
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Arbitrary-Precision Convolutional Neural Networks on Low-Power IoT Processors / Peluso, V.; Grimaldi, M.; Calimera,
A.. - 2019-:(2019), pp. 142-147. (Intervento presentato al convegno 27th IFIP/IEEE International Conference on Very
Large Scale Integration, VLSI-SoC 2019 tenutosi a per nel 2019) [10.1109/VLSI-SoC.2019.8920341].

Original

Arbitrary-Precision Convolutional Neural Networks on Low-Power IoT Processors

Publisher:

Published
DOI:10.1109/VLSI-SoC.2019.8920341

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2816978 since: 2020-11-06T10:47:18Z

IEEE Computer Society

Arbitrary-Precision Convolutional Neural Networks
on Low-Power IoT Processors

Valentino Peluso, Matteo Grimaldi, Andrea Calimera
Politecnico di Torino, 10129 Torino, Italy

Abstract—The deployment of Convolutional Neural Networks
(CNNs) on resource-constrained IoT devices calls for accurate
model re-sizing and optimization. Among the proposed com-
pression strategies, n-ary fixed-point quantization has proven
effective in reducing both computational effort and memory
footprint with no (or limited) accuracy loss. However, its use
requires custom components and special memory allocation
strategies which are not available and burdensome to implement
on low-power/low-cost cores. In order to bridge this gap, this
work introduces Virtual Quantization (VQ), a hardware-friendly
compression method which allows to implement equivalent n-
ary CNNs on general purpose instruction-set architectures. The
proposed VQ framework is validated for the IoT family of ARM
MCUs (ARM Cortex-M) and tested with three different real-life
applications (i.e. Image Classification, Keyword Spotting, Facial
Expression Recognition).

I. INTRODUCTION & MOTIVATIONS

The success of the Internet-of-Things (IoT) lies under the
ability to infer valuable information from the raw data gathered
through distributed sensors. Also known as sensemaking, this
process is commonly implemented as a cloud service where
complex machine learning models, deep convolutional neural
networks (CNNs) in particular, are run on high-performance
computers. There is a wide consensus that a sensemaking stage
implemented on the end-nodes is key to improve scalability
of the IoT. Sensemaking on the edge is a means to ensure
(i) real-time responses, (ii) lower volume of data and less
energy consumption due to communication from/to the cloud,
(iii) more data privacy [1]. The cloud-to-edge shift is not
free-lunch, however. CNNs previously processed in the cloud
with plenty of resources shall be processed in a mW power
envelope using tiny processor cores with limited computational
resources and low storage capacity. As an example, the RISC-
based micro-controllers units (MCUs) designed by ARM for
the IoT segment (i.e. the Cortex-M family reported in Table I)
show limited integer arithmetic options (16- and 8-bit) and
very small on-chip RAM (few hundreds of KB). This sets a
clear limit to the complexity of CNNs that can be hosted.

Cortex-M Power RAM Floating Integer SIMD Unit
(µW/MHz) (KB) (32b) (16b,8b) (#lane)

M0 5.3 4-32 No Yes No
M3 11.0 32-128 No Yes No
M4 12.3 128-256 No/Optional Yes 2
M7 33.0 256-512 No/Optional Yes 2

Table I: Main features of the Cortex-M IoT MCUs by ARM [2]

Let’s consider the three applications used as test-cases in
this work, i.e. Image Classification (IC) on CIFAR-10 [3],

Keyword Spotting (KWS) [4] and Facial Expression Recog-
nition (FER) [5]. They are built upon the most lightweight
Convolutional Neural Networks, nonetheless, their models do
not fit into MCUs. Firstly, weights are trained using a 32-bit
Floating-Point precision which is available for a few custom
versions of Cortex M-4 and -7. When squeezed to 16-bit fixed-
point, the models are still too large: IC (262KB) would match
the M7 core, which is the largest and more power hungry of
the family, while for KWS (608KB) and FER (1308KB) the
only option is to move the data off-chip. The use of external
memory supports affects several metrics negatively, such as
energy consumption, endurance, and reliability, integration
cost. To notice that FER exceeds the RAM available in the
M7 even with 8-bit (654KB). A quantization below the 8-bit
mark, e.g. 7-, 6-, 5-, 4- [6], till the extreme case of ternary [7]
and binary [8] quantization, is a valuable option here.
Different implementations of arbitrary-precision quantization
are currently available: dynamic compression schemes that
play at different levels of granularity, e.g. layer-by-layer [9],
[10], with different quantization rules, e.g. linear/non-linear
and symmetric/asymmetric [11], or different radix point scal-
ing factor, e.g. binary. When applied to over-parametrized
CNN models, like AlexNet, VGG, ResNet, they achieve a
memory compression which is proportional to the reduction
of the bit-width with low accuracy loss [12]. Even if rarely
tested on compact CNNs designed for embedded applications,
like those targeted by this work, it is fair to assume they
can achieve similar results. Unfortunately, this is just theory.
As previously discussed, general purpose MCUs support a
discrete set of integer options, e.g. 16-bit and 8-bit for the
Cortex-M. Moreover, only very few basic fixed-point scaling
schemes can be implemented with low performance overhead,
i.e. linear. Some IoT platforms offer the 4-bit, e.g. the GAP-8
powered by the PULP core [13], but to the best of our knowl-
edge, there are no ready-to-use IoT solutions for arbitrary bit-
width integers. The Imagination Series 2NNX comes with a
multi-bit instruction set, yet with a power budget of few Watts.
For general purpose architectures, the storage of weights with
arbitrary bit-widths needs custom memory allocation strategies
to store multiple operands in a single memory word. As
reported in [14], this may lead to huge performance penalty
due to additional operations to unpack the operands and feed
the execution units in a regular manner. To notice that custom
hardware solutions developed on programmable devices (e.g.
FPGAs [15]) are a too costly option for IoT applications.
The preliminary conclusion is that generic n-ary quantization
schemes that do not take into consideration the actual hardware

8-bit

RAM
Q

32-bit FP

VQ

2-bit

RAM

32-bit FP

Figure 1: Standard n-ary Quantization (left) and the proposed Virtual
Quantization (right); colors depths indicate the bit-width.

specifications merely fail on real life. This motivates our
work which introduces Virtual Quantization (VQ), a software-
level CNN compression method that allows to emulate the
availability of n-bit instruction-set and hence the deployment
of n-ary quantized models on general purpose IoT MCUs.
Given the memory model of the target architecture and the
arithmetic precision of its instruction set (8- and 16-bit for
Cortex-M), VQ delivers a CNN with the same RAM footprint
of the theoretic n-ary quantized model yet achieving better
performance. The picture in Fig. 1 gives an overview of the
main difference between a standard n-ary quantization Q and
the proposed VQ when a full precision (FP) 32-bit CNN model
has to be deployed on a MCU. With Q the maximum bit-
width that allows to meet the RAM constraint is n=2; with
VQ the bit-with is kept to n=8, the value supported by the
instruction set, while the memory constraint is met by pruning
some filters. Both Q and VQ satisfy the memory constraint,
but only VQ can be run on-chip efficiently. Results collected
on three applications (IC, KWS, FER) processed on the ARM
Cortex-M cores demonstrate and quantify the savings brought
by VQ.

II. RELATED WORKS

The urgent need of embedded CNNs that can run at the
edge, on resource-constrained devices, accelerated the research
studies on theories, methods, and tools for model compression.
The two most adopted strategies, also adopted in VQ, are
quantization and pruning. The next two paragraphs give a
synthetic taxonomy of existing techniques, with emphasis on
the most effective solutions applied to CNNs.
Quantization. Preliminary works demonstrated that 32-bit
Floating-Point CNNs can be quantized to 16-bit and 8-bit
Fixed-Point [12] ensuring minimal accuracy loss. Then, more
extreme optimization techniques tried to further decrease the
model precision using ternary [7] or binary [8] representations.
Regardless the bit-width adopted, quantization can be defined
as fixed if equally applied to all the layers, or variable when it
uses different bit-width across the layers [6]. The weights can
be quantized linearly or non-linearly. A linear approach [16]
applies a uniform distance between all the quantized weights;

this is the trivial solution, yet the most suitable for general-
purpose hardware due to its lightweight implementation. The
quantization range can be considered symmetric, if centered
around zero, or asymmetric if shifted by a given offset; the
choice is driven depending on the actual shape of the weights
distribution. Finally, it is possible to quantize the weights using
a binary radix point scaling or with an arbitrary linear scaling;
the former allows the use of simple shift operations for scaling
among the quantized levels [17], the later might be more
accurate but it requires additional operations and hence more
latency [17]. A non-linear quantization applies a particular
function for mapping the full precision parameters into a
discrete fixed-point space. It ensures a more accurate profiling
of the original distribution, usually not uniform, guaranteeing
lower accuracy losses. The most popular examples are the log-
domain [18] and clustering approaches [19]. To notice that
non-linear schemes imply the use of hashing functions which
can be efficiently processed on custom hardware accelerators,
but pose severe overhead when implemented as software
routines.

Pruning. A pre-trained CNN may show irrelevant or less
significant parameters that do not contribute to the infer-
ence accuracy, but rather they induce noise and redundant
complexity. For such reason, they are good candidates to
be removed. Pruning is mainly implemented as an accuracy-
driven strategy, even though recent works introduced other
extra-functional metrics in the optimization loop, e.g. energy
[20]. The pruning stage can be implemented at different levels
of granularity. The Weights-level is the finer granularity [19]
where every single weight can be zeroed, both from fully-
connected layers and convolutional layers. This strategy in-
creases the network’s sparsity, which is the ratio between
zero and non-zero parameters. Hence, the inference task can
be accelerated through a sparse-matrix multiplication. The
latter is hard to be implemented onto low-power MCUs,
where hardware resources are very constrained. A Kernel-level
pruning works at a middle granularity [21]; weights are pruned
as regular bunches [22], usually the 2-D arrays forming the 3-
D filters of a convolutional layer, such that the utilization (i.e.
parallelism) of the SIMD unit is maximized. Processing cores
which lack a SIMD unit do not benefit much, thereby incurring
the same limitations of weight-level methods. Finally, at the
higher level of granularity, there is the so-called filter pruning,
where the grain is an entire 3-D filter [23]. This is the most
aggressive approach as it applies a drastic reshaping of the
network topology which might affect accuracy dramatically.
Nevertheless, it is the most effective strategy in terms of model
compression and it does converge very quickly to a given
memory bound.

As reported in the literature, the consensus is that fine-
grain techniques are hard to fit into general purpose cores as
they require special weights encoding, whereas coarse-grain
approaches enable a straightforward implementation as they
use a regular memory management and standard routines [22].

Memory-aware Compression
- Filter Pruning
- Incremental Training

H-bit Quantization
− Fixed-Point Conversion
− Incremental Training

Deployment

[FP]

NN
Library

[FX-H]

.C

Memory
Model

VQ

Equivalent
bit-witdh [n]

Bit-witdh [H]

Figure 2: The Virtual Quantization flow.

III. VIRTUAL QUANTIZATION

The aim of VQ is to devise a CNN model tuned for a target
bit-width H s.t.: (i) the resulting memory footprint is the
same that would have been obtained through a classical n-bit
quantization, being n < H; (ii) the classification accuracy is
larger or equal than that of the theoretic n-bit model. Given H
as the bit-width supported by the instruction set of the target
core, the model obtained with VQ does emulate the n-ary
model while preserving hardware compliance.

A. Flow Overview

VQ is implemented through the optimization flow depicted
in Fig. 2. The framework is fed with a floating-point CNN
model (FP) trained with any standard deep-learning library
(e.g. PyTorch, TensorFlow); it generates a C description of
the equivalent n-bit quantized fixed-point model (FX-H), with
n the equivalent bit-width provided as input. The high-level
description of the network is translated into a low-level code
using a neural network library (NN library) optimized for the
target hardware (deployment stage in Fig. 2). In this work, we
adopted the CMSIS-NN by ARM for the Cortex-M architec-
ture [17]. The CMSIS-NN is a collection of optimized neural
kernels which cover the most common operators: convolutions,
fully-connected, activation and pooling functions. The final
output is a C file that can be compiled and flashed on the
target MCU. A memory model file describes the memory
allocation strategy used to estimate the physical RAM needed
at inference-time. It is worth emphasizing that the RAM
usage drives the compression; this is a distinctive feature w.r.t.
classical accuracy-driven compression methods.
The core of VQ consists of two main stages: (i) memory-
aware compression; (ii) H-bit model quantization, with H as
the bit-width supported by the instruction-set of the target core.
As long as both the memory model and the neural network
library are available, the VQ flow does apply to any micro-
controller. Since the target of our work is the ARM Cortex-
M architecture, we built a memory model for the CMSIS-

NN library and we assume H = 8. The next sections give
a detailed overview of the VQ steps, with a preliminary
description of the memory allocation model.

B. Memory Model

Typical state-of-the-art CNNs are directed acyclic graphs
whose scheduling is input-independent, hence the memory
allocation can be done statically. One can precisely compute
the memory footprint just knowing the network topology
and the linked neural library (the CMSIS-NN by ARM in
this work). The data structures needed for the feed-forward
execution of a neural networks include: (i) a buffer storing
the network parameters (weights and biases); (ii) a buffer for
the input and output features; (iii) a buffer storing partial data
used by neural networks routines. Since low-power MCUs, e.g.
Cortex-M, have a very simple memory hierarchy, all the three
buffers reside in RAM. The overall RAM space is thereby
computed as the sum of the three contributions [17]. For what
concerns the CNN parameters (i), they are permanently stored
in the flash memory and then block-loaded in RAM at run-
time thus to avoid the overhead of accessing the flash memory.
Regarding the feature (ii) and internal (iii) buffers, the CNN
layers are executed sequentially, therefore the corresponding
memory can be time-shared between different layers.
The memory model is obtained from the GNU linker [24] and
cross-validated with the statistics collected at run-time (we
installed the lightweight mbed-os operating system for this
purpose, v. 5.9.7). To estimate the memory footprint of the
theoretic n-bit model, we extended the embedded memory
model to arbitrary bit-widths assuming an ideal word size
equal to n. To notice that this a theoretic model as in real
hardware the minimum word is usually greater, i.e. H > n;
for instance, H = 8 in the Cortex-M architecture.

C. Memory-aware Compression

A CNN with a fixed number of layers has two potential sources
of redundancy: (i) the number of parameters within each layer;
(ii) the arithmetic precision of the weights within each filter.
The key observation over which VQ is built is that standard
n-bit quantization operates on the second term only. Meeting
a tight memory constraint would, therefore, require a bit-width
n too small (usually much smaller than the minimum bit-width
H made available by common HW). To overcome this issue,
VQ implements a layer-wise compression which is based on
a memory-aware filter pruning.
The iterative procedure of the memory-aware compression is
described in the pseudo-code of Algorithm 1. At each iteration,
the least important filter from the least important layer (lines
4–8) is dropped. As a ranking criterion, we used the sum
of the absolute weights, i.e. the `1-norm of the parameters.
Weights with lower `1-norm have less impact on the output
features [23]. The loop iterates until the memory constraint
is met (line 3). The memory estimation is run using the
memory model introduced in the previous section (lines 1–
2). As already discussed, it accounts for all the data structures
used at the inference stage, not only the network parameters.

Algorithm 1: Memory-aware compression algorithm
Input: FP-Model, Bit-width H , Equivalent bit-width n
Output: Compressed Model

1 Target Memory = Memory of FP-Model at n-bits)
2 Current Memory = Memory of FP-Model at H-bits)
3 while Current Memory > Target Memory do
4 Layer ranking
5 Pick less important layer
6 Filter ranking
7 Remove less important fitler
8 Update Current Memory
9 Incremental training

10 return Compressed Model

It is worth emphasizing that the memory footprint is estimated
depending on the physical bit-width of the target hardware, i.e.
H , but the model is not quantized yet at this stage. This gives
to the compression stage the proper awareness of quantization.
The model compression might degrade the quality of results.
To recover the accuracy loss, we leveraged an incremental
training procedure (line 9).

D. H-bit Quantization

After memory-aware compression via pruning, the model
undergoes the actual quantization to H-bits. The CMSIS-
NN library offers fixed-point neural kernels with a per-layer
dynamic scheme based on power-of-two scaling. Adopting a
per-layer radix-point brings to better results as different layers
show different dynamic ranges. Even though more complex
scaling techniques, e.g. asymmetric quantization, might result
more accurate, they might increase the execution time when
the CNN is deployed on low-power MCUs, up to 20%
according to [17]. The accuracy drop induced by quantization
can be recovered (totally or partially depending on the actual
constraints) using an incremental re-training procedure. The
latter has the following main characteristics: the forward-
propagation is run with fixed-point emulation; during back-
propagation weights are kept in a floating-point format thus
to allow small weight updates; weights are quantized at every
epoch using stochastic rounding. In order to emulate fixed-
point arithmetic on GP-GPUs we also implemented an in-
house tool that leverages the fake-quantization method intro-
duced in [25]. It consists of a software wrapper that converts
activations and weights (stored in fixed-point) to the 32-bit
floating-point; after being processed, results are converted back
to fixed-point.

IV. EXPERIMENTAL RESULTS

A. Benchmarks, Datasets and Training

We tested the VQ framework on three popular tasks: Image
Classification (IC), Keyword Spotting (KWS), Facial Expres-
sion Recognition (FER). Different lightweight CNNs suited
for tiny cores are deployed for each task; details reported in
Table II. Such CNNs are trained for 150-epochs in PyTorch

Table II: Benchmark models architecture. Considering that each
convolutional layer with shape (cout, fy, fx), fully-connected with
shape (cout), and max-pooling layer with shape (fy, fx). fy and fx
indicate respectively the height and width of input features, while
cout is the number of output channels.

IC KWS FER
CIFAR-10 [3] Speech Commands [4] FER2013 [5]

Input: 3 × 32 × 32 Input: 1 × 32 × 40 Input: 1 × 48 × 48

Conv2d (32,5,5) Conv2d (64,20,8) Conv2d (32,3,3)
MaxPool2d (3,3) MaxPool2d (1,3) Conv2d (32,3,3)
Conv2d (32,5,5) Conv2d (64,10,4) Conv2d (32,3,3)
MaxPool2d (3,3) MaxPool2d (1,1) MaxPool2d (2,2)
Conv2d (64,5,5) FC (32) Conv2d (64,3,3)
MaxPool2d (3,3) FC (128) Conv2d (64,3,3)
FC (10) FC (12) Conv2d (64,3,3)

MaxPool2d (2,2)
Conv2d (128,3,3)
Conv2d (128,3,3)
Conv2d (128,3,3)
MaxPool2d (2,2)
FC (7)

(version 0.4.1) using Adam optimization [26] (learning rate
1e− 3, linear decay 0.1 every 50-epochs, batch-size 128).
For IC we used the CNN delivered within the Caffe frame-
work [27] according to the experimental set-up reported in
[17]. The data-set is the popular CIFAR-10 [3], made up
of 60000 32 × 32 RGB images labeled with 10-classes.
Concerning KWS, we followed the experimental procedure
introduced in [28], which makes use of the cnn-trad-fpool3
CNN [28] to classify 10 keywords belonging to the Speech
Command Dataset [4]. The training-set and test-set data
are composed of 56196 and 7518 spectrograms respectively
(time×frequency = 32×40). For the FER task we resorted
to a VGG-like CNN which recognizes the facial emotion
dataset provided by [5]. The dataset has 48 × 48 grayscale
facial images classified by 7 labels; training and test set consist
of 28708 and 3589 instances respectively.

B. Deployment and Emulation

We validated the VQ framework (Fig. 2) for the Cortex-M
family by ARM. Tests were run on the NUCLEO-F767ZI
board by ST Microelectronics using the CMSIS-NN library
v.5.4.0 provided by ARM. The GNU Arm Embedded tool-
chain (version 7.3.1) was used to compile the C level model.
In order to emulate the n-bit quantization (for which there’s
no HW available) and to ensure a fair comparison with the
VQ method, the inference accuracy of the three applications
is measured through the fake-quantization tool mentioned
in Section III-D. Such a tool is made run on a GP-GPU
workstation powered with a Titan GTX-1080 Ti by NVIDIA
and it offers several settings that adapt to different fixed-point
HW units. For what concerns this work, the tool is tuned
for the ARM Cortex-M integer unit. Extensive emulation runs
show fake-quantization achieves 100% match with the results
computed on the actual boards.

C. Results

Table III collects the results obtained with a standard n-bit
quantization (Q) where models are scaled to an arbitrary fixed-
point (FX) bit-width n. For a fair comparison, the adopted Q

Table III: Performance of n-ary quantization Q.

Task D-Type n-bit RAM (KB) Core Top-1 (%)

IC

FP 32 n/n None 82.80
8 131 M4 82.85
7 115 M3 82.64
6 98 M3 81.79

FX 5 82 M3 80.05
4 66 M3 78.60
3 49 M3 70.24
2 33 M3 44.14

KWS

FP 32 n/n None 86.75
8 304 M7 86.38
7 266 M7 85.68
6 228 M4 85.41

FX 5 190 M4 81.90
4 152 M4 77.19
3 114 M3 61.70
2 76 M3 9.07

FER

FP 32 n/n None 66.48
8 654 None 65.34
7 572 None 64.59
6 491 M7 65.03

FX 5 409 M7 62.41
4 327 M7 57.65
3 246 M4 18.22
2 164 M4 17.44

scheme consists of the same procedure deployed in the VQ
flow during the H-bit Quantization stage. For each benchmark,
the first row collects the classification accuracy of the original
32-bit floating-point model (FP). The next seven rows quantify
the figures of merit of the n-bit quantization with n ∈ [2− 8].
The column RAM shows the n-th model memory footprint
computed with the memory model introduced in Section
III-B (inline with results in [17]). As an additional piece
of information, the Core column reports the smallest ARM
Cortex-M with enough RAM to host and run the CNN (column
Core). The Top-1 column collects the top-1 accuracy achieved
by each model.
As demonstrated in previous works (e.g. [12]), 8-bit quan-
tization reaches almost the same accuracy of the original
FP model. This is also confirmed by our experiments (the
worst-case loss is 1.14% for FER). Lower bit-widths show a
substantial quality degradation: e.g. with 3-bit the accuracy
loss ranges from 12.56% (for IC) to 48.26% (for FER). The
results confirm that quantization is an effective compression
strategy. For instance, for FER, the 6-bit model would fit
in cores with 512KB RAM (e.g. the M7) still guaranteeing
a reasonable accuracy loss (1.45%). This analysis does not
consider the lack of proper hardware architectures to process
workloads with less than 8-bit. As already discussed, there
are alternative software patches, but they proved to be very
impractical [14].
Fig. 3 highlights the key results obtained with the proposed
VQ as it gives a fair comparison w.r.t. n-bit quantization Q,
our baseline. For the sake of completeness, VQ is also com-
pared against a classical pruning methodology (label P) whose
details are introduced later. The bars show the top-1 accuracy
loss, which is defined as the difference between the top-1
accuracy of the original FP model (first row of each benchmark
in Table III) and that achieved after the compression. Each bit-
width is associated with a different memory footprint, those
obtained with the theoretic fixed-point n-bit quantization (i.e.

2 3 4 5 6 7 8

Equivalent Bit-Width

0%

10%

20%

30%

40%

50%

T
o
p
-1

 A
c
c
u
ra

c
y
 L

o
s
s

2
8

.1
2

1
1

.1
6

3
.9

5

2
.0

1

1
.4

0

0
.3

6

-0
.0

5

3
8

.6
6

1
2

.5
6

4
.2

0

2
.7

5

1
.0

1

0
.1

6

-0
.0

5

3
2

.8
0

2
9

.8
0

2
7

.9
5

1
7

.5
9

1
0

.2
8

5
.4

9

3
.9

9

Image Classification

VQ Q P

2 3 4 5 6 7 8

Equivalent Bit-Width

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

T
o
p
-1

 A
c
c
u
ra

c
y
 L

o
s
s

1
1

.5
9

3
.7

5

2
.2

3

1
.4

7

0
.8

8

0
.4

3

0
.3

7

7
7

.6
8

2
5

.0
5

9
.5

6

4
.8

5

1
.3

4

1
.0

7

0
.3

7

1
5

.9
7

1
6

.3
3

1
3

.6
4

5
.1

5

3
.2

7

2
.9

5

2
.1

0

Keyword Spotting

VQ Q P

2 3 4 5 6 7 8

Equivalent Bit-Width

0%

10%

20%

30%

40%

50%

60%

70%

T
o
p
-1

 A
c
c
u
ra

c
y
 L

o
s
s

4
9

.9
8

5
.6

0

1
.7

5

1
.8

7

1
.7

3

1
.0

0

1
.1

4

4
9

.0
4

4
8

.2
6

8
.8

3

4
.0

7

1
.4

5

1
.8

9

1
.1

4

4
9

.9
3

4
9

.9
3

1
9

.5
3

1
0

.5
6

8
.0

5

3
.0

1

1
.7

8

Facial Expression Recognition

VQ Q P

Figure 3: Top-1 accuracy loss in the three different applications
(lower is better). The baseline accuracies are the same reported in
Table III.

those in Table III). For the three applications and all the
equivalent bit-widths, VQ converges to solutions that meet
the same memory footprint of Q, yet achieving much lower
losses (e.g. 7.08% less for FER at 4-bit). In other words, VQ
makes pure theoretic n-ary quantization a practical solution
even on general purpose MCUs. Some exceptions might exist,
like FER with 6-bit, where the VQ loss (1.73%) is larger than
that of Q (1.45%). However, the gap is small (0.28%). The
greedy nature of the heuristic and the statistic retraining stages
are the first sources of such mismatch. Even more interesting,
there are cases where VQ outperforms Q using fewer bits.
For instance, KWS compressed with VQ set to 4-bits shows a
loss (2.23%) that is smaller than that of Q with 5-bit (4.85%).
The same holds for FER, which is the benchmark with the
highest complexity and the largest memory footprint: VQ with
3 bits (5.60%) vs. Q with 4-bits (8.83%). That’s due to the
quantization-aware compression method integrated into VQ: it
is aware of the underlying hardware constraints, hence it runs
a well-balanced filter reduction.
One may argue that “memory-equivalence” can be achieved
with any standard compression method (e.g. any standard

accuracy-driven pruning) enhanced with the ability to meet
a specific memory constraint. For such reason, Fig. 3 also
reports the result obtained with a “blind” pruning (label P)
where filters are dropped one-by-one (`1-norm as a ranking
criterion) till the CNN fits the same RAM of that obtained
with Q. Differently from VQ, the pruning strategy does not
involve any quantization awareness and filters are kept to
maximum precision (16 bits for this case of study). The results
clearly show that P meets the memory constraint of any
equivalent bit-width but it gets worse in terms of accuracy.
Moreover, its efficacy reduces with tight memory constraints.
The worst-case is for FER with 3-bit, where the accuracy loss
is 44.33% larger than that of VQ. The main reason is that
pruning alone removes the filters at a too fast pace to reach
the target memory footprint; this has dramatic effects on the
classification accuracy.
As a final comment, we noticed that models which undergo the
VQ flow gets faster with the reduction of the equivalent bit-
width. This is a direct effect of the compression method which,
unlike quantization, reduces the number of memory accesses
(both read and write) and the number of operations without
requiring any extra code or special routine. Considering KWS
for instance, with an accuracy loss of 1% (equivalent to 6-bit
Q) the CNN model takes 25% less memory and is 1.4x faster.

V. CONCLUSION

Virtual quantization (VQ) is a compression method for em-
bedded CNNs. It has been built with the specific goal of
emulating arbitrary bit-width arithmetic on those memory-
constrained architectures that would benefit most from quan-
tization but cannot implement it due to the lack of dedicated
hardware units. Experimental results conducted on three real-
life applications demonstrated the feasibility of the proposed
method. If compared to CNNs squeezed with state-of-the-art
n-bit quantization, those that undergo the VQ flow meet the
same memory budget while achieving much higher quality-of-
results.

VI. ACKNOWLEDGMENT

Co-funded by Compagnia di San Paolo

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[2] [Online]. Available: https://os.mbed.com/platforms
[3] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from

tiny images,” Citeseer, Tech. Rep., 2009.
[4] P. Warden, “Speech commands: A dataset for limited-vocabulary speech

recognition,” arXiv preprint arXiv:1804.03209, 2018.
[5] Challenges in representation learning: Facial expression recognition

challenge. [Online]. Available: http://www.kaggle.com/
[6] B. Moons, B. De Brabandere, L. Van Gool, and M. Verhelst, “Energy-

efficient convnets through approximate computing,” in Applications of
Computer Vision (WACV), 2016 IEEE Winter Conference on. IEEE,
2016, pp. 1–8.

[7] H. Alemdar, V. Leroy, A. Prost-Boucle, and F. Pétrot, “Ternary neural
networks for resource-efficient ai applications,” in neural networks
(IJCNN), 2017 international joint conference on. IEEE, 2017, pp.
2547–2554.

[8] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
European Conference on Computer Vision. Springer, 2016, pp. 525–
542.

[9] V. Peluso and A. Calimera, “Scalable-effort convnets for multilevel clas-
sification,” in 2018 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2018, pp. 1–8.

[10] M. Grimaldi, V. Tenace, and A. Calimera, “Layer-wise compressive
training for convolutional neural networks,” Future Internet, vol. 11,
no. 1, p. 7, 2019.

[11] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[12] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, S. Song et al., “Going deeper with embedded fpga platform for
convolutional neural network,” in Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM,
2016, pp. 26–35.

[13] F. Conti, D. Rossi, A. Pullini, I. Loi, and L. Benini, “Pulp: A ultra-low
power parallel accelerator for energy-efficient and flexible embedded
vision,” Journal of Signal Processing Systems, vol. 84, no. 3, pp. 339–
354, 2016.

[14] M. Rusci, A. Capotondi, F. Conti, and L. Benini, “Quantized nns
as the definitive solution for inference on low-power arm mcus?:
work-in-progress,” in Proceedings of the International Conference on
Hardware/Software Codesign and System Synthesis. IEEE Press, 2018,
p. 12.

[15] Y. Umuroglu, L. Rasnayake, and M. Själander, “Bismo: A scalable bit-
serial matrix multiplication overlay for reconfigurable computing,” in
2018 28th International Conference on Field Programmable Logic and
Applications (FPL). IEEE, 2018, pp. 307–3077.

[16] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[17] L. Lai, N. Suda, and V. Chandra, “Cmsis-nn: Efficient neural network
kernels for arm cortex-m cpus,” arXiv preprint arXiv:1801.06601, 2018.

[18] E. H. Lee, D. Miyashita, E. Chai, B. Murmann, and S. S. Wong,
“Lognet: Energy-efficient neural networks using logarithmic computa-
tion,” in Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE
International Conference on. IEEE, 2017, pp. 5900–5904.

[19] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[20] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. Sandler, V. Sze,
and H. Adam, “Netadapt: Platform-aware neural network adaptation for
mobile applications,” Energy, vol. 41, p. 46, 2018.

[21] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, and W. J. Dally,
“Exploring the regularity of sparse structure in convolutional neural
networks,” arXiv preprint arXiv:1705.08922, 2017.

[22] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing dnn pruning to the underlying hardware paral-
lelism,” in ACM SIGARCH Computer Architecture News, vol. 45, no. 2.
ACM, 2017, pp. 548–560.

[23] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.

[24] Gnu arm embedded toolchain. [Online]. Available:
https://developer.arm.com/tools-and-software/open-source-software/
developer-tools/gnu-toolchain/gnu-rm

[25] P. Gysel, M. Motamedi, and S. Ghiasi, “Hardware-oriented ap-
proximation of convolutional neural networks,” arXiv preprint
arXiv:1604.03168, 2016.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[27] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM international
conference on Multimedia. ACM, 2014, pp. 675–678.

[28] T. N. Sainath and C. Parada, “Convolutional neural networks for small-
footprint keyword spotting,” in Sixteenth Annual Conference of the
International Speech Communication Association, 2015.

