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IoT-based Mobility Tracking
for Smart City Applications

Kalkidan Gebru, Claudio Casetti, Carla Fabiana Chiasserini, Paolo Giaccone
Politecnico di Torino and CNIT, Italy

Abstract—The proliferation of IoT devices and the growing
deployment of 5G networks combine to provide the perfect
ecosystem for advanced smart city use cases. In this paper, we
address the possibility of detecting and quantifying flows of people
on city streets thanks to deployment of commercial sensors, con-
nected to the 5G network, that capture WiFi probes transmitted
by people’s smartphones. We first outline the motivation and
challenges of such a scenario. Then, we illustrate our approach
and present results derived from live measurements in a testbed
deployed in the city of Turin within the 5G-EVE project. We
show that we can quite accurately estimate transit flows by
simply collecting anonymized MAC addresses and timestamps
from smartphones of passers-by.

I. INTRODUCTION

It is widely believed that Internet-of-Things (IoT) systems
will have a momentous impact on people’s everyday lives,
as testified by the development of specific uses cases for
upcoming 5G networks. Nowhere will this impact be more
tangible than in our cities.

One of the key smart city scenarios addressed by the
European 5G-EVE project [1] requires the identification and
quantification of people in sensitive areas (e.g., for safety
and security purposes, such as during large crowd gatherings)
or in areas of transit (e.g., for the purpose of dimension-
ing transportation networks or transit/parking/sheltering in-
frastructure, etc.). While the detection of presence and head
count is important, more valuable information would stem
from the identification of flows of people. Cameras can be
used for this purpose, although they require a high upfront
investment, resource-consuming detection software, expensive
maintenance, not to mention the privacy concerns they usually
raise.

Alternative solutions exist, such as sensors that scan the
WiFi bands and passively capture probes transmitted by smart-
phones as they try to identify known nearby WiFi Access
Points (APs). However, these sensors have some limitations:
(i) they only detect people who carry a smartphone (although
it can be argued that this is now the majority of passers-
by); (ii) if used in a standalone mode, they only quantify the
presence of people, not the path they are following; (iii) the
information they expose is non-customizable and it is largely
affected by implementation nuances in WiFi probe timing,
hence a considerable amount of inference is required.

In this work, we address the above concerns, presenting
a framework that uses data collected by commercial WiFi
probe-detection sensors, henceforth referred to as “scanners”,
and infers flow densities and direction of transit of people on
city streets. As mentioned above, inference techniques have to

content with the implementation uncertainties and partiality of
information exposed by commercial scanners. For this reason,
we engaged in a measurement campaign in a real testbed
scenario, realized within the 5G-EVE project that allowed us
to establish a ground truth on which to test our framework.

The rest of the paper is organized as follows: in Section II
we present the scenario and challenges of our testbed. Next, in
Section III, we provide some insight on how data are collected
and a preliminary assessment of mobility detection, while the
algorithms used for a more in-depth inference process are
detailed in Section IV, along with some sample results. A
discussion of related work in Section V and of future work
in Section VI concludes the paper.

II. IOT SCENARIO AND CHALLENGES

We consider an area characterized by a large inflow and
outflow of people, namely the streets surrounding the campus
of Politecnico di Torino, near one of the city’s main railway
stations and a subway station. Thousands of people transit
through these streets on foot or by bike on their way into or
out of the campus. In collaboration with TIM, the main Italian
mobile operator, we have installed two WiFi probe-detection
scanners, Meshliums by Libellium [2], on campus premises.
Four more are installed in nearby streets, with the additional
support of the City of Turin.

Each scanner is connected to the 5G-EVE platform, specif-
ically to the Turin site, and, through it, data are made available
on the OneM2M platform [3], as shown in Fig. 1. It is indeed
our long-term goal to devise a flow detection methodology that
can be later deployed as a Network Function on a suitable part
of the 5G-EVE architecture, e.g., on an edge cloud or MEC.

Scanning the WiFi bands at 2.4 and 5 GHz, the scanners
receive WiFi probes transmitted by nearby smartphones and
store information that can be extracted from such probes,
namely the timestamp and the (hashed) MAC address of the
sender. Probes are nominally transmitted by all mobile devices

WiFi
scanners

Core network

MEC

OneM2M

Fig. 1. 5G EVE architecture supporting the testbed
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Fig. 2. Map of the roads covered by the testbed showing the position of the
WiFi scanners (X and Y) and of the 3 starting/ending places (A, B, C) for
the 4 paths under consideration

with a WiFi interface and they serve the purpose of quickly
identifying the presence of a nearby AP that they may have
previously already associated to.

The challenges that our methodology has to face are
manifold.

• First of all, as explained below, we have to contend with
the likelihood that MAC addresses in WiFi probes are
randomized by the source, which complicates the counting
process since the same device is seen by either scanner
as having different identities. As discussed in Section V,
past works have addressed the problem of identifying a
device despite the randomization, but all of them require
to collect the complete MAC headers, whose information
is typically not available in off-the-shelf WiFi scanners,
as the ones considered in our testbed.

• Additionally, the process of probe request generation is
not specified by the IEEE 802.11 standard, and thus the
inter-generation time of probe requests depends on the
vendor [4]. Past works listed in Section V assume to
receive frequent samples from mobility sensors (e.g., one
sample every second), but they cannot be often applied in
practical cases since off-the-shelf WiFi scanners like the
ones considered in our experiments provide samples at a
very coarse timescale (i.e., one sample every minute).

• Lastly, the deployment of scanners is not always func-
tional to optimizing the coverage of an area or to facil-
itating the operation of our methodology. Driven by the
need to adapt to the existing infrastructure (power outlets,
posts, walls that may hinder the reception...), the resulting
coverage may be either spotty, with uncovered portions
of sidewalks or streets, or overlapping. In the latter case,
especially if the timescale of probe collection is coarse, it
results in one or more probes being detected by multiple
scanners at the same time.

III. TESTBED AND DATA COLLECTION

In this section, we describe the testbed and some prelim-
inary evaluation we ran on the probes we collected. We used
just 2 WiFi scanners, leaving as future work the extension
of our study to larger values of scanners. The location of the
installed WiFi scanners, labeled X and Y , and the layout of the
streets near the testbed area is shown in Fig. 2. The sampled
probe requests are logged in JSON format by each scanner
every 50 seconds. An extract of the log file is shown in Fig. 3.
Each sample comprises four fields:

{"data":[
{"RSSI":"-68","Vendor":"Samsung",

"TimeStamp":"2020-02-15 12:32:45","MAC":"B7...BA"},
{"RSSI":"-64","Vendor":"Apple",

"TimeStamp":"2020-02-15 12:32:45","MAC":"9E...01"},
{"RSSI":"-86","Vendor":"Unknown",

"TimeStamp":"2020-02-15 12:32:45","MAC":"3F...FA"}
]}

Fig. 3. Sample data message in JSON format during one sampling event

• the RSSI at the receiver: this field has not been considered
in our methodology since the scanner documentation does
not explain how the actual value of RSSI is evaluated
(e.g., it is unclear if it is the average or the maximum) and
how the RSSI of multiple probe requests received during
the same sampling period is computed. Furthermore, as
better explained in Section V, the RSSI has not been
considered a reliable metric for mobility tracking.

• the interface vendor: this field has not been considered
since it does not allow to identify uniquely the interface
and in many cases is equal to “Unknown”. However, it
could be useful to understand if the MAC is randomized,
since this practice is only implemented by some vendors.

• the sampling time: although given with the precision
of one second, the same sampling time is reported for
all probe requests observed during the same 50-second
sampling period. Thus it is not possible to have a detailed
timing sequence of the probe requests, making the track-
ing extremely challenging. Furthermore, multiple probe
requests from the same device during the same sampling
period are collapsed into a single sample. Finally, even if
the WiFi scanners are synchronized through NTP, when
the sampling time difference is smaller than 50 seconds
it is not possible to be sure about the temporal sequence
of events, making it harder to detect the actual direction
of movement.

• the device MAC address: this value has been obtained
by digesting the device MAC address through a SHA-
224 function. Notably, the default hash function available
in the Libellium WiFi scanner digests the MAC address
together with the current time, not allowing the iden-
tification of the same MAC address at different times.
To circumvent this problem, the hashing mechanism was
modified in order to digest just the MAC address.

Finally, every two minutes, the scanners upload the log of
the WiFi probe requests transmitted from nearby devices to
the OneM2M server, using their cellular link. The OneM2M
server from where we have downloaded all the sample used
in our study is available through the 5G-EVE infrastructure.

In a preliminary assessment of the mobility patterns of the
devices captured by the two WiFi scanners, we tried to address
the following two questions: (i) What are the most common
mobility patterns in the testbed area? (ii) What is the effect of
MAC randomization in collecting such patterns?

We downloaded a full data trace from the 5G EVE
OneM2M server corresponding to a week in October 2019.
This trace comprises 195,762 distinct MAC addresses. As dis-
cussed in Section II, a single device may appear with multiple
MAC addresses in the trace due to MAC randomization, thus
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Fig. 4. Popularity of mobility patterns captured in October 2019 and collected
through 5G EVE infrastructure

the number of distinct MAC addresses provides only an upper
bound on the number of devices passing in the testbed area
shown in Fig. 2. In order to understand the effect of MAC
randomization, thanks to the collaboration of the IT Area of
Politecnico di Torino, we collected a list of 34,927 MAC
addresses of devices used by community members to connect
to the campus WiFi network. They comprise students, profes-
sors and administrative employees. For privacy reasons, these
MAC addresses were anonymized through the same SHA-
224 hash function used by the WiFi scanners. This allowed
us to identify the subset of MAC addresses corresponding to
Politecnico users in the original trace. We remark that these
MAC addresses are not randomized, since they are collected
after the device has associated to one of the Politecnico APs.

We analyzed the mobility patterns shown in the whole
trace. For each MAC, we computed the temporal sequence
T of detection events that can be represented as follows:
T = [(ti, si)]i, for increasing values of ti (i = 0, 1, 2...). A
generic pair in T represents the events according to which
scanner si detected the device at time ti, where si ∈ {X,Y }.
We partitioned T into subsequences by gathering all the
consecutive coverage events occurring with a time difference
less than 4 minutes. Each subsequence models a different
mobility pattern and has been associated to a representative
string to summarize the sequence of scanner identifiers. E.g.,
a string “X” means that the device was detected only by
scanner X , instead “XYX” means that the device was under
the coverage of X then under the coverage of Y and then
again under the coverage of X . We used “Z” in the mobility
string to denote the case in which the device was under the
coverage of both scanners at the same time.

Figure 4 shows the number of occurrences in the trace
of each mobility pattern string, for all the MAC addresses
in the trace (“All-MAC”) and just for Politecnico addresses
(“Polito-MAC”). The most common mobility patterns are
clearly the ones corresponding to the coverage of a single
scanner (either “X” or “Y”). This result is affected by the
randomization process that might change the MAC address
between two detection events at disjoint scanners. Focusing
just on the results for “X” and “Y” patterns for Polito-MAC,
we can observe that they are still the most common patterns,
suggesting that these two are the actual most popular mobility
patterns for all the devices in the area. Indeed, both “X” and
“Y” correspond to paths compatible with the expected main
flows of people walking in the area and entering and leaving
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Fig. 5. The points of the path map γ(t) in the considered toy case scenario

the campus area. It is also possible to notice that the popularity
profiles for All-MAC and for Polito-MAC are almost identical,
except for a scaling factor due to randomization and to the
larger population of devices captured in All-MAC. We can
conclude that the popularity profile of mobility patterns is not
affected by the randomization, thus we can study the mobility
patterns directly on All-MAC without considering the effect
of MAC randomization.

IV. MOBILITY FLOW TRACKING METHODOLOGY

Our next step is the use of the probe patterns as they
are detected by each scanner in order to pinpoint a temporal
sequence T to actual walking paths on the streets near the
scanners. The aim of our mobility tracking system is thus
to associate the probes transmitted by a mobile device and
detected by the WiFi scanners to the most likely path, across
a given set of predefined paths that are monitored in the area.
The classification is based on some preliminary experiments to
build the “ground-truth” information, which yields a catalog
of fingerprint vectors for each possible path. Thanks to this
catalog, the sequence of probes sent by a new mobile device
and detected by the scanners is compared with all known
fingerprints and the path with the most similar fingerprint is
associated as output of the mobility tracking, as detailed more
formally in the following.

Let P be the set of predefined paths in the considered
area to monitor and let p ∈ P be a generic path. In order to
compute the fingerprint fp of a path p, we let the scanners
collect probe samples by having a person take k walks along
p, carrying a device. In the following, we will refer to such
a device as “ground-truth device” and to each walk along p
as a “run”. Consider the following toy example (assuming all
times expressed in seconds):

T = [(0, X), (30, X), (60, X), (90, X), (100, Y ),

(120, X), (130, Y ), (160, Y ), (190, Y ), (220, X)].

where T is as defined in Sec. III. The above expression can
be interpreted in the following way: the ground-truth device
was detected by scanner X at times 0, 30, 60, 90, 120, 210 and
by scanner Y at times 100, 130, 160, 190. Note that detection
events occur at multiples of 30s, i.e., periodically as in the
considered off-the-shelf scanners, and the sampling events
have a 10s offset between scanners. Now from T we compute a
path map γ(ti) = 2 if si = X and γ(ti) = 1 is si = Y . These
two values have been arbitrarily chosen and do not affect at all
the final classification result. Fig. 5 shows the path map for the
considered toy case scenario. Let δ be the observation period,
i.e., the total duration during which the ground-truth device
has been detected, δ = maxi{ti} − mini{ti}. Let us now



partition the observation period into N temporal subintervals,
each of duration δ/N . Notably, N is the only parameter that
should be tuned according to the proposed scheme and later
we will show that already N = 4 yields good results. In the
toy example, δ = 210s and each subinterval lasts 52.5s when
N = 4.

With the above data we can now compute the fingerprint
fp. We remark that this is just one of the possible fingerprints
that can be designed for path identification. The fingerprint we
use is represented by a vector of 2N real numbers, formally
fp ∈ R2N . We divide such a vector in two parts:

• coverage part: the first N values of the fingerprint (fp(i)
for i ∈ {1, . . . , N}) are computed as the average of γ(t)
for each subinterval. This weighs the detection of the
device from multiple scanners during the same intervals.

• direction part: the last N values of the fingerprint (fp(i)
for i ∈ {N + 1, . . . , 2N}) model the mobility direction
between the two scanners for each for the subintervals.
Formally, it is computed as the slope of the best fitting
linear interpolating function of the samples within the
considered subinterval.

In the considered toy example, the subintervals would be
[0, 52.5), [52.5, 105), [105, 157.5), [157.5, 210] and the corre-
sponding fingerprint would be computed as:

fp = [2, 1.67, 1.5, 1.33︸ ︷︷ ︸
coverage

, 0,−0.019,−0.1, 0.018︸ ︷︷ ︸
direction

]

Indeed, during the first subinterval the ground-truth device was
detected by only by scanner X (i.e., 2) and the corresponding
slope is 0. During the second subinterval, it was detected twice
by X (i.e., 2) and once by Y (i.e., 1), thus the average is
1.67 and the corresponding slope is negative, suggesting that
the device moved mainly from X to Y . A similar reasoning
applies to the following two subintervals.

By performing many runs with the ground-truth device,
a set of fingerprints is attached to each path. Thus, in order
to find a match for a new device, the mobility tracking
system computes its fingerprint and looks up the most similar
fingerprint, using a simple Euclidean norm to evaluate the
distance between vectors. In case many paths show fingerprints
at a minimum distance, the path with the maximum number
of minimum distance fingerprints is chosen. If still more than
one path is found, the device is marked as untraceable.

A. Ground-truth experiment

We selected 4 paths in our testbed, denoting them as AB,
BA, AC, CA, with the starting/ending points shown in Fig. 2.
These paths have been chosen as meaningful for the typical
people walking in the area and very challenging to be detected,
since all the paths are partially covered by both scanners
and the path direction is hard to be detected, as discussed
before. We performed 17 runs for each path, walking at a slow
pace, and recorded the actual time at which we started and
ended each run and path. As a ground-truth device, we used
a Samsung A6 smartphone with Android 9.0. We forced the
smartphone to provide the list of the nearby WiFi APs every
two seconds in order to force sending the probe requests. After
performing all the runs, we downloaded from the OneM2M

TABLE I. ACCURACY OF THE MOBILITY TRACKING ALGORITHM

Path Correctly classified test runs (%)
AB 87.5
BA 100
AC 100
CA 100

server the trace with all the logs referring to the period of
interest and extracted all the data corresponding to the ground-
truth device. Thanks to the temporal information of each run,
we could identify the data retrieved by the WiFi scanners for
each run and compute the corresponding fingerprint according
to the procedure described in Sec. IV. At the end, we had the
collection of 17 fingerprints for each one of the 4 paths.

B. Experimental results for mobility tracking

We tested the mobility tracking trained with the ground-
truth experiment above on 8 test runs for each of the 4 paths.
Table I shows, for each path, the fraction of test runs that
were correctly classified. We only experienced one incorrect
classification for a test run on AB path which was classified
as AC. Note that this error is due to the similarity of the two
paths from the point of view of scanner Y, since in both cases
the test device appears as approaching the scanner and then
moving away.

V. RELATED WORK

Several works in the literature have proposed solutions to
detect flows of people using WiFi probes or other techniques.
The work in [5] examines the movement of passengers near a
train station using the data collected from WiFi probes. The
method is based on a survey to determine the fraction of people
enabling WiFi interface, which is used to convert WiFi counts
into an estimated number of people. The work in [6] estimates
the footfall on a street covered by a WiFi sensor by clustering
the number of request probes based on two thresholds: the
maximum time difference between probes and the maximum
difference between probe sequence numbers. In our scenario
the same approach cannot be applied since the commercial
scanners we use provide neither the detailed timing of the
probes nor detailed information regarding the MAC header.
It should be noted that the correlation between sequence
numbers of the probe request in which the MAC address has
been randomized can be exploited to identify a single device.
The authors of [7] propose a way to distinguish the visited
locations and the social behaviors for a large crowd using
GPS-based methodology that, differently from our scenarios,
provides detailed information of stops and movements. The
classification method is based on the maximum movement
duration and on the minimum stop duration. The work in [8]
aims to uncover social relationships in a university by defin-
ing “semantic trajectories”, which are spacial and temporal
based trajectory patterns. Social closeness of users is decided
according to their affinity towards some particular places
(e.g., dormitories, classrooms, libraries) and the similarity of
mobility patterns. Likewise, within a campus, the paper [9]
investigates the flows of students between different buildings.
Students inside a building are grouped based on their holding
time through a clustering algorithm and the flows between
buildings are characterized for each group. The work in [10]



shows the possibility to predict nationwide voting results from
the SSIDs of collected probes and Wigle database [11]. To the
best of our knowledge, none of the existing works has tried
to track the mobility in terms of detailed trajectory as in our
work with off-the-shelf sensors.

In terms of methodology for WiFi mobility detection, the
WiFi probe message provides many information. For instance,
the MAC address serves to uniquely identify a device in any
state, i.e., stationary or mobile. For privacy reasons this field,
anonymized with hash function before storing, is preferred
even for monitoring vehicular mobility [12]. However, the hash
based anonymization cannot ensure privacy, as reported in [13].
The MAC address is also used for counting the number of
users, such as the number of arrivals and departures to/from
a given area [14], and estimating the density of users [15].
Furthermore, the first three bytes of the MAC address provide
information about the device vendor. As a countermeasure for
user tracking, some vendors have implemented a randomiza-
tion technique where a device is able to generate a random
local MAC address when sending probe requests to discover
access points. The papers [16], [17] provide some approaches
to de-randomize the MAC address, but they are based on the
assumption of knowing the randomized version of a MAC
address. Thus, they cannot be applied in contexts in which
the addresses are anonymized. Depending on the vendors
and status of the smartphones, randomized addresses can be
generated every few seconds [18]. In general, randomization
tends to invalidate methods for mobility tracking especially
when the mobile user is very slow and/or the path is very
long with respect to how frequently the random address is
generated.

When the WiFi probes are transmitted from the user
devices, the WiFi scanners will save the associated timestamp.
The timestamp can be leveraged to classify between stationary
and mobile devices by considering the consecutive probes
and the received signal strength of the device [19]. Notably,
works as [6] remove stationary users (e.g., attending classes,
sitting, chatting or having lunch close to the scanners) from
the mobility tracking.

The reception of the WiFi probes can be used to evaluate
the RSSI (Received Signal Strength Indicator) and infer the
distance from the WiFi sensors, as investigated in [20]. The
method is shown to be effective for indoor scenarios but
not reliable for outdoor scenarios. Indeed, signal propagation
and attenuation is strongly affected by the environment [21].
Multipath effects and the way how users hold the smartphone
also affects the received signals and can lead to noisy sig-
nals [22]. Moreover, RSSI values show high variance already
for stationary devices [6]. For all these reasons, we are not
considering the RSSI information to detect the mobility in our
scenarios.

VI. CONCLUSIONS

We addressed the problem of mobility tracking in an
operational testbed provided by the 5G-EVE European project.
We installed some off-the-shelf WiFi scanners in our campus
area, capable of capturing the MAC addresses of smartphones
as they send probe request messages. In the paper, we proposed
a scheme to track the mobility of the smartphones carried

by passers-by using data reported by these scanners, and
showed that its accuracy is experimentally very high. We also
documented a limited effect of the MAC randomization on
such patterns.

These preliminary results are encouraging and show the
feasibility of detailed mobility tracking using passive methods,
despite the MAC randomization occurring at the smartphones
and the coarse information made available by WiFi scanners.
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