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ABSTRACT

Precipitation extremes and small-scale variability are essential drivers in many climate change impact

studies. However, the spatial resolution currently achieved by global climate models (GCMs) and regional

climate models (RCMs) is still insufficient to correctly identify the fine structure of precipitation intensity

fields. In the absence of a proper physically based representation, this scale gap can be at least temporarily

bridged by adopting a stochastic rainfall downscaling technique. In this work, a precipitation downscaling

chain is introduced where the global 40-yr ECMWF Re-Analysis (ERA-40) (at about 120-km resolution) is

dynamically downscaled using the Protheus RCM at 30-km resolution. The RCM precipitation is then fur-

ther downscaled using a stochastic downscaling technique, the Rainfall Filtered Autoregressive Model

(RainFARM), which has been extended for application to long climate simulations. The application of the

stochastic downscaling technique directly to the larger-scale reanalysis field at about 120-km resolution is also

discussed. To assess the ability of this approach in reproducing the main statistical properties of precipitation,

the downscaled model results are compared with the precipitation data provided by a dense network of 122

rain gauges in northwestern Italy, in the time period from 1958 to 2001. The high-resolution precipitation

fields obtained by stochastically downscaling the RCM outputs reproduce well the seasonality and amplitude

distribution of the observed precipitation during most of the year, including extreme events and variance. In

addition, the RainFARM outputs compare more favorably to observations when the procedure is applied to

the RCM output rather than to the global reanalyses, highlighting the added value of reaching high enough

resolution with a dynamical model.

1. Introduction

Estimating the expected impact of climate change on

hydrometeorological risk, ecosystem functioning, per-

mafrost thawing, snow and glacier melt, and water avail-

ability requires precipitation scenarios with high spatial

and temporal resolution (Giorgi 2006; Wilby and Fowler

2010). However, current global climate models (GCMs)

have spatial resolutions that are usually no higher than

70–120km (Washington and Parkinson 2005; Solomon

et al. 2007). The current trend of increasing the resolution

of GCMs is limited by the enormous computational and

storage resources required, the limits of the physical ap-

proximations in the models (e.g., hydrostaticity) and the

need for retuning the model parameterizations whenever

the resolution is increased.

Another approach to achieve higher resolutions is

based on the concept of dynamical downscaling, by

nesting regional climate models (RCMs) into GCMs

(Giorgi 1990; Castro et al. 2005; Giorgi 2006). Recent

studies (Paeth and Diederich 2011; Guyennon et al.

2013) suggest, for example, that the production of high-

resolution and long-term scenarios is improved by in-

cluding RCMs as an intermediate step in the downscaling

chain.Nonetheless,most regional climatemodels achieve

resolutions that are currently no higher than 20–50 km
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(Flaounas et al. 2012), which are still too coarse for hy-

drological applications and impact studies at the basin scale

(Sorooshian et al. 2008). The use of high-resolution

nonhydrostatic models, originally developed for meteo-

rological applications (Michalakes et al. 2004), would al-

low us to reach significantly finer resolutions. However,

this approach is still in its infancy for climatic applications

and the computational effort required is rather formidable.

In past years, various techniques have been developed

to bridge the scale gap between climate change scenar-

ios obtained from regional climate models and the small

scales needed for impact studies. An effective approach

is provided by statistical and stochastic downscaling

techniques. Statistical downscaling maps large-scale de-

terministic predictors for precipitation at small scales

(Maraun et al. 2010; Chiew et al. 2010), to produce re-

alizations of the expected small-scale rainfall field. Sto-

chastic rainfall downscaling (Ferraris et al. 2003a,b) aims

at generating synthetic spatiotemporal precipitation fields

whose statistical properties are consistent with the small-

scale statistics of observed precipitation, based only on

knowledge of the large-scale precipitation field. This

latter approach has been developed to estimate flood risk

in small catchments on meteorological time scales (a few

days), and its application in a climatological framework

is still largely unexplored. Stochastic downscaling also

has the potential for estimating uncertainties in rainfall

scenarios, by generating large ensembles of synthetic

small-scale precipitation fields that can be compared

with measured data (Brussolo et al. 2008). Clearly, sto-

chastic downscaling is not a substitute for physically based

models, but it is a way to introduce rainfall variability at

scales not resolved by physical models.

In this paper we discuss the results of the application

of a robust stochastic downscaling procedure [Rainfall

Filtered Autoregressive Model (RainFARM); Rebora

et al. 2006b], originally devised for spatiotemporal rainfall

downscaling of meteorological predictions, to the output

of a state-of-the-art regional climate model (Protheus;

Artale et al. 2010; Gualdi et al. 2013) and to the global

40-yr European Centre for Medium-Range Weather

Forecasts (ECMWF) Re-Analysis (ERA-40) (the large-

scale driver of the Protheus RCM). In order to apply

stochastic downscaling to precipitation fields on climatic

time scales, we were required to optimize the performance

of the downscaling procedure on long time spans. We

tested the performance of this approach by comparing the

downscaled model outputs with the precipitation data re-

corded by a dense network of individual rain gauges in the

Piedmont and Valle d’Aosta regions, northwestern Italy.

The rest of the paper is organized as follows. Section

2 describes the rain gauge dataset, the Protheus RCM

outputs, and ERA-40. We describe the RainFARM

procedure in section 3, discussing the extension thatmakes

it suitable for spatial downscaling of climate models. In

section 4, we compare the precipitation climatology ob-

tained from the RCMwith the observations, upscaled to

the model resolution. In section 5, we show the results of

the application of the RainFARM stochastic downscal-

ing procedure to the Protheus model and analyze the re-

sulting precipitation statistics. The results are compared

with the direct downscaling of the ERA-40 fields. Dis-

cussion and conclusions are reported in the last section.

2. Observational data, model outputs,
and reanalyses

a. The observational network

We use daily cumulated precipitation measured by a

network of 122 rain gauges located in the Piedmont and

Valle d’Aosta regions, northwestern Italy, and managed

by the Regional Environmental Protection Agency

(ARPA) of Piedmont. The data considered here refer to

the period 1958–2001, during which a large number of

measuring stations were active. After 2001, the stations

were gradually dismissed and substituted with a new and

denser network of automatic stations, losing continuity

in the individual precipitation records. The data con-

sidered here are the same as in Ciccarelli et al. (2008) (to

which we refer the reader for details), which were

checked for quality and internal consistency, assuring

that periods of no station activity were not accounted as

periods of no precipitation and by marking outliers and

erroneous or suspicious data as missing. The stations are

located at different altitudes, ranging from 127 to 2526m

above mean sea level, with resolution ranging from 0.1

(for most stations) to 1mmday21.

b. The Protheus system

The Protheus system is an atmosphere–ocean coupled

regional climatemodel for theMediterranean area (Artale

et al. 2010). It is composed by the Regional Climate

Model, version 3 (RegCM3), for the atmospheric com-

ponent (Giorgi et al. 1993a,b) and by a regional config-

uration of the Massachusetts Institute of Technology

General Circulation Model (MITgcm) for the oceanic

component (Marshall et al. 1997a,b). The two models

are coupled by the Ocean Atmosphere Sea Ice Soil

(OASIS3) software, through which coupling fields are

exchanged every 6 h. The RegCM3 and MITgcm con-

figurations employed in this study are the same as de-

scribed in Artale et al. (2010). RegCM3 has a uniform

grid spacing of about 30 km, and the spatial domain,

which covers the entireMediterranean, is centered at 418N
and 158E,with 160 grid points in themeridional direction,
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150 grid points in the zonal direction and 18 s levels in

the vertical direction. MITgcm has a spatial resolution

of 1/88 3 1/88, which corresponds to a nonuniform reso-

lution of 14 km 3 (9–12) km, the finest resolution being

reached in the northern part of the domain. ERA-40

(Uppala et al. 2005) (described below) constitutes the

large-scale driver of the Protheus RCM runs considered

here, and provides the lateral boundary conditions to

RegCM3 every 6h. The model performance is compa-

rable with that of other state-of-the-art RCMs (Dubois

et al. 2012). In particular Dell’Aquila et al. (2012) illus-

trate how RCMs are able to reconstruct subregional

patterns of climate variability and change, which may be

missing in coarse-resolution regional drivers.

In this study, we consider daily cumulated precipita-

tion data from the Protheus system for the time period

1958–2001, when observations are available for compar-

ison. The study area is a subdomain of the whole mod-

eling domain, and it ranges from 42.88 to 47.48N and from

5.18 to 11.58E, containing 16 3 16 pixels.

In the following, all comparisons between model

outputs and observations consider only the model pixels

containing one or more rain gauge stations. The model

pixels that do not contain rain gauges are excluded from

the analysis. With this choice, the total number of model

pixels actually used for the analysis is 33. Figure 1a

shows the model grid and the location of the rain gauges

considered in this study (black dots), while the color

code refers to the number of stations per model pixel,

ranging from a minimum of 1 to a maximum of 11 rain

gauges per pixel.

c. ERA-40

We consider daily cumulated precipitation estimates

obtained from ERA-40 (Uppala et al. 2005), spanning

the period 1958–2001 and focusing on the region

(41.06258–47.81258N, 3.93758–10.68758E), which con-

tains 6 3 6 ERA-40 pixels and almost entirely the

selected area of the Protheus domain. The available

spatial resolution of this product is 1.1258, corresponding
in our case to about;125 and ;88 km in the latitudinal

and longitudinal directions, respectively. Only 7 out of the

36 ERA-40 pixels contain rain gauges, ranging from 11 to

35 rain gauges per pixel. In the following, only these pixels

have been used for the comparison between ERA-40 and

the observations. The model grid is compared with the

position of the measurement stations in Fig. 1b.

It is worth recalling that variables such as temperature

are directly assimilated into the reanalysis system, while

precipitation is a forecast parameter produced by the

model without assimilation. For this reason, significant

differences can occur between the precipitation in the

reanalysis and the observations, owing to difficulties of

large-scale models to account for all of the physical

mechanisms affecting the hydrologic cycle, particularly

in areas with complex orography (see, e.g., Palazzi et al.

2013).

3. The RainFARM procedure

RainFARM (Rebora et al. 2006a,b) is a stochastic

downscaling procedure based on the nonlinear transfor-

mation of a linearly correlated stochastic field, generated

by small-scale extrapolation of the Fourier spectrum

of a large-scale field produced by a model or by a re-

analysis. Applications of theRainFARMapproach include

the analysis of the sensitivity of a distributed hydrolog-

ical model to the variability of the spatiotemporal distri-

bution of rainfall (Gabellani et al. 2007), the estimate of

uncertainty in flood predictions (Rebora et al. 2006a), the

assessment of the main uncertainty sources in ensemble

precipitation forecasts (vonHardenberg et al. 2007), and

FIG. 1. Numerical grids for (a) the Protheus model and (b) ERA-40. The locations of rain gauges are shown by black

dots. Grid elements (pixels) are colored according to the total number of stations they contain.
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the quantification of sampling errors for the verification

of meteorological forecasts against rain gauge observa-

tions (Brussolo et al. 2008). A comparison between sto-

chastic downscaling of large-scale precipitation fields

provided by ECMWF reanalyses, using the RainFARM

procedure, and dynamical downscaling with a regional

model has revealed comparable probabilistic skills

(Brussolo et al. 2009).

The original RainFARM techniquewas developed for

the spatiotemporal downscaling of individual precipita-

tion events on meteorological time scales. Studies of cli-

mate change impacts require to downscale precipitation

scenarios on long time periods, which include a large

number of individual rainfall events with potentially

different spectral properties. In addition, the standard

temporal resolution of the outputs of state-of-the-art

RCMs (on the order of 3 or 6 h in many cases) is often

adequate for impact studies. These two characteristics

suggest the application of a purely spatial downscaling

technique. Along these lines, we introduce a variant of

the RainFARM procedure, described below, which is

suitable for accurate spatial downscaling. For a de-

scription of the original RainFARM procedure, see

Rebora et al. (2006b).

In the present variant of RainFARM, a temporal se-

quence of model-generated (or reanalysis) large-scale

precipitation fields P(X, Y, t) is considered reliable at

spatial scales larger than a fixed reliability scale L0. The

reliability scale can be greater than or equal to the

nominal spatial resolution of the large-scale fields; pre-

cipitation fields are either unknown or unreliable at

smaller scales. The RainFARM approach aims at gen-

erating synthetic downscaled fields at these smaller

spatial scales. This is achieved by extrapolating to small

scales the spatial power spectrum of the large-scale field,

jP̂(Kx,Ky, t)j2, where (Kx, Ky) are the spatial wave-

numbers and P̂ is the spatial Fourier transform of P. The

spatial power spectrum at small scales is assumed to

have a power-law dependence on wavenumber, with

spectral slope a. The value of a can be derived by ex-

trapolation of the slope obtained from a fit to the spec-

trum of the large-scale field or fixed by resorting to

a library of observed spectral slopes of precipitation

data. For simplicity, we assume spatial isotropy in the

two spatial directions; this assumption can be easily re-

laxed if needed. In the following, we will use capitalized

coordinates and wavenumbers (X, Y, Kx, and Ky) to

refer to large-scale quantities (larger than or equal to

L0) and lowercase letters (x, y, kx, and ky) when con-

sidering all scales. The spatial downscaling procedure is

then applied separately to each time step.

In detail, the steps of the modified procedure at each

time t are as follows:

(i) Generate Gaussianized fields, Pg(X, Y, t) 5
f [P(X, Y, t)], characterized by a Gaussian amplitude

distribution. Rank ordering is a simpleGaussianization

method that can be used for this purpose (Schreiber

and Schmitz 1996).

(ii) Estimate the spatial Fourier spectrum of the

Gaussianized field P̂g(Kx, Ky, t).

(iii) Generate a synthetic spatial Fourier spectrum at all

scales ĝ(kx, ky, t). This is a power-law spectrum

with fixed logarithmic slope a and amplitude

jĝ(kx, ky, t)j2 } (k2x 1 k2y)
2a/2. Random, uniformly dis-

tributed phases are assigned to this spectrum.

(iv) Merge spectra and generate a new Fourier spec-

trum that has the Fourier spectrum of the original

field P at large scales and the synthetic spectrum at

small scales,

ŝ(kx, ky, t)5

8>>>>><
>>>>>:

P̂g(Kx,Ky, t) , if k# k0

jP̂g(k0)j
jĝ(k0)j

ĝ(kx,ky, t) , if k. k0

,

where the small-scale synthetic spectrum has been

normalized to match the large-scale spectrum at

wavenumber k0 5 2pLmax/L0 and P̂g(k0) and ĝ(k0)

are radially averaged spectra. Here, k5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x 1k2y

q
is

the radial wavenumber.

(v) Apply the inverse Fourier transform to ŝ(kx, ky, t)

and generate the field s(x, y, t). Because we con-

served Fourier amplitudes and phases at large

scales, at large scales the spatial structure of s is

equal to that of Pg.

The following two steps do not differ from the standard

RainFARM procedure:

(vi) A final nonlinear transformation: A simple expo-

nential has proven to work well,

~r(x, y)5 exp[gs(x, y)] .

In principle, the parameter g is free, but a value

g 5 1 has been successfully used in past applica-

tions and it has been adopted in this work.

(vii) Even though the large-scale structure of the field s

is equal to that of Pg, application of the nonlinear

transformation mixes Fourier components and

slightly scrambles the large-scale Fourier phases.

For this reason, the large-scale structure of the

reconstructed field ~r is not exactly equal to P. We

thus continue to apply a consistency condition

between the synthetic field ~r and the original field

P, as in the original RainFARM method. If we
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indicatewith ~R(X , Y)5 h~r(x, y)iL0
the coarse grain-

ing (aggregation, indicated with angle brackets) of

the ~r field at scale L0, we can define a new field

r(x, y)5 ~r(x, y)P(X ,Y)/ ~R(X,Y) .

The r(x, y) field, which represents the output of the

downscaling procedure, has the property that, when

aggregated at the scale L0, it is identical to the

original field, hr(x, y)iL0
5P(X, Y).

By construction, this downscaling procedure is able to

conserve the large-scale features of the original precipita-

tionfield down to the reliability scales.At the same time, the

model is able to correctly reproduce the small-scale statistics

of precipitation (e.g., the spatiotemporal correlation struc-

ture of the main statistical moments and the scaling

properties of precipitation). Stochastic variability is gen-

erated only at scales smaller than the reliability scale L0.

The advantage of the modified RainFARM proce-

dure is to have, prior to steps (vi) and (vii), a spatial

distribution of the downscaled stochastic field that is

rather similar to that of the original field. In the standard

procedure, a completely synthetic power-law spectrumwas

generated at all scales and the resultant high-resolution

field was forced only at the end of the procedure to be

consistent with the original large-scale field. When used

for purely spatial downscaling, this choice introduces

sharp gradients and raster-like features in the resulting

precipitation field and an artificial oscillation in the

spatial Fourier spectrum at scales just below the re-

liability scale. The power spectrum obtained by the

application of the modified RainFARM procedure does

not show such spurious features and ismore similar to the

spatial power spectrum of observed precipitation fields.

The RainFARM procedure was developed to produce

ensemble forecasts: for each choice of the set of random

phases in the Fourier spectrum, a different field is gener-

ated. By considering a large number of possible choices of

the set of Fourier phases, a whole ensemble of small-scale

precipitation fields can be created, which allow for assess-

ing probabilities of occurrence of extreme rainfall and/or

of the associated hydrological response. Here, because we

compare probability density functions (PDFs) obtained

from a large number of rain gauges and from a large

number of different times, to keep the same statistics we

perform only one downscaling for each time step.

4. Precipitation climatology

a. Results from Protheus

We first compare the precipitation output from the

Protheus system to the observed precipitation, upscaled

(coarse grained) at themodel resolution. To this end, for

each model pixel containing at least one station, we

compute the average of all observations in that pixel.

Figure 2a shows the observed (dashed line) andmodeled

(solid line) annually averaged time series of total preci-

pitation over the study area from 1958 to 2001. The time

series have been obtained by area averaging the model

data and the upscaled station data only over pixels con-

taining observations. While there is a good correlation

in the interannual fluctuations, Protheus tends to over-

estimate average precipitation with respect to the ob-

servations. This overestimation occurs in almost all pixels

considered, as shown by Fig. 2b, which reports a scatter-

plot of the modeled and observed total precipitation,

averaged over the whole time period (1958–2001), for

each pixel (one point for each model pixel).

Interannual fluctuations are coherently reproduced by

the model; the correlation coefficient between the two

time series is 0.79, which is statistically significant at the

95% confidence level. Statistical significance against the

null hypothesis of no correlation has been determined

(here and elsewhere in the paper) using a Monte Carlo

method based on randomly shuffling the modeled series

in time (1000 realizations were used). The interannual

variability modeled by the RCM appears to follow that

of its large-scale forcing field, ERA-40 (discussed be-

low). For each individual pixel, the time series of yearly

averaged modeled precipitation show a statistically sig-

nificant correlation with observed precipitation time

series. As shown in Fig. 2c, correlations as high as 0.65

are maintained as long as a pixel contains at least five

rain gauges, while for pixels with fewer rain gauges the

correlations decrease and the spread increases.

There is a significant seasonal dependence in these

correlations. Figure 2d shows the annual cycle of the

correlation coefficients between the modeled and ob-

served monthly mean precipitation, for individual pixels

(gray lines) and for the whole domain average (black

line). The highest correlation occurs during spring and

autumn, the periods during which weather perturba-

tions over the study area are mainly of synoptic origin.

Correlations are significantly lower during summer, when

the Piedmont and Valle d’Aosta regions are subject to

localized thunderstorms. This type of event cannot be

modeled by a limited-resolution hydrostatic model such

as Protheus, and its correct parameterization is a difficult

task for all current RCMs. The temporal power spectra of

the Protheus precipitation (not shown) are characterized

by a significant peak at one day during summer, con-

firming that during this season there is a strong daily cycle

of precipitation presumably associated with thunderstorm

activity. The diurnal periodicity disappears in winter,

owing to the prevalence of large-scale precipitation of
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synoptic-scale origin. As further discussed below, a sig-

nature of these different precipitation regimes is seen also

in the downscaled model output and in particular in the

slopes of the spatial power spectra.

Table 1 (first two rows) summarizes the comparison of

total precipitation, precipitation intensity, number of dry

days (defined as days with precipitation ,1mmday21),

precipitation variance, and the 99th percentile of preci-

pitation, for Protheus and for the upscaled observations

over the study area. While Protheus slightly overestimates

the total precipitation, as well as its variance and the

99th percentile of precipitation compared to observa-

tions, precipitation intensity and the percentage of dry

days are slightly lower in the model than in observations.

This suggests that rain events are slightly weaker and

more frequent in Protheus than in reality.

Overestimation of Protheus precipitation in the Al-

pine region has already been reported in Artale et al.

(2010). In particular, compared to precipitation data from

ERA-40 and the Climate Research Unit (CRU) data,

Protheus was found to produce too much orographic pre-

cipitation, possibly because of a systematic overestimation

during winter over the northern flank ofAlps, associated

with the passage of cyclones over central Europe and

a possible enhanced intensification of cyclones in the

Protheus domain in winter.

b. Results from ERA-40

A similar analysis can be performed for ERA-40 pre-

cipitation. Also in this case, observed precipitation was

averaged over all stations contained in each ERA-40 grid

element (pixel). Some of the ERA-40 pixels overlap only

partially with the region where the rain gauges are lo-

cated and with the Protheus pixels considered above. For

this reason, the arealmean of theERA-40 signal has been

computed by weighting each pixel by the fraction of area

that overlapswith the analyzedProtheus pixels (i.e., which

contain rain gauges).

FIG. 2. (a) Area-averaged time series of annual precipitation from Protheus (solid line) and rain gauge observa-

tions aggregated at the Protheus resolution (dashed line). (b) Scatterplot of Protheus vs observed precipitation,

averaged over the period 1958–2001 (one point for each model pixel). Empty symbols denote pixels with more than

four rain gauges. (c) Correlation coefficients between modeled and observed annual precipitation averages for each

model pixel, as a function of the number of rain gauges included in the pixel. (d) Annual cycle of the correlation

coefficient between Protheus precipitation and observed rainfall for each model pixel (gray lines) and for the area

average over all pixels (black line). Also shown in (b),(c) is the linear fit between the two datasets and the coefficient

of determination R2.
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Figure 3a shows the annually and spatially averaged

time series of total precipitation from 1958 to 2001 for

ERA-40 and for the observations. ERA-40 precipitation

is lower than the coarse-grained observed precipitation

at the ERA-40 resolution. Interannual variability is well

represented in the reanalyses (except in the years be-

tween 1965 and 1970) but the average correlation co-

efficient (0.5; statistically significant at 95% confidence

level) is lower than for Protheus (0.8). The lower cor-

relation between ERA-40 and the observations could be

TABLE 1. Averages (over space and time), over pixels containing rain gauges, of total precipitation, daily precipitation intensity (daily

precipitation averaged only over rainy days), percentage of dry days, variance, and 99th percentile of precipitation. Dry days are defined as

days with precipitation ,1mmday21; rainy days have precipitation greater than 1mmday21. From top to bottom: statistics for the

Protheus model outputs, for the observations upscaled to the Protheus resolution, for ERA-40, for the observations upscaled to the ERA-

40 resolution, for the downscaled Protheus and ERA-40 fields, and for individual rain gauge stations.

hPi (mmday21) hPiwet (mmday21) Dry days s2 (mmday21)2 99th percentile (mmday21)

Protheus 3.7 9.3 61% 73.65 41.26

Obs_Protheus 2.7 10.0 73% 66.30 38.67

ERA-40 2.1 5.8 66% 18.20 19.94

Obs_ERA-40 2.7 8.4 68% 52.58 35.65

Downscaled Protheus 3.9 10.2 62% 105.71 48.4

Downscaled ERA-40 2.2 6.4 67% 29.16 24.9

Stations 2.9 12.4 77% 96.85 46.0

FIG. 3. (a) Area-averaged time series of annual precipitation from ERA-40 (solid line) and the rain gauge ob-

servations aggregated at the ERA-40 resolution (dashed line). (b) Scatterplot of ERA-40 vs observed rainfall, av-

eraged over the period 1958–2001 (one point for each ERA-40 pixel). (c) Correlation coefficients between ERA-40

and observed annual precipitation averages, for each ERA-40 pixel, as a function of the average altitude in each pixel

(provided by a digital elevation model). The correlation coefficient shown with the empty symbol is not statistically

significant at the 95% confidence level. (d) Annual cycle of the correlation coefficient betweenERA-40 precipitation

and observed rainfall for each ERA-40 pixel (gray lines) and for the area average over all pixels (black line). Also

shown in (b),(c) is the linear fit between the two datasets and the R2.
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attributed to the coarser resolution of the reanalysis

product with respect to that of the RCM, a relevant issue

in such an orographically complex area. In fact, the cor-

relation between the time series of yearly averaged pre-

cipitation from ERA-40 and the upscaled observations

calculated for each ERA-40 pixel (shown in Fig. 3c as

a function of the pixel altitude) indicates that the higher

the average pixel altitude, the lower the correlation

coefficient value. Figure 3d shows the annual cycle of the

correlation coefficient between ERA-40 and the ob-

served precipitation for each pixel (gray lines) and for

the entire domain (black line). As already noted for

Protheus, also in this case there is a summer minimum in

correlation (May–July), possibly associated with diffi-

culties in the reanalysis to reproduce strong convective

events in summer. In othermonths, the correlation can be

as high as 0.8.

The third and fourth rows in Table 1 compare the

average total precipitation, precipitation intensity, num-

ber of dry days, precipitation variance, and 99th per-

centile of precipitation in ERA-40 and in the upscaled

observations. Compared to the observed precipitation

statistics, ERA-40 strongly underestimates the precip-

itation intensity, the variance, and the 99th percentile of

data, while total precipitation is slightly lower than the

observed one and the percentage of dry days is approx-

imately the same.

c. Distribution of daily precipitation

Figures 4a–d show the PDFs of total daily preci-

pitation for the Protheus model and for the upscaled

observations, for the individual seasons: December–

February (DJF),March–May (MAM), June–August (JJA),

and September–November (SON). Figure 4e shows the

annually averaged daily precipitation PDFs. Jackknife

subsampling has been used to determine the 5%and 95%

for each PDF, by estimating the distributions from ran-

dom subsamples of the data containing half of the avail-

able data. Overall, we find a good agreement between the

PDFs produced by the model and the upscaled obser-

vations, both on an annual and a seasonal basis, and the

ranges induced between the 5th and 95th percentiles of

the distributions largely overlap.

The main disagreement between the modeled and

observed PDFs occurs in winter (Fig. 4a) when Protheus

shows a wider distribution, with a larger number of in-

tense events. As discussed above, this discrepancy can be

associated with the behavior of wintertime atmospheric

circulation and cyclone intensification in this specific

RCM.

Figures 4a–e also report the average PDFs obtained

from individual rain gauges. Except in winter, the PDFs

of total precipitation from Protheus display significantly

lower tails compared to the PDFs from the individual rain

gauges, as expected by the coarser resolution and aver-

aging process intrinsic in the model. In fact, the model

cannot capture precipitation extremes, which are often

quite localized in space. The total precipitation from the

model rarely reaches values larger than 100mmday21,

while observed values can be as high as 250–300mmday21

(even 350mmday21 in winter). This is also confirmed by

Fig. 4f, which compares the probabilities of exceedance

for the observations, the upscaled observations, and the

Protheus output, obtained by sorting the precipitation

data and plotting the rank in the sorted series versus the

corresponding amplitudes. While there is good agree-

ment between the upscaled observations and the Protheus

data up to amplitudes of about 100mmday21, rare events,

with higher amplitudes, are underestimated by the

Protheus model.

To correctly represent small-scale intense precipitation,

a further downscaling step is required, which is achieved

by resorting to the RainFARM procedure.

5. Stochastic downscaling

a. Downscaling Protheus RCM precipitation

An important aspect of the RainFARM procedure is

the choice of the spectral slopes. Because precipitation

patterns over the focus region are different in different

seasons, we compute the seasonally averaged logarithmic

slopes a and use them to extrapolate the power spectrum

from the resolved to the unresolved small scales, as-

suming isotropy in the two spatial directions. We find an

approximate power-law behavior of the spectrum in the

range of scales 69 , l , 160 km, from which the dif-

ferent logarithmic slopes, reported in Table 2, have been

estimated. The different values of a during summer and

winter are indicative of the different precipitation re-

gimes in different seasons.

The Protheus data have been downscaled in space

down to 0.9 km, which previous studies have shown to be

adequate for a direct comparison with observations

(Brussolo et al. 2008), following the procedure illustrated

in section 3 and assuming the model nominal resolution

as the reliability scale. For each rain gauge, the time series

from the closest downscaled pixel was then used for the

comparison with the observed precipitation statistics.

Figures 5a–d show the seasonally averaged PDFs of

total precipitation from the downscaled model output

(black) and individual rain gauge observations (red),

and Fig. 5e shows the annually averaged PDFs. The

agreement between the downscaled model PDFs and the

observations is excellent in spring, summer, and autumn,

the most significant seasons in terms of precipitation in
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the area under study. This shows that the RainFARM

downscaling procedure is capable of generating precipi-

tation amplitude distributions comparable with the PDFs

of real observations, starting from the RCM output for

the region of interest. Similarly to what we observed in

Fig. 4a, also in this case precipitation is overestimated in

winter, with the downscaled fields showing more frequent

extreme events compared to the observations. In this case,

the overestimation of Protheus in winter has been prop-

agated by the downscaling procedure, resulting in over-

estimated extremes.

To show how much of the observed precipitation

variance is present in the Protheus downscaled pre-

cipitation fields, we show in Fig. 6a the scatterplot of the

downscaled model and observed precipitation variance

for each small-scale pixel. RainFARM works quite

FIG. 4. Daily precipitation PDFs of Protheus rainfall (blue lines), rain gauge observations upscaled to Protheus

resolution (green lines), and data from individual rain gauges (red lines). The PDFs for individual seasons: (a) DJF,

(b) MAM, (c) JJA, and (d) SON. (e) The annually averaged daily precipitation PDFs. The two lines for each PDF

indicate the 5th and 95th percentiles in each class. (f) The probability of exceedance of total daily precipitation for

Protheus (blue lines), for rain gauge observations upscaled to Protheus resolution (green lines), and for data from

individual rain gauges (red lines). Beyond the value of 400mmday21, individual rain gauges recorded five pre-

cipitation events up to 700mmday21 (not shown).
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efficiently in preserving the observed precipitation var-

iance when it is applied to the Protheus precipitation

fields (the linear regression between the two series in-

dicates an R2 5 0.44), as it is also clear looking at the

values reported in Table 1.

We further explore the ability of the downscaling

procedure in reproducing precipitation extremes look-

ing at the exceedance probability of given precipitation

levels (Fig. 5f) and comparing the 99th percentile of the

observations with that of the downscaled model fields

(Fig. 6b). Figure 5f shows that there is an excellent agree-

ment between the two curves, confirming that precip-

itation extremes in the downscaled model output have

the same probability of occurrence as in the observa-

tions from individual rain gauges. The 99th percentile of

the observed and downscaled precipitation data are

positively correlated, with the linear fit between the two

datasets being characterized by R2 5 0.51.

Table 1 (fifth and seventh rows) summarizes the aver-

ages, over space and time, of the analyzed precipitation

statistics for the downscaled Protheus output and for the

individual rain gauge observations. While there is not

a significant difference in the values of total precipitation,

precipitation intensity and number of dry days before and

after application of the downscaling procedure, indicating

that this downscaling method is not able to correct large-

scale biases in the precipitation fields, it is quite clear from

Table 1 that the downscaling acts more effectively on

the precipitation variance and precipitation extremes.

By using a different threshold to define dry days in the

Protheus field (3.5mmday21) one obtains a percentage

of dry days in the model which is comparable to the ob-

served one.

b. Downscaling ERA-40 precipitation

It is interesting to verify the performance of the Rain-

FARM downscaling procedure when directly applied to

the large-scale precipitation fields, without the in-

termediation of the dynamical downscaling by a RCM.

Figure 7a shows the precipitation PDFs from ERA-40

and from the rain gauge observations upscaled to the

ERA-40 resolution for the whole year. Especially above

;15mmday21, ERA-40 underestimates the frequency

of intense rainfall events when compared to the upscaled

observations.

By downscaling ERA-40 precipitation, assuming that

the reliability scale is equal to the nominal spatial res-

olution of the reanalysis, we obtain new fields having

a spatial resolution of about 1 km. Table 2 shows the

seasonal logarithmic slopes a of the spatial power spectra

used in the downscaling procedure; the logarithmic

spectral slopes are estimated from an extremely limited

range of scales, in the interval 264, l, 528 km. Figure

7b shows that the distribution of downscaled ERA-40

fields is wider than the original one, but still under-

estimates the probability of occurrence of intense pre-

cipitation events, at all amplitudes. The results are similar

if the analysis is repeated at seasonal scale (not shown).

Figures 7c and 7d confirm that the variance and the 99th

percentile of the downscaled ERA-40 precipitation in

each downscaled pixel are underestimated compared

with those of the individual observations. As for the

Protheus case, the average precipitation, the pre-

cipitation intensity and the percentage of dry days do

not change substantially after application of the down-

scaling procedure (Table 1), owing to the fact that

RainFARM is not designed to correct large-scale biases.

Variations in the values of the logarithmic spectral

slopes (e.g., by considering the a values estimated from

the Protheus fields rather than from ERA-40 fields) do

not produce different ERA-40 downscaled precipitation

outputs.

6. Discussion and conclusions

In this work, we have analyzed the precipitation out-

put of a state-of-the-art regional climate model, the

Protheus system, and of its large-scale driver, ERA-40.

Both Protheus and ERA-40 have been spatially down-

scaled using a modified version of the RainFARM pro-

cedure, originally devised for spatiotemporal downscaling

of the output of limited-area atmospheric models. The

downscaled precipitation fields produced by the modi-

fied RainFARMmethod have spatial power spectra more

similar to observed precipitation spectra and are less

prone to possible artifacts than the fields generated by the

original RainFARM procedure when used for purely

spatial downscaling. This RainFARM variant looks suit-

able for spatial downscaling of the output of climate

models and hence for climate change impact studies.

The RainFARM stochastic downscaling procedure,

when applied to the rainfall fields produced by the Pro-

theus RCM with spatial resolution of 30km, generates

rainfall fields with small-scale statistics (precipitation var-

iance, 99th percentile of precipitation values and PDFs),

which are very similar to those of the observations and

TABLE 2. Logarithmic slope a of the spatial power spectrum of

the Protheus and ERA-40 precipitation fields for each season

(climatological mean).

Protheus ERA-40

DJF 2.15 1.82

MAM 1.64 1.80

JJA 0.92 1.38

SON 1.74 1.79
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are characterized by the right probability of intense

rainfall events during most of the year. On the other

hand, biases introduced by theRCMat large scales, such

as an overall overestimation of the total precipitation,

underestimation of the number of dry days, and the dis-

agreement in the frequency of precipitation events, par-

ticularly during the winter season, are not corrected by

the stochastic downscaling procedure.WhenRainFARM

is directly applied to the larger-scale ERA-40 fields, with

a spatial resolution of about 120 km in the study area,

one obtains a significant improvement in the statistics of

intense rainfall but the tails in the distribution are not

fully reproduced. This result indicates that downscaling

procedures such as RainFARM perform in a better

way when they are applied to rainfall fields with me-

soscale resolution. At larger scales, the effects of

FIG. 5. Daily precipitation PDFs of Protheus rainfall (blue lines), data from individual rain gauges (red lines), and

downscaled Protheus fields (black lines). The PDFs for individual seasons: (a) DJF, (b)MAM, (c) JJA, and (d) SON.

(e) The annually averaged daily precipitation PDFs. The two lines for each PDF indicate the 5th and 95th percentiles

in each class. (f) The probability of exceedance of total daily precipitation for Protheus (blue lines), for data from the

individual rain gauges (red lines), and for the downscaled Protheus fields (black lines). Beyond the value of

400mmday21, individual rain gauge data have five precipitation events up to 700mmday21 and the downscaled

Protheus precipitation field has one event beyond 700mmday21 (not shown).
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orography inside the model box might matter, calling

for rainfall downscaling with subgrid topographic ef-

fects included. Currently, the RainFARM procedure

employed in this study does not account for these

effects. These results also confirm the added value of

nesting a RCM into a larger-scale GCM or a global

reanalysis or, alternatively, of running CGMs at higher

resolution.

FIG. 6. Scatterplots of (a) precipitation variance of downscaled Protheus vs individual stations (one point for each

downscaled model pixel corresponding to each rain gauge location) and (b) 99th percentile of downscaled Protheus

precipitation vs individual stations. Both plots show the linear fit between the two series along with the R2 value.

FIG. 7. (a) Daily precipitation PDFs of ERA-40 rainfall (blue lines), rain gauge observations upscaled at ERA-40

resolution (green lines), and data from individual rain gauges (red lines). (b) Daily precipitation PDFs of ERA-40

rainfall (blue lines), data from individual rain gauges (red lines), and downscaled ERA-40 fields (black lines). The

individual PDFs of ERA-40 daily precipitation in each pixel were weighted by the number of Protheus pixels falling

within the ERA-40 pixel. (c) Scatterplot of precipitation variance of downscaled ERA-40 vs individual stations (one

point for each downscaled model pixel corresponding to each rain gauge location). (d) Scatterplot of 99th percentile

of downscaled ERA-40 precipitation vs individual stations. The scatterplots show the linear fit between the two series

along with the R2 value.
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We also explored the sensitivity of the results to pa-

rameter changes. The downscaling procedure has very few

free parameters. In particular, the results of the down-

scaling procedure for Protheus and ERA-40 have been

obtained using g 5 1 in the nonlinear transformation

[see (vi) in section 5]. We tested the sensitivity of the

method to changes in g (considering g 5 0.8, 0.5, and

0.25) and did not observe noticeable changes in the

PDFs of the downscaled precipitation. Similar results

were obtained by changing the value of a, the spatial

logarithmic slope of the spatial power spectrum. For

example, we used a 5 2.0 (a 5 1.70 and 2.5) to down-

scale the Protheus autumn (winter) precipitation fields,

obtaining small-scale precipitation PDFs very similar to

those obtained using the logarithmic slope directly cal-

culated from the large-scale precipitation spectrum. The

dependence of the downscaled precipitation on the value

of a in the ERA-40 case has been assessed using the

Protheus-based a values to downscale the reanalysis

fields. Again, the downscaled ERA-40 fields do not show

noticeable changes, and their statistics still do not com-

parewell with the precipitation statistics from rain gauge

observations. These results indicate that the properties

of the downscaled precipitation field are mostly influ-

enced by the characteristics of the large-scale field, es-

pecially in view of the fact that RainFARM imposes

consistency between the large-scale field and the large-

scale behavior of the downscaled precipitation.

An important point concerns the quality of the model

fields to be stochastically downscaled. In its current

version, RainFARM has not been designed to correct

large-scale biases in the model precipitation fields. A

good agreement of upscaled observations with model

data, in terms of amplitude distributions, is an important

prerequisite for the successful application of the down-

scaling procedure. In the case of the Protheus RCM, the

spring, summer, and autumn model precipitation fields

are characterized by amplitude distributions that com-

pare well with the observations, when upscaled to the

same resolution. In these seasons, the downscaling pro-

cedure is capable of reconstructing the missing variance

and creating small-scale precipitation fields, which are

directly comparable to observations at the rain gauge

scale, whereas the Protheus overestimation of winter

precipitation is propagated, by the downscaling pro-

cedure, also at small scales. The agreement between the

statistics of the global ERA-40 fields and that of the

upscaled observations is lower, and the downscaling

produces small-scale rainfall statistics that, while closer

to what was found from rain gauge data, have smaller

variance. This is probably part of the reason why we find

a better agreement with the rain gauge observations by

downscaling Protheus rather than its driver, ERA-40.

As a conclusion, the results reported here indicate that

stochastic rainfall downscaling is an efficient method for

generating small-scale precipitation fields with the cor-

rect statistical properties from long-term climate simu-

lations. This approach does not require extrapolation of

current conditions to future situations, as the small-scale

statistical properties of rainfall are determined only by

the behavior of themodel-generated fields at larger scales.

Stochastic rainfall downscaling can thus be easily ap-

plied to climate scenarios for impact studies, provided

the models produce precipitation fields with correct

large-scale behavior.
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