsic performance of a ConvNet model, but also signif-
icantly reduce the code-size by dropping those functions that
are not needed during the feed-forward pass of the network.

The earliest versions of the inference engines were mainly
focused on the acceleration of floating-point ConvNets, but
with the recent advancements of compression methods and
the large demand for embedded applications, the new releases
integrated execution in fixed-point. Even though quantization
methods that leverage extreme bit-widths, e.g. 3 or 4-bit [3],
are currently available in literature, 8-bit represents the most
suited option. The Arm instruction set supports SIMD integer
instructions down to 8-bit, and playing with lower precision
would require extra operations to correctly feed the execution
units incurring latency penalty. That is why most of the
available tools give support for 8-bit only. As it will be
detailed in the next section, the implementation of 8-bit integer
ConvNets poses several challenges. Different methods do
exist which reflect the availability of several integer libraries
and back-ends. The study reported in this work considers
those integrated into three production-ready inference engines,
namely, Arm NN, ncnn, TensorFlow Lite, considered the most
advanced and stable solutions for Cortex-A CPUs.

Arm NN

TF Lite

ncnn

DEPLOYMENT
CROSS-LIBRARY

CONVERSION
ONNX

MODEL
LINK

CROSS-
COMPILATION

ARM GNU 
Compiler

Inference 
Engine

Google 
Benchmark

Figure 1. Abstract view of the benchmarking framework.

III. FIXED-POINT LIBRARIES

The belief that quantization alone leads to simpler arith-
metic and then to higher performance is not exactly true.
For such specific reason, the back-end side of any inference
engine is built upon dedicated low-level kernel libraries that
collect customized integer routines for the most common deep
learning layers, e.g. convolution, pooling, fully-connected,
activation, etc. Much effort is focused on the optimization of
convolutional kernels, well-known to be the most expensive
and critical layers in state-of-the-art neural networks. The
need for custom kernel optimization comes from several issues
which are synthetically reviewed in this section. Indeed, the
savings brought by quantization originate from a higher degree
of freedom in orchestrating the hardware resources. This is at
the same time an opportunity for optimization as well as a
source of variability.

First, the shift towards fixed-point numbers requires a quan-
tization scheme, either asymmetric (Arm NN and TensorFlow
Lite) or symmetric (ncnn). Regardless the adopted strategy,
both schemes need extra arithmetic operations which may
introduce overhead. The latter can be reduced by an efficient
design of input and output processing stages as dicussed
in [1], achieving variable gains depending on the underlying
architecture.

Second, the most common implementation of convolution
is based on general matrix-multiplication (GEMM) [4]. In its
general formulation, GEMM encompasses the transformation
of the multi-dimensional input tensors into two-dimensional
matrices. The dimension of these matrices is too large to
fit into the typical caches of embedded cores. Therefore,
the workload is split in smaller bunches of data processed
sequentially. The optimal size of these bunches may vary
depending on the ConvNet model and the target architecture.

Third, due to lower bit-width, 8-bit quantization enables to
store more data in the same memory, hence it reaches higher
cache hits. Furthermore, it alleviates the memory bandwidth,
as a single load/store operation can move multiple data within
the same instruction. However, identifying a unique strategy
for dispatching the data and feeding the arithmetic units is
not straightforward. The optimal solution depends on several
factors, such as the convolution parameters (filter size, strides,
etc.) which determines the dimension of matrices, the size of
caches and register file, the instruction set (32-bit vs 64-bit).

Fourth, a proper implementation of multiply-and-
accumulate (MAC) operations for integers needs particular
attention to avoid overflow and fast saturation. For instance,
MACs between 8-bit operands need 32-bit registers for
accumulation; in general-purpose CPUs, this calls for custom



Table I
OVERVIEW OF THE SELECTED BENCHMARKS.

Model # Weights [M] # MACs [M] Top-1 (%) Top-5 (%)
VGG19 143.7 19632 73.83 91.79
ResNet50 v1 25.5 3864 74.93 92.38
MobileNet v2 3.5 429 70.94 89.99

variable allocations into the register file, as well as different
scheduling of extension, multiplication, and sum reduction,
that can be implemented in many ways.

Last but not least, multi-thread acceleration can be managed
through different policies. Each inference engine adopts its
own. For instance, there exist custom libraries based on
pthread (like those in Arm NN and Tensorflow Lite) that
statically distribute the workload over the available cores.
Another solution is to adopt the OpenMP pragmas (like in
ncnn), where the optimization is left to the compiler.

From this qualitative analysis, it is clear that the per-
formances of integer ConvNets depend on a large number
of design variables. Hence, the orthogonal use of inference
engines is questionable.

IV. BENCHMARKING FRAMEWORK

To evaluate the performances of integer ConvNets, a cross-
library benchmarking framework has been designed. As a key
feature, it guarantees the inter-operation of the same model
among the different inference engines. A pictorial description
is given in Fig. 1. The input is a pre-trained network in Open
Neural Exchange (ONNX) format. The ONNX model is then
translated in a format that is compliant with the specification of
each target inference engine. This ensures the ConvNet under
analysis has exactly the same architecture and parameters (e.g.
strides, paddings, etc.) over all the experiments. The final out-
put is a C++ application that loads and configures the model on
the target core. The framework relies on the google benchmark
suite [5] to enable the collection of performance statistics at
run-time. The application is cross-compiled using the GNU
Arm Embedded Toolchain and linked with the respective pre-
compiled inference engine and the google benchmark suite.
Finally, the executable is downloaded to the target device and
the performance metrics are collected.

V. EXPERIMENTAL SET-UP AND RESULTS

A. Benchmarks

The selected benchmarks are three state-of-the-art ConvNets
whose characteristics are reported in Table I. VGG and ResNet
won the ImageNet competition in 2014 and 2015, respectively.
MobileNet is a network designed for embedded applications.
The table collects the number of trainable parameters (#
Weights) and multiply-and-accumulate operations (# MACs)
as well as the top-1 classification accuracy over the ImageNet
validation set. The models are taken from the ONNX model
zoo [6]. To notice that these networks are employed as features
extractor in several computer vision tasks, including object
detection, localization, and segmentation. Some examples are
Single-Shot Detectors [7] and Faster R-CNN models [8].

The three benchmarks are representative of different kinds
of workload: VGG is dominated by the fully-connected layers,

Table II
HARDWARE SPECIFICATIONS OF THE TARGET BOARDS.

Board ISA CPU Freq. MHz RAM GB L1 kB L2 kB
C2 ARMv8 A53 1536 2 32 512

XU4 ARMv7 A7 1400 2 32 512
A15 2000 2 32 2048

hence is memory-bounded; ResNet is thinner and deeper
and contains one single fully-connected layer as the last
stage for classification; MobileNet is a compact model (lower
number of parameters and operations) built upon depth-wise
convolutions. Such diversification is paramount to assess the
flexibility of the inference engines.

B. Hardware platforms

Two different commercial off-the-shelf boards were used
as test-benches: the ODROID-C2 and the ODROID-XU4.
They are powered by different versions of the Arm Cortex-A
CPU, an architecture largely employed on SoCs for embedded
applications. The technical specifications are summarized in
Table II. The C2 board hosts the Amlogic S905 SoC based on
a quad-core Cortex-A53 CPU, which belongs to the ARMv8
family. The XU4 board is powered by the Samsung Exynos
5422 SoC, a 32-bit big.LITTLE (ARMv7) integrating a high-
performance A15 CPU and a low-power A7 CPU, for a total
of 8 cores (4 core each); in our experiments, the two clusters
are used separately. Both the target boards run the Ubuntu
16.04 Mate distro released by Hardkernel. Multiple inference
runs have been iterated enabling 1, 2, 3, and 4 threads.
All the experiments are run with maximum clock frequency
(column Freq. in Table II).

C. Inference Engines and Toolchains

To ensure reproducibility of the experiments, we report the
versions of each tool integrated in the benchmarking frame-
work: Arm NN, ver. 19.05; ncnn, commit number bcfe9f4;
TensorFlow Lite, ver. 1.14; google benchmark suite, ver. 1.5.0;
Arm GNU Cross-Toolchain released by Linaro, ver. 6.5.
D. Experimental Results

Results are collected in Table III. Each column refers to a
different engine: Arm NN (A), ncnn (N), and TensorFlow Lite
(T), respectively. Reported values indicate the inference time
averaged over 100 runs, interleaved by a two-second pause
to avoid thermal throttling; numbers in bold identify the best
performance for each hardware-ConvNet configuration.

Arm NN reveals slower than its competitors. However, given
the high variability of results across different configurations,
it is fair to assume that there may be other use-cases with
different trends, e.g. other ConvNets or target cores. This
can be understood observing single-thread executions with the
Cortex-A53, where the performance gap highly depends on the
benchmark: for ResNet, Arm NN is only 33% slower than the
other engines, while for the other networks we observed a
much higher execution times (> ×2). To notice that for the
XU4 (rows A15 and A7), the results for VGG are not reported
as the benchmark crashed due to out-of-memory execution.
As general trend we observed Arm NN gets different memory



Table III
AVERAGE LATENCY [s] OVER 100 RUNS. THE DASH (–) INDICATES EXECUTION FAILED FOR OUT-OF-MEMORY ERROR.

BEST RESULTS ARE HIGHLIGHTED IN BOLD (LOWER IS BETTER).

CPU ConvNet 1 Thread 2 Threads 3 Threads 4 Threads
A N T A N T A N T A N T

A15
(XU4)

VGG19 – 2.12 2.79 – 1.34 1.53 – 0.95 1.14 – 0.92 0.95
ResNet50 3.40 0.75 0.58 1.77 0.42 0.33 1.23 0.30 0.25 0.96 0.26 0.21

MobileNet v2 1.60 0.17 0.15 0.83 0.09 0.09 0.57 0.06 0.07 0.45 0.05 0.06

A53
(C2)

VGG19 13.79 3.77 5.63 10.25 2.25 2.78 8.98 1.67 1.95 8.40 1.63 1.56
ResNet50 1.52 1.15 1.13 0.79 0.64 0.62 0.55 0.45 0.45 0.42 0.42 0.37

MobileNet v2 0.43 0.22 0.25 0.23 0.11 0.15 0.16 0.08 0.12 0.13 0.07 0.11

A7
(XU4)

VGG19 – 9.02 12.99 – 5.22 6.55 – 3.36 4.67 – 3.28 3.72
ResNet50 11.28 2.30 2.61 5.73 1.21 1.44 3.92 0.81 1.06 3.01 0.70 0.84

MobileNet v2 4.86 0.40 0.61 2.46 0.20 0.34 1.68 0.14 0.25 1.30 0.10 0.20
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Figure 2. Impact of multi-thread execution on the Cortex-A53 CPU.

usage depending on the hardware parallelism, 32- vs. 64-bit
These findings suggest that Arm NN makes use of different
memory allocation strategies on the two back-ends.

For a more intelligible analysis, the next paragraphs com-
ments on the achieved results addressing the three most
influencing factors: topology of the ConvNet (benchmark),
core architecture (hardware), parallel execution (multi-thread).
Unless specified, the analysis refers to single-thread execution.

Benchmark. ncnn achieves the best performances on VGG,
while TensorFlow Lite shows the lowest latency on ResNet.
Looking at the network architectures, this observation sug-
gests that ncnn kernels are more efficient for fully-connected
layers, the most expensive in the former ConvNet; instead,
TensorFlow Lite is faster in traditional convolutions. For the
two engines, we measured similar execution times in Mo-
bileNet, which is dominated by depth-wise convolutions. The
performance of the target engine is affected by the network
topology. An exception can be found for the A7 core, where
ncnn gets better in all cases. These findings demonstrate the
same optimization brings to different advantages depending on
the underlying hardware.

Hardware. A more in-depth analysis concerning the de-
pendence from the target CPU shows interesting insights.
Specifically, the availability of more resources affects the per-
formance of the inference engines differently. First, Arm NN
poorly exploits the higher computational power of the A15;
surprisingly, we observed a faster execution on the A53 (×2.9
on average over the three networks). This gives additional
evidence that Arm NN is poorly optimized for the ARMv7
instruction set. On the low-power A7, ncnn is the most efficient
solution in all benchmarks, processing up to 2.5 frame/s with
MobileNet. On the high-performance A15, TensorFlow Lite
gets better resource utilization, with an average speed-up of

4.4× compared to the A7; instead, for ncnn the throughput
improvement is limited to 3.2×.

Multi-thread. Fig. 2 gives a synthetic overview of the
multi-thread analysis. For each engine, the bars show the
frame/s (FPS) normalized w.r.t. single-thread execution av-
eraged over the three benchmarks. Results refer to the A53
CPU. The variance lines quantify the min-max range over the
three ConvNets. For all the inference engines the performance
linearly improves with the number of threads, yet with differ-
ent slope and variance. Moreover, the benefits of multi-thread
largely varies across the networks: for all the selected engines,
VGG showed the lowest scalability (lowest tail of the error
bars). Since VGG represents a memory-intensive workload,
this trend might reveal an under-utilization of caches, which
overwhelms the benefits of more execution units.

VI. CONCLUSIONS

In this work we assessed the performance of existing design
tools for the deployment of integer ConvNets on embedded
CPUs. A unified benchmarking framework was used to mini-
mize the variability introduced by different front-ends, still the
back ends introduce many sources of performance variability.
Empirical results revealed that the implementation of integer
ConvNets is still an open problem, since existing solutions are
optimal only in specific corner cases. The reported analysis is
a first guideline that may help designers and developers in
deciding the engine that gets the best from hardware.
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