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Abstract: Borehole heat exchangers (BHEs) commonly reach depths of several tens of meters and cross
different aquifers. Concerns have been raised about the possibility of boreholes to act as preferential
pathways for contaminant transport among aquifers (cross-contamination). This article employs
numerical modelling of contaminant transport in the subsurface to address these concerns. A common
hydrogeological setup is simulated, composed of three layers: A shallow contaminated and a deep
uncontaminated aquifer separated by an aquitard, all crossed by a permeable borehole. The hydraulic
conductivity of the borehole and, to a lesser extent, the vertical hydraulic gradient between the
aquifers are the key factors of cross-contamination. Results of the numerical simulations highlight
that, despite the severe conditions hypothesized in our modelling study, the cross-contamination
due to the borehole is negligible when filled with a slightly permeable material such as a geothermal
grout properly mixed and injected. A good agreement was found with analytical formulas used for
estimating the flow rate leaking through the borehole and for studying the propagation of leaked
contaminant into the deep aquifer.

Keywords: shallow geothermal energy; borehole heat exchanger; groundwater; cross-contamination;
hydraulic conductivity; grout; preferential pathway

1. Introduction

Ground source heat pumps (GSHPs) gained increasing popularity in recent years due to the
economic and environmental benefits they achieve as they are used to replace conventional techniques
for heating and cooling of buildings and for domestic hot water production [1–7]. GSHPs are composed
of a heat pump, which uses the underground as a heat source or sink, based on two different operating
principles: open-loop systems, exchanging heat with groundwater abstracted by a well, and closed-loop
systems, exchanging heat with the ground through the circulation of a heat carrier fluid in a pipe
loop buried into the ground [8,9]. Closed-loop geothermal systems equipped with borehole heat
exchangers (BHEs) are the most diffused type of GSHP thanks to the lower maintenance requirements
and the possibility to install them even in the absence of an aquifer. BHEs are composed of one or
two U-pipes installed in a borehole with a depth usually ranging between 50 and 200 m. At such
depths, BHEs generally intercept different aquifers and, if incorrectly grouted during the completion,
they tend to become preferential pathways through the less permeable layers (aquitards), thus making
deep aquifer more vulnerable to contamination [10]. This concern led to restriction and bans of BHE
installation in different protection areas of some European countries, as reported in a recent report by
Prestor et al. [11].
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Cross-contamination between aquifers has been addressed by several studies, among which
Refs. [12–20]. Santi et al. [12] identified natural and man-made aquitard discontinuities as major sources
of cross-contamination. Natural aquitard discontinuities are permeable lenses, whereas man-made
discontinuities are generally identified with wells, both improperly cemented and abandoned (and,
hence, likely to collapse [13]). Another major issue induced by the presence of wells is related to the
leakage, through the permeable well annulus, between two adjacent aquifers with different hydraulic
heads. Most studies available in the literature [14–19] addressed wells as the main anthropogenic
discontinuity in aquitards. The study by Bucci et al. [20] is, to our knowledge, the only one addressing
BHEs, providing a qualitative description of voids formed along an experimental grout-filled borehole,
drilled and filled on the escarpment of a gravel pit and subsequently uncovered by excavation.

The aforementioned works highlight the key role of the hydraulic conductivity of the borehole
filling in preventing the leakage among aquifers. In the last 30 years, specific cement–bentonite
mixtures (geothermal grouts) were developed to seek a compromise between hydraulic insulation,
strength, and thermal conductivity [21]. The ongoing research on geothermal grouts is focused on
increasing the thermal conductivity, e.g., with the addition of graphite flakes [22–24], and reducing
the hydraulic conductivity, generally with the addition of bentonite. Figure 1 from Casasso and
Sethi [10] compares the experimental results of Allan and Philippacopoulos [25], Park et al. [26]
and Indacoechea-Vega et al. [27], who tested grout specimens in different conditions. Hydraulic
conductivities range between 10−12 m/s, far below the conductivities of aquitards and of nearly all
aquicludes, and 10−6 m/s, i.e., a value typical of fine sand. Therefore, geothermal grouts are generally
less permeable than the majority of clayey and silty aquicludes. Figure 1 also highlights that tests
conducted on grout-pipe specimens [25–27] showed higher hydraulic conductivities compared to
grout-only specimens. This is due to the fact that the interfaces between pipes and grout are prone to
form discontinuities which act as preferential pathways for water [25,26]. In addition, the hydraulic
conductivity also increases when the water/cement ratio is too high [27] and/or the grout is subjected
to extreme thermal (freeze–thaw) [25,27] or hydraulic (wet–dry) [25] alternated stresses.
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Figure 1. Hydraulic conductivity ranges of geothermal grouts from laboratory tests and of typical
aquifer, aquitard and aquiclude lithologies. Source: Casasso and Sethi [10].

Previous studies on aquifer cross-contamination only focused on the quantification of flow among
aquifers. To our knowledge, the contaminant propagation due to this flow was only addressed by
Lacombe et al. [28]. The authors performed numerical solute transport simulations modelling the
borehole crossing an aquitard, with two different approaches. The borehole was modelled with two
approaches, namely as a column with the same hydraulic conductivity of the aquifer (i.e., with the
Darcy model) to reproduce the case of a collapsed well and as a conduit (i.e., with the Hagen-Poiseuille
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model) to simulate the presence of fissures along the borehole. However, Lacombe et al. [28] simulated
operating conditions that were far more critical than those induced by the presence of BHEs.

The purpose of this paper is to quantitatively evaluate the cross-contamination induced by the
presence of an unproperly sealed BHE completed into a dual aquifer system separated by an aquitard.
The case of a shallow contaminated and a deep clean aquifer is considered, as it is the most common
one [28]. A numerical sensitivity analysis is performed with the finite element numerical software
FEFLOW to assess how the aquitard thickness and the backfilling hydraulic conductivity affect the
contaminant leakage from the upper aquifer to the lower one.

This paper is organized as follows. Section 2 delineates the conceptual model and describes
the most relevant parameters involved in the study. Section 3 presents and discusses the results:
The leaking flow rates, the concentration distributions in the deep aquifer and the possible use of
analytical solutions to approximate them. Conclusions (Section 4) summarize methods and findings
and identify possible fields of future research activity.

2. Methods

2.1. Conceptual Model

The hydrogeological scenario hypothesized for this work is illustrated in Figure 2: A shallow
aquifer (with a hydraulic conductivity K1 and contaminated with a concentration C0 of a certain solute)
is separated from the deep aquifer (with a hydraulic conductivity K2 and a zero-value concentration of
the solute) by an aquitard (i.e., a layer with conductivity K′ � K1, K2). A borehole heat exchanger was
added, modeled as a cylinder with a diameter d, hydraulic conductivity (K f ill), crossing all model layers.
If the borehole is permeable than the aquitard (K f ill > K′), a preferential flow is generated, that depends
on the hydraulic head difference (∆h = h1 − h2) between the aquifers crossed. As highlighted in Santi’s
paper [12], an unfavorable situation occurs if the hydraulic head of the polluted aquifer is higher
than the clean aquifer one (h1 > h2). In this case, contaminants flow vertically through the aquitard,
through the permeable borehole and propagate in the deep aquifer. This work assesses the deep
aquifer incremental contribution to contamination due to the preferential flow through the borehole,
i.e., the additional concentration in the deep aquifer, compared to the case in which the borehole has
the same hydraulic conductivity of the aquitard (K f ill = K′). A sensitivity analysis is then performed to
assess the role of K f ill on the leakage. The aquitard thickness (b′) is also considered, since it influences
both the preferential leakage through the borehole and the contaminant transport through the rest of
the aquitard.
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2.2. Numerical Model

The scenario described in Section 2.1 was modelled with the software FEFLOW 7.1 by DHI
WASY [29]. FEFLOW solves the flow and transport equations in saturated porous media with
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a finite-element approach including fluid density and viscosity changes (fully coupled flow and
transport modelling).

Figure 3 reports the plan view (A) and the cross section (B) of the modelling domain. A large
domain size was chosen (500 m × 500 m × 150 m of depth) to avoid boundary effects. The domain was
divided into 1,870,498 elements and 959,176 nodes with a strong refinement along the flow direction
(aligned with the x axis) in correspondence of the borehole (Figure 3A). The vertical discretization
presents 46 layers (47 slices) with a variable vertical resolution represented in Figure 3B and hereby
described. The upper aquifer is 35-m thick, and it is composed of 7 layers with a constant thickness
of 5 m. The aquitard is composed of 1-m thick layers in a number that depends on the prescribed
thickness b′. The lower aquifer is divided into 5-m thick layers up to a depth of 150 m from ground
surface, with a further refinement of 1-m deep layers between the top of the aquitard (35 m from
ground surface) and a depth of 55 m from ground surface, i.e., the maximum depth reached by the
aquitard bottom in the case b′ = 20 m. In this way, although the thickness of the deep aquifer can
vary from 95 m (b′ = 20 m) to 111 m (b′ = 4 m), the domain mesh is exactly the same, i.e., with the
same number of layers and nodes, for all the simulations run. An additional simulation was run
with a double vertical resolution (i.e., with layers 2.5 m thick for the aquifers and 0.5 m thick for the
aquitard) to assess whether a mesh refinement would change results. As reported in Section S3 of the
Supplementary Materials, only minor changes are observed for the time series of concentrations in the
deep aquifer.

The regional groundwater flow in both aquifers was simulated by assigning constant hydraulic
head values on the western and eastern domain borders, with a 1% gradient on both aquifers as
shown in Figure 3. A strong hydraulic head difference (∆h = 10 m) was assigned between the shallow
contaminated aquifer and the deep uncontaminated one. From a cross-contamination point of view,
this represents a severe, yet possible scenario as reported in Refs. [12,30–33] and in Section S4 of the
Supplementary Materials. Values of the aquitard thickness (b′) between 4 m and 20 m were assigned in
the simulations since they are representative of the stratigraphy of alluvial plains [30,33].
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scale) and (B) cross-section with the layers and hydraulic head distribution in the shallow aquifer (dark
blue continuous line) and in the deep aquifer (dashed light blue line).

The borehole crosses all the layers and has a radius ra = 0.075 m, i.e., typical values of borehole
heat exchangers. The cross-section of the borehole was considered as homogeneous, and a unique
value of hydraulic conductivity (K f ill) ranging from 10−9 m/s to 10−2 m/s was assigned to it. This range
also includes K f ill values much higher than those of geothermal grouts and typical of sand and gravel
(Figure 1). Indeed, this work also aims at assessing the order of magnitude of K f ill values from which



Water 2020, 12, 1174 5 of 11

an appraisable cross-contamination may be induced by a BHE. The BHE cross section was treated as
a homogeneous zone, i.e., without differentiating between grout and pipes. This choice is justified by
the fact that, as mentioned in Section 1, tests conducted on geothermal grout specimens are generally
performed on representative BHE sections (i.e., including pipes), rather than on grout-only samples.
In addition, including BHE pipes would have required a much denser mesh with a consequent increase
of computational effort.

Homogeneous porosity values ε = 0.3 (total) and ne = 0.2 (effective) were assigned all over the
modelling domain, whereas the hydraulic conductivity was set to K1 = 10−3 m/s in the shallow aquifer,
K2 = 10−4 m/s in the deep aquifer, and K′ = 10−9 m/s in the aquitard. Two additional simulations
were run setting higher values of the hydraulic conductivity of the deep aquifer (K2 = 10−3 m/s and
K2 = 10−2 m/s). Results are reported in Section S1 of the Supplementary Materials.

The initial contaminant concentration was imposed at 100 mg/L in all nodes of the unconfined
aquifer, thus assuming an entirely and uniformly polluted upper aquifer. Similarly, the initial and the
boundary concentrations in the lower aquifer were forced to 0 mg/L, thus simulating that the only
contamination occurring in the deep aquifer comes from the shallow aquifer. The contaminant was set
as conservative, with no sorption nor decay.

The longitudinal dispersivity was set to αL = 5 m for all simulations reported in this paper,
and the transverse dispersivity was set to αT = 0.1αL = 0.5 m. Three simulations were run with lower
dispersivity values (αL = 0.5 m, 1 m, 2 m and αT = 0.1αL) and results are reported in Section S2 of
the Supplementary Materials.

Table 1 reports the complete parameter set, including initial and boundary conditions of the
numerical model.

Table 1. Parameters assumed in the simulations.

Parameter Shallow Aquifer Aquitard Deep Aquifer

Hydraulic conductivity K1 = 10−3 m/s KA = 10−9 m/s K2 = 10−4 m/s
Longitudinal hydraulic gradient 0.01 - 0.01

Darcy velocity of aquifer v1 = 10−5 m/s - v2 = 10−6 m/s
Thickness b1 = 35 m b′ = 4 to 20 m b2 = 115 m − b′

Flow BC h1,US = 140 m
h1,DS = 135 m

h2,US = 130 m
h2,DS = 125 m

Mass-transport BC C0 = 100 mg/L upstream none C = 0 mg/L upstream
Total porosity ε = 0.3

Effective porosity ne = 0.2
Longitudinal dispersivity αL = 5 m
Transversal dispersivity αT = 0.5 m

Hydraulic head difference ∆h = 10 m

3. Results

A total number of 40 simulations, combining 8 hydraulic conductivities K f ill and 5 different
aquitard depths b′, were performed using the modelling scheme described in Section 2. Results of the
modelling activities are presented in this Section and are divided as follows. The leakage flow rate
through the borehole is analyzed in Section 3.1, and a correspondence is found with available analytical
formulas. Section 3.2 presents the time trends of concentrations in the deep aquifer downstream
the borehole. Section 3.3 analyzes the difference between the concentrations of each scenario and
reference cases with a borehole as permeable as the aquitard (K f ill = K′): predictably, the concentration
increments in the deep aquifer are proportional to the leakage flow rates. Therefore, in Section 3.4 the
numerical results are compared to the analytical solution of a continuous point source release in 3D
geometry (Hunt, [34]).
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3.1. Evaluation of Borehole Leakage Rates

As reported in Section 1, most studies on aquifer cross-contamination have focused on the
quantification of the leakage flow rate (Ql) of water crossing an aquitard permeable zone (well,
borehole, permeable lens). Analytical formulas were developed to calculate the flow rate with different
degrees of complexity [15–19], the simplest one being an application of the Darcy law:

Ql,Darcy = K f ill ×
∆h
b′
×πr2

a (1)

where ra is the radius of the borehole (m), and b′ is the aquitard thickness (m).
The Darcy formula assumes a constant and uniform gradient i = ∆h/b′ along the borehole section

across the aquitard, with ∆h remaining equal to the hydraulic head difference of the two aquifers.
On the other hand, Bonte et al. [19] recently proposed an analytical formula that takes into account the
local alteration of hydraulic heads around the borehole, which changes the value of ∆h between the
inlet and the outlet of the borehole crossing the aquitard. The flow rate value calculated with the Darcy
formula (Ql,Darcy) is modified by a correction coefficient:

Ql,Bonte = Ql,Darcy ×

[
1 +

K f ill

4πDra
×

(
1

K1
+

1
K2

)]−1

(2)

where K1 and K2 are respectively the hydraulic conductivities (m/s) of the shallow and deep aquifer.
Since the parameters K f ill, D, ra, K1 and K2 are positive, it follows that Ql,Bonte < Ql,Darcy.

Figure 4A reports a comparison between these analytical formulas with the setup adopted in the
numerical models (K1 = 10−3 m/s, K2 = 10−4 m/s, D = 10 m, K f ill = 10−9 to 10−2 m/s). An appraisable
difference between the two models is observed only for K f ill > 10−4 m/s, i.e., with a very high leakage
flow rate. In Figure 4B, leakage flow rates resulting from FEFLOW simulations are compared with
those calculated with the analytical formulas above described, i.e., Equations (1) and (2). The Darcy
equation has an excellent agreement with the numerical model results, whereas the Bonte equation has
a slightly worse fit for higher leakage rates as it underestimates the leakage flow.
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Figure 4. Comparison between the leakage flow rate values: (A) calculated with the formulas of Darcy
(Equation (1)) (continuous lines) and Bonte (Equation (2)) (dashed lines), in the conditions simulated in
this work; (B) resulting from simulations conducted with FEFLOW and from the analytical formulas of
Darcy (green diamonds) and Bonte (magenta dots).

3.2. Propagation of Contaminants in the Deep Aquifer

The contaminant propagation from the shallow to the deep aquifer occurs through the aquitard
through two different pathways: the aquitard itself and the borehole which, in the case it has a higher
hydraulic conductivity (K f ill > K′), represents a preferential contamination pathway. The preferential
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contaminant migration through the borehole was assessed by simulating the effect of different values
of K f ill ranging from 10−9 m/s to 10−2 m/s. The reference case with K f ill = K′ = 10−9 m/s provides
as a result the contaminant distribution in the deep aquifer, observable even in the absence of any
borehole. Figure 5A shows the influence of the aquitard thickness b′ on the time trends of the “base
contamination” at the top of the aquifer. As expected, concentrations propagate more slowly as the
aquitard thickness increases, due to both the increase of the preferential pathway length (i.e., b′) and
the reduction of the hydraulic gradient (i.e., ∆h/b′). Figure 5B shows the contaminant concentration
trends 200 m downstream the borehole outlet for different values of K f ill. As K f ill increases, the deep
aquifer reaches higher concentrations and the arrival time of the contaminant is faster, due to its rapid
propagation through the permeable borehole.
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3.3. Cross-Contamination Effect of the Borehole

The contribution of a permeable borehole to the contamination of the deep aquifer was identified
as the increment of concentration (∆C) in the cases with K f ill > K′, compared to the respective reference
cases with K f ill = K′ and with the same aquitard thickness b′:

∆C
(
x, y, z, t, K f ill

)
= C

(
x, y, z, t, K f ill > K′

)
−C

(
x, y, z, t, K f ill = K′

)
(3)

Figure 6 shows the variation of the maximum values of ∆C/C0 at 200 m from the borehole,
depending on the aquitard thickness b′ and the borehole conductivity K f ill. The range of K f ill from
10−6 m/s to 10−2 m/s was selected to show the cases in which an appraisable impact is exerted by the
contaminant transport through the borehole. In the severe scenario hypothesized, the contamination
brought by the preferential pathway of the borehole falls below 1% of the concentration in the shallow
aquifer (i.e., ∆C < 0.01C0) for a value of K f ill = 10−4 m/s, i.e., over 100 times higher than the maximum
measured for geothermal grouts (see Figure 1). These results confirm that geothermal grouts available
in commerce provide enough protection against cross-contamination.
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3.4. Analytical Modelling of the Propagation of Contaminants in the Deep Aquifer

The borehole section at the bottom of the aquitard acts as a continuous point source for the release
of contaminants in the deep aquifer. After leaking in the aquifer, the pollutant migrates along the
three directions generating a contamination plume. However, since the aquitard acts as a virtually
impermeable limit on top of the domain, the pollutant propagation along the z axis is allowed only
in the downward direction. A closed form analytical solution for contaminant transport in a 3D
semi-infinite aquifer was provided by Hunt [34]:

∆C(x, y, z, t)
Co

=
Ql

4πneB
√

DyDz
×

{
exp

( BU
2αx

)
er f c

(
BR + Uvet
2
√

RDxt

)
+ exp

(
−

BU
2αx

)
er f c

(
BR−Uvet
2
√

RDxt

)}
(4)

with B (m) and U (unitless):

B =

√
x2 +

Dx

Dy
y2 +

Dx

Dz
z2 (5)

U =

√
1 +

4RDxλ

v2
e

(6)

where Ql (m3 s−1) is the leakage flow rate through the borehole, here calculated using the Darcy law;
C0 (kg m−3) is the contaminant concentration in the leaking water; Dx = αLve and Dy = Dz = αTve

are the longitudinal and transverse dispersion coefficients (m2 s−1), which are proportional to the
respective values of dispersivity αL and αT (m); R is the retardation coefficient (unitless), which is
equal to 1 as no sorption was considered; and λ (s−1) is the degradation coefficient set equal to 0 s−1

(no degradation).
Hunt’s solution was compared with the concentrations resulting at the end of FEFLOW simulations,

performed for different combinations of the aquitard hydraulic conductivity and thickness. A scatterplot
of the results is shown in Figure 7 in terms of potential concentration increment at the top of the deep
aquifer and at different distances downstream the borehole outlet. A good agreement was found
for all simulations, except for a few ones at very low values of ∆C/C0 (due to precision issues of the
numerical model) and at very high values (due to the local perturbation of the flow field, which is not
considered by Hunt’s model). Such result suggests that Hunt’s solution represents a useful mean to
perform a preliminary estimation of the potential environmental impact of borehole installation in
multi-layer aquifers.
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different distances (40, 80, 120, 160 and 200 m) downstream the borehole outlet, resulting from FEFLOW
numerical models (abscissa) and from Hunt’s solution of Equation (4) (ordinate).

4. Conclusions

This article addressed the concerns about BHEs cross-contamination by performing a numerical
modelling study with the finite-element flow and solute transport code FEFLOW. The setup simulated
for this study is a shallow aquifer with a contaminant concentration C0, separated from a deep aquifer
by an aquitard with thickness b′. The substantial hydraulic head difference (∆h = 10 m) between
the two aquifers makes the hypothesized setup a very severe simulation scenario. The three layers
are crossed by a borehole with a hydraulic conductivity K f ill, ranging from 10−9 m/s (equal to the
aquitard) to 10−2 m/s (typical of a coarse sand). The sensitivity analysis focused on the influence of the
parameters b′ and K f ill on the leakage from the shallow to the deep aquifer. Two contributions were
assessed, i.e., the preferential migration through the borehole—which occurs if the borehole is more
permeable than the aquitard crossed (K f ill > K′)—and the transport through the aquitard, which would
occur even in the absence of the borehole.

The main findings of our study are hereby summarized:
The flow rate crossing the borehole (Ql) is well described by the Darcy’s law (Equation (1)),

i.e., Ql is proportional to the hydraulic head difference between the aquifers crossed (∆h) and to the
hydraulic conductivity of the borehole filling (K f ill);

The concentrations in the deep aquifer at a certain point are well correlated with the flow rate
leaking through the borehole (Ql);

The spatial distribution of concentration at the top of the deep aquifer is well reproduced by
Hunt’s analytical formula [34] reported in Equation (4);

In the severe scenario hypothesized in our modelling study, the incremental concentration in
the deep aquifer due to the preferential flow through a borehole is below 1% of the contaminant
concentration in the shallow aquifer (C0) if the borehole filling is as permeable as fine sand
(K f ill = 10−4 m/s). Laboratory experiments on grout specimens reported values of K f ill between
10−11 m/s and 10−6 m/s (see Figure 1).

The results of the study presented in this paper provide insights on the possible cross-contamination
induced by borehole heat exchangers. Although, to our knowledge, this occurrence is not reported
in the literature, this possibility is worth being evaluated in the proximity of water wells. Based on
our results, appraisable cross-contamination effects are observed only if a very permeable filling
material is used, e.g., coarse sand or gravel. Conversely, pre-mixed geothermal grouts available in the
market, if correctly mixed and injected, provide enough guarantees against cross-contamination even
in severe conditions.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/4/1174/s1.
Figure S1. Effect of the hydraulic conductivity of the deep aquifer on the contaminant concentrations at the top
of the deep aquifer, 200 m downstream the borehole outlet; Figure S2. Effect of the contaminant longitudinal
dispersivity value αL. The transverse dispersivity is set to to αT = 0.1αL for each case; Figure S3. Effect of vertical
resolution: comparison of the time series of contaminant concentrations at different distances downstream the
borehole outlet (40, 80, 120, 160 and 200 m) with the “standard” resolution (layer thickness of 5 m for aquifers and
1 m for the aquitard) and the doubled resolution (layer thickness of 2.5 m for aquifers and 0.5 m for the aquitard);
Figure S4. Position of Ciriè, the location of the two monitored wells examined, in North-Western Italy; Figure S5.
Monitoring wells in Ciriè, screened in the shallow aquifer (red line) and in the deep aquifer (light blue line).
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